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Variational calculation of transport coefficients in diffusive lattice gases
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A diffusive lattice gas is characterized by the diffusion coefficient depending only on the density. The Green-
Kubo formula for diffusivity can be represented as a variational formula, but even when the equilibrium properties
of a lattice gas are analytically known, the diffusion coefficient can be computed only in the exceptional situation
when the lattice gas is gradient. In the general case, minimization over an infinite-dimensional space is required.
We propose an approximation scheme based on minimizing over finite-dimensional subspaces of functions.
The procedure is demonstrated for one-dimensional generalized exclusion processes in which each site can
accommodate at most two particles. Our analytical predictions provide upper bounds for the diffusivity that are
very close to simulation results throughout the entire density range. We also analyze nonequilibrium density
profiles for finite chains coupled to reservoirs. The predictions for the profiles are in excellent agreement with
simulations.
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I. INTRODUCTION

In systems composed of a huge number of interacting par-
ticles, a continuous macroscopic behavior emerges after space
and time variables are suitably rescaled. In this hydrodynamic
limit, the intrinsic granularity of the basic constituents is lost
and the system is described by continuous fields (such as matter
or charge densities, currents, magnetization, etc.), coupled
by partial differential equations. The program of developing
a mathematical theory of hydrodynamic limits for general
systems was posed by Hilbert [1] in his sixth problem, and
it is still far from completion.

Over the past 30 years, significant progress in deriving
hydrodynamic limits has been achieved in the realm of
lattice gases with stochastic microscopic dynamics [2–15]. In
particular, for stochastic lattice gases with simple conservative
interactions such as exclusion processes, it was shown [2,3]
that a coarse-grained density ρ(x,t) satisfies the macroscopic
conservation equation, ∂tρ = −∂xJ , with local current J (x,t)
given by Fick’s law, J = −D(ρ)∂xρ. The diffusivity D(ρ)
depends on the microscopic dynamical rules, and calculating
it is a very challenging problem.

The hydrodynamic limit describes the deterministic evo-
lution of the density field ρ(x,t) defined as a local, coarse-
grained empirical average over microscopic configurations.
This is analogous to the law of large numbers [6]. The next step
is to investigate fluctuations around the average, i.e., to find a
property analogous to the central limit theorem for interacting
lattice gases. A nonrigorous but physically well-motivated
approach is to consider the density and current as stochastic
fields coupled by mass conservation, ∂tρ = −∂xJ , and to add
a random contribution to the constitutive equation that relates
current to density:

J = −D(ρ)∂xρ +
√

σ (ρ)ξ (x,t). (1)
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Here ξ (x,t) is a Gaussian white noise. The amplitude of the
noise depends on the second transport coefficient σ (ρ) known
as conductivity (or mobility). Similarly to the diffusivity, the
conductivity is a function of the local density. The conductivity
σ (ρ) depends on the microscopic rules. The two transport
coefficients D(ρ) and σ (ρ) are difficult to calculate. If one of
them is known, however, it is usually simple to determine the
other due to the Einstein relation. For lattice gases close to
equilibrium, the Einstein relation acquires a simple form,

2D(ρ)

σ (ρ)
= d2F(ρ)

dρ2
, (2)

where F(ρ) is the equilibrium free-energy density per site.
Although a rigorous derivation of the stochastic partial dif-

ferential equation obtained from (1) is lacking, the predictions
agree with available exact results established for special lattice
gases; see, e.g., [12,13]. There are also independent math-
ematical arguments supporting the large deviation principle
implied by the stochastic Langevin equation based on (1).
This is the starting point of the macroscopic fluctuation theory
that describes diffusive interacting particle models in infinite
domains and in finite systems connected to reservoirs at differ-
ent temperatures (or chemical potentials) [14,15]. As long as
the local equilibrium is satisfied, the macroscopic fluctuation
theory is applicable to far-from-equilibrium regimes.

Thus, an understanding of macroscopic behaviors, both
the deterministic (hydrodynamic) part and fluctuations around
it, requires knowledge of two transport coefficients: D(ρ)
and σ (ρ). The Einstein relation (2) implies that it suffices
to determine one coefficient. We focus on D(ρ), which
is especially important since it governs the hydrodynamic
behavior.

In recent years, a significant effort has been devoted to the
calculation of transport coefficients for various lattice gases.
When a stochastic lattice gas satisfies a special property known
as the gradient condition [2,3], the computations become
feasible. The gradient property states that the microscopic
current is the gradient of a local function (i.e., loosely
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speaking, Fick’s law is already valid at the microscopic level).
The simplest lattice gas obeying the gradient property is a
collection of noninteracting random walkers—in this case,
D = 1 and σ = 2ρ. The simplest interacting gradient lattice
gas is the symmetric simple exclusion process [2,16] for which
D = 1 and σ = 2ρ(1 − ρ). Other gradient lattice gases for
which the diffusivity has been computed include the Katz-
Lebowitz-Spohn model with symmetric hopping [5,17,18],
repulsion processes [19], a lattice gas of leap-frogging particles
[20,21], and an exclusion process with avalanches [22]. In
these models, an exact expression for the diffusivity can also
be derived by a “perturbation approach”: one writes the current
at the discrete lattice level and performs a continuous limit
assuming the density field to be slowly varying.

Generic interacting particle processes do not satisfy the
gradient condition; the computation of the diffusivity in
such gases appears intractable. Nevertheless, there exists an
exact variational formula for the diffusivity D(ρ) derived by
Varadhan and Spohn [16] (see also [3,23,24]). This rather
abstract formula is valid for general lattice gases regardless of
the gradient condition. It expresses D(ρ) as a minimum of a
functional over certain classes of functions. In simple cases,
the functional is quadratic and the minimization gives a set of
linear equations; generally it is unclear how to determine the
minimum because the function space is infinite-dimensional.

In this work, we demonstrate that the abstract variational
formula for the diffusivity can be used as a tool to derive
explicit (albeit approximate) formulas. We implement a
systematic approximation procedure for D(ρ) by minimizing
over finite-dimensional subspaces of the infinite-dimensional
function space. The simplest approximation gives exact results
for gradient lattice gases. For general lattice gas, this iterative
scheme can be carried out analytically as far as one wishes,
although the complexity of calculations increases rapidly with
the dimensionality of the subspace. The precision greatly
improves after each step.

The general idea of approximately solving a variational
problem is widely known in science and engineering. For
instance, it underlies the Ritz method. In quantum mechanics,
it is known as the variational method used, e.g., in finding
approximations to the ground state, and also to excited
states. This venerable idea has not yet been applied to the
Varadhan-Spohn formula for the diffusivity, mostly because
it is little known, and it has the reputation of being a very
abstract object that makes concrete calculations difficult.
Furthermore, an approximate variational procedure based on
the Varadhan-Spohn formula requires very long calculations
even for the simplest nongradient lattice gases. Therefore,
one would like to choose a nongradient lattice gas that is
natural and sufficiently simple to be amenable to analysis.
Exclusion processes (lattice gases with at most one particle
per site) appear to be good candidates. They are widely used in
conceptual developments such as testing far-from-equilibrium
behaviors (see [12–16]), and in various applications (see
[25,26] and references therein). The basic example, namely
the symmetric simple exclusion process, is gradient. In
nongradient exclusion processes, the range of hopping is
increased or there are interactions between particles occupying
neighboring sites. In such situations, the dimensionality of the
subspace also increases—this makes computations unwieldy,

FIG. 1. Illustration of the GEP in one dimension, where each site
is occupied by at most two particles. The arrows indicate possible
transitions with rates (3). Two particles occupying the same site jump
independently, each with a rate 1

2 p2s .

and even more so if equilibrium is not given by a product
measure [27].

A rather simple nongradient lattice gas with product
measure is the 2-GEP, a generalized exclusion process (GEP)
in which each site can host at most two particles. The 2-GEP is
additionally parametrized by hopping rates depending on the
occupancy levels. The 2-GEP is the first member in the family
of k-GEP, where k � 2 is the maximal occupancy. The k-GEPs
are nongradient for all k � 2 and for generic hopping rates;
the notable exception is the misanthrope process [28,29].

The GEPs have been investigated in a number of studies
[3,23,24,30–32]. We overview their basic properties in Sec. II.
In Sec. III we present the Varadhan-Spohn formula for the
k-GEPs, and we develop an iterative procedure allowing us to
find increasingly better upper bounds for diffusivity. For the
2-GEP, each iteration of the variational procedure improves the
precision by an order of magnitude. In Sec. IV, we investigate
the 2-GEP on a finite interval with open boundaries connected
to reservoirs. We conclude in Sec. V.

II. GENERALIZED EXCLUSION PROCESSES

We now define generalized exclusion processes (GEPs) and
recall some of their basic properties at equilibrium. We start
with the general k-GEP and then discuss the 2-GEP, which
is the main focus of our study. In the following, we consider
lattice gases in one dimension, and we always assume that
particles undergo nearest-neighbor symmetric hopping.

A. Definition of k-GEPs

For the k-GEP, each site can accommodate at most k

particles (see Fig. 1), i.e., the local occupation variables satisfy
τi ∈ {0,1, . . . ,k}. Jumps between adjacent sites are allowed
only to sites with fewer than k particles, and the rates can
depend on the occupancies of the sites:

(τi,τi+1) = (r,s) → (r − 1,s + 1) (rate prs),

(τi,τi+1) = (r,s) → (r + 1,s − 1) (rate psr ). (3)

The hopping is possible only from occupied sites and impos-
sible into maximally occupied sites, so

p0s = prk = 0. (4)

The one-site probabilities in the equilibrium state are
conveniently expressed through the fugacity λ,

P[τi = r] = Wr = arλ
r

Z
, (5)
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where Z is a normalization factor

Z =
∑

0�r�k

arλ
r . (6)

Without loss of generality we can set a0 = a1 = 1, so that the
fugacity is defined by the ratio W1/W0 = λ. The coefficients ar

depend on hopping rates (3). Note that the fugacity is implicitly
determined by the density

ρ = 〈τi〉 = λ
d

dλ
ln Z. (7)

In many GEPs, equilibrium is characterized by a product
measure. For such lattice gases, the compressibility is defined
by χ = 〈τ 2

i 〉 − ρ2, and it can be alternatively written as

χ = 〈
τ 2
i

〉 − ρ2 = λ
dρ

dλ
. (8)

For lattice gases with equilibrium having the product
structure, the equilibrium free-energy density per site also
admits a simple general form (see, e.g., [33])

F = ρ ln λ − ln Z. (9)

Differentiating F with respect to ρ and using (7), we obtain
dF
dρ

= ln λ. Differentiating again gives d2F
dρ2 = 1

χ
, so that the

Einstein relation (2) can be rewritten as

σ = 2χD. (10)

B. 2-GEP

For the 2-GEP, there are four independent generally nonva-
nishing hopping rates: p10, p11, p20, and p21. The remaining
five vanish: p00 = p01 = p02 = p12 = p22 = 0.

Some special sets of rates have been considered in the
literature, particularly the following:

(i) Particle-uniform rates: Each particle hops with the same
(unit) rate as long as the maximal occupancy constraint is
obeyed (see, e.g., [34]). Therefore, the nonvanishing rates are

p20 = p21 = 2, p10 = p11 = 1. (11)

(ii) Site-uniform rates: The occupancy of each site is
updated with rate 1 as long as the maximal occupancy
constraint is obeyed (see, e.g., [3,30,32]),

p20 = p21 = p10 = p11 = 1. (12)

(iii) The misanthrope process [28]:

p20 = p21 + p10. (13)

Whenever possible, we shall consider the general 2-GEP
with parameters p10, p11, p20, and p21 being arbitrary non-
negative numbers, but some results valid specifically for the
rates (11), (12), or (13) will be emphasized. In particular,
simulations have been performed for the 2-GEP with particle-
uniform rates (11).

We have three one-site probabilities in the equilibrium,

W0 = 1

Z
, W1 = λ

Z
, W2 = a

λ2

Z
, (14)

with a2 = a for simplicity. The normalization factor (6) turns
into a quadratic polynomial

Z = 1 + λ + aλ2 (15)

for the 2-GEP. The product measure holds for the 2-GEP, viz.
the probability of each configuration takes the product form
[3] at equilibrium. In particular,

P[τi = r, τi+1 = s] = WrWs. (16)

The validity of the product measure can be seen by checking
the detailed balance condition corresponding to the processes
(r,s) ↔ (r − 1,s + 1):

prsWrWs = pr+1,s−1Ws−1Wr+1. (17)

For the 2-GEP, these equations are identities for most (r,s), the
only exception being

p20W2W0 = p11W
2
1 , (18)

which fixes the coefficient a in (14) to be

a = p11

p20
. (19)

The single-site probabilities Wr (and generally the probabil-
ities of arbitrary configurations, which are the products of
single-site probabilities) could have been functions of p10,
p11, p20, and p21. However, they actually depend only on the
ratio (19).

For the 2-GEP, the density and the compressibility can be
written as

ρ =W1 + 2W2, (20)

χ =W1 + 4W2 − (W1 + 2W2)2. (21)

Combining (14) and (20), we determine an explicit formula
for λ in terms of ρ,

λ = 2ρ

1 − ρ + √
1 − (1 − 4a)ρ(2 − ρ)

, (22)

and then we express the compressibility via the density:

χ = ρ(2 − ρ)
√

1 − (1 − 4a)ρ(2 − ρ)

1 + √
1 − (1 − 4a)ρ(2 − ρ)

. (23)

We always assume that 0 < a < ∞. Peculiar behaviors
may occur in the extreme cases of a = 0 and a = ∞. These
subtleties are outlined in Appendix A. Possible qualitative
differences between the 2-GEP and k-GEPs with k � 3 are
outlined in Appendix B.

III. BULK DIFFUSIVITY: A VARIATIONAL
CALCULATION

A. Varadhan-Spohn formula for diffusivity

We first review the Varadhan-Spohn variational formula
giving the diffusion coefficient D(ρ) of a stochastic lattice
gas. Generally, D(ρ) can be expressed, via the Green-Kubo
formula, as an integral of a current-current correlation function
[2,5]. The Green-Kubo expression can be rewritten as the
solution of a variational problem (as shown by Spohn [2],
who attributes this variational approach to Varadhan). More
precisely [2,24],

D = 1

2χ
inf
f

〈Q(f )〉. (24)
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Here χ is the compressibility and Q(f ) is a quadratic
functional of the space of functions f , which depend only
on finite points of τ (“cylinder” functions). The expectation
value 〈·〉 is taken with respect to the equilibrium measure on
the configuration space; see Sec. II.

The precise form of the functional Q(f ) depends on the
microscopic dynamical rules of the process. To write down
Q(f ) for the k-GEP, it is convenient to use some auxiliary
notations. For any configuration τ = (. . . ,τ−1,τ0,τ1,τ2, . . .)
we denote by τ 0→1 the configuration obtained from τ by
making a single-particle jump from site 0 to site 1 if such
a move is permitted, otherwise τ 0→1 is identical to τ :

τ 0→1 =
{

(. . . ,τ0 − 1,τ1 + 1, . . .), τ0 � 1,τ1 < k,

τ otherwise.
(25)

When the particle hop is possible, two occupation numbers
in τ 0→1 differ from the corresponding occupation numbers in
τ , and only these numbers are explicitly shown in Eq. (25).
Similarly, the configuration τ 0←1 is obtained from τ by making
a particle hop from site 1 to site 0 if possible:

τ 0←1 = (. . . ,τ0 + 1,τ1 − 1, . . .) (26)

when τ0 < k and τ1 � 1; otherwise τ 0←1 = τ . For any
cylinder function f and j ∈ Z, we define f j by

f j (τ ) = f (Tjτ ), (27)

where the translation operator Tj shifts the configuration τ

forward by j sites: (Tjτ )i = τi−j . In other words, we shift the
frame of f backward by j sites. For instance, if f depends
only on the (τ1,τ2 · · · ,τn), that is,

f (τ ) = f (τ1,τ2, . . . ,τn), (28)

the shifted function f j acts on the configuration space as

f j (τ ) = f (τ1−j ,τ2−j , . . . ,τn−j ). (29)

Note that f 0 ≡ f .
We can now define Q(f ) by its action on the space of

cylinder functions f :

Q(f )(τ ) = pτ0τ1

⎡
⎣1 −

∑
j∈Z

[f j (τ 0→1) − f j (τ )]

⎤
⎦

2

+pτ1τ0

⎡
⎣−1 −

∑
j∈Z

[f j (τ 0←1) − f j (τ )]

⎤
⎦

2

. (30)

The sum with respect to j in (30) contains a finite number
of terms when the function f has a finite range. To appreciate
this assertion, consider a function of type (29). For j < 0 and
j > n, the shifted function f j is not sensitive to the values of
τ0 and τ1, i.e., in Eq. (29) τ0 and τ1 do not appear. Therefore,
f j (τ 0→1) − f j (τ ) = 0 for such j . Thanks to this property, one
can replace

∑
j∈Z in (30) by

∑
0�j�n. Only a finite number of

variables, viz. (τ−n+1,τ−n, . . . ,τn−1,τn), appear in (30).

B. Iterative scheme

The Varadhan-Spohn formula (24) is a powerful theoretical
tool, but it is unclear how to apply it even to the simplest

lattice gases such as the 2-GEP. One can try to obtain an upper
bound for the diffusivity by restricting the space of functions.
Let us consider the subspace Fn of functions depending on
the configuration of n adjacent sites (τ1,τ2, . . . ,τn) and use a
restricted version of the Varadhan-Spohn formula,

Dn = 1

2χ
min
f ∈Fn

〈Q(f )〉. (31)

Each subspace Fn includes the previous ones, Fn−1 ⊂ Fn, and
therefore inequalities

D0 � D1 � D2 � · · · . (32)

The series Dn converges to the actual diffusivity:

lim
n→∞ Dn = D. (33)

The subspace F0 consists of constant functions. Therefore,
all sums in (30) vanish, and the diffusivity in the zeroth-order
approximation reads

D0 =
〈
pτ0τ1

〉
χ

. (34)

This equation is valid for k-GEPs with any k; the same holds
for all previous results of this section. In the rest of this work,
we consider the simplest 2-GEP models if not stated otherwise.

For the 2-GEP, the zeroth-order approximation (34) for the
diffusion coefficient becomes

D0 = p10 + 2p11λ + ap21λ
2

1 + 4aλ + aλ2
. (35)

It is also possible to obtain an explicit form of D0 as a function
of ρ by substituting (22) into (35). We present D0 in two cases.
Specializing (35) to the particle-uniform rates (11), we obtain

D0 = 2(1 + λ)2

2 + 4λ + λ2
= 1 + ρ +

√
1 + 2ρ − ρ2

2
√

1 + 2ρ − ρ2
, (36)

while in the site-uniform case (12) [23]

D0 = (1 + λ)2

1 + 4λ + λ2
= 2 +

√
1 + 6ρ − 3ρ2

3
√

1 + 6ρ − 3ρ2
. (37)

There is a symmetry between particles and vacancies for
the 2-GEP with site-uniform rates. This symmetry implies the
mirror symmetry of the diffusivity, that is, the invariance with
respect to the ρ ↔ 2 − ρ transformation:

D(ρ) = D(2 − ρ). (38)

In terms of the fugacity, the mirror symmetry reads

D(λ) = D(1/λ). (39)

Our iterative scheme gives approximations of the diffusivity
agreeing with mirror symmetry. This is evident in zeroth order,
Eq. (37), and it holds in all higher orders.

C. The first-order approximation

The case of n = 1 is more instructive, although we shall see
that the final result is the same as for n = 0. When n = 1, the
functions f depend only on τ1, that is, f (τ ) = f (τ1) := fτ1 .
There are three independent values—f0, f1, and f2—so F1 is
a three-dimensional space.
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FIG. 2. Illustration of the procedure of computing Q(f ) for n = 1
when the local function f (τ ) = f (τ1) depends only on a single site
and hence only f 0 ≡ f and f 1 contribute to (30).

Only j = 0 and 1, see Fig. 2, contribute to the sum
∑

j in
Eq. (30). Writing τ0 = r and τ1 = s, we have

Q(f )(τ ) =
∑
ε=±1

prs(ε − fr−1 + fr − fs+1 + fs)
2, (40)

where the summation over ε = ±1 combines the two terms on
the right-hand side of Eq. (30) into a single sum. Averaging
(40) with respect to the equilibrium measure, we obtain

〈Q(f )〉 =
∑
r=1,2
s=0,1

∑
ε=±1

prsWrWs(ε − fr−1 + fr − fs+1 + fs)
2.

(41)

By a straightforward calculation, one finds

〈Q(f )〉 = 2〈prs〉 + (f0 − 2f1 + f2)2 4λ2p11

Z2
. (42)

This is minimized when f0 − 2f1 + f2 = 0 and gives D1 =
D0. Thus the first iteration does not lead to any improvement.

D. The second-order approximation

Now f (τ ) = f (τ0,τ1) =: fτ0,τ1 can take nine different
values. In the functional Q(f ), the sites j contributing to
the sum

∑
j in Eq. (30) are j ∈ {0,1,2}; see Fig. 3. We

write τ−1 = q, τ0 = r, τ1 = s, τ2 = u. The average of Q(f )
becomes

〈Q(f )〉 =
∑

q,r,s,u∈{0,1,2}

∑
ε=±1

prsWqWrWsWu

× (ε − fq,r−1 + fq,r − fr−1,s+1

+ fr,s − fs+1,u + fs,u)2. (43)

FIG. 3. Illustration of the procedure for n = 2 when the local
function f depends on two adjacent sites, and only f , f 1, and f 2

contribute to (30).

To determine the minimum, we must solve ∂〈Q(f )〉
∂fξη

= 0
(ξ,η ∈ {0,1,2}). There are five independent equations char-
acterizing the solution space. Four of them are homogeneous:

f20 − 2f11 = 0, f10 − f00 − f11 = 0,

f22 + f00 − 2f11 = 0, f21 + f12 + f10 − f20 − 2f11 = 0.

(44)

An additional inhomogeneous equation is

f12 + f01 − f02 − f11 = p21 + p10 − p20

V
(45)

with

V = p21 + p10 + p20 + p21 + 2p11λ + p10aλ2

Z
.

Using (44) and (45), we find the minimum of 〈Q(f )〉, from
which

D2 = D0 − 2(p21 + p10 − p20)2λ2

(a−1 + 4λ + λ2)V Z
. (46)

The second-order approximation gives a better prediction for
the diffusion coefficient: D2 < D1 = D0. The only exception
is the misanthrope process (13), which is gradient, and
therefore the zeroth-order approximation is already an exact
answer.

Specializing the general expression (46) to the particle-
uniform rates (11), we obtain

D2 = 2(7 + 21λ + 23λ2 + 13λ3 + 3λ4)

(2 + 4λ + λ2)(7 + 7λ + 3λ2)
. (47)

Figure 4(a) shows D0(ρ),D2(ρ) and simulation results ob-
tained for the system with open boundaries (Sec. IV). We see
that simulation data almost perfectly match analytical results
for D2.

For the site-uniform rates (12), we get

D2 = 4 + 13λ + 16λ2 + 13λ3 + 4λ4

(1 + 4λ + λ2)(4 + 5λ + 4λ2)
. (48)

The second-order approximation obeys the mirror symmetry
(39), as expected.

E. The third- and higher-order approximations

In the third order, j ∈ {0,1,2,3} contribute to the sum
∑

j

in Eq. (30); see Fig. 5. We denote by τ−2 = �, τ−1 = q, τ0 =
r, τ1 = s, τ2 = u, τ3 = v the relevant occupation numbers and
recast 〈Q(f )〉 into

〈Q(f )〉 =
∑

�,q,r,s,u,v∈{0,1,2}

∑
ε=±1

prsW�WqWrWsWuWv

× (ε − f�,q,r−1 + f�,q,r − fq,r−1,s+1 + fq,r,s

− fr−1,s+1,u + fr,s,u − fs+1,u,v + fs,u,v)2. (49)

We must solve ∂〈Q(f )〉
∂fξηζ

= 0 (ξ,η,ζ ∈ {0,1,2}). There are 17
independent equations, which are listed in Appendix C.

Lengthy but straightforward calculations give

D3 = a−1A(λ)

(a−1 + 4λ + λ2)B(λ)
, (50)
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FIG. 4. (a) Zeroth- and second-order approximations of the
diffusivity over the entire density range. (b) Zeroth-, second-, and
third-order approximations in the density range 0.9 � ρ � 1.1.
Numerical results (dotted lines) were obtained by simulating an open
system of length L = 1024.

where A(λ) and B(λ) are polynomials in λ of the eighth and
sixth degree, respectively. We do not display long explicit
formulas for A and B for the general rates prs , and we limit
ourselves with two examples.

For the particle-uniform rates (11), we have a = 1
2 and

A(λ) = 2870 + 16 194λ + 40 422λ2 + 59 250λ3 + 56 100λ4

+ 35 274λ5 + 14 410λ6 + 3499λ7 + 385λ8,

B(λ) = 2870 + 10 454λ + 17 064λ2 + 15 772λ3 + 8707λ4

+ 2729λ5 + 385λ6.

FIG. 5. Illustration of the procedure for n = 3 when the local
function f depends on three adjacent sites, and only f , f 1, f 2, and
f 3 contribute to (30).

FIG. 6. Difference between nth and (n − 1)st order approxi-
mations vs ρ (a) and n (b). The plots are for the 2-GEP with
particle-uniform rates (11). The quality of approximation is the worst
around half-filling; in the examples of (b), the quality is worst when
λ = 2.81, corresponding to ρ = 1.38.

For the site-uniform rates (12), we have a = 1 and

A(λ) = 225 + 1428λ + 4140λ2 + 7396λ3 + 8886λ4

+ 7396λ5 + 4140λ6 + 1428λ7 + 225λ8,

B(λ) = 225 + 978λ + 2079λ2 + 2620λ3 + 2079λ4

+ 978λ5 + 225λ6.

In Fig. 4(b), we plot the curves D0, D2, and D3 as well as
the simulation result around ρ = 1. We find that the difference
between D2 and D3 is almost the same magnitude of the
statistical error of the simulation.

It is possible to determine analytical expressions for Dn

for any finite n, but calculations become cumbersome as n

increases. For n = 4, for instance, even in a simple case of
particle-uniform rates, the analytical expression for Dn has the
form (50), with A(λ) and B(λ) being polynomials with integer
coefficients of degree 30 and 28, respectively (the coefficients
are huge, with some of the order of 1024). Figure 6 shows
Dn−1 − Dn for n � 6 for the case of the particle-uniform rates
(11). The difference D5 − D4, for instance, is less than 10−5

in the entire density region 0 < ρ < 2. We expect that Dn−1 −
Dn decreases faster than algebraically.

In a previous work [34], we calculated the diffusion
coefficient for k-GEPs using an approach that actually gave
the zeroth-order approximation, Eq. (34). This prediction was
in good agreement with Monte Carlo simulations, but further
investigations [35,36] of the 2-GEP revealed a discrepancy
between the prediction and the actual value. The above
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FIG. 7. Illustration of the 2-GEP with open boundaries. The
“sites” 0 and L correspond to reservoirs with (in general) different
densities. These boundary conditions are realized by transitions of
the states at sites 1 and L − 1, which are indicated by arrows.

approach shows how to improve this approximation in a
systematic manner.

IV. GEPS WITH OPEN BOUNDARIES

On a ring, the 2-GEP and some classes of the k-GEPs
(including particle-uniform and site-uniform cases) satisfy
detailed balance, and equilibrium steady states are described
by a product measure [28]. On an open chain connected to
reservoirs at different densities, however, these processes are
nonequilibrium and their steady states are generally unknown.
(The simple exclusion process k = 1 is an exceptional case
in which the steady state is known; see, e.g., [10,12].) In the
large system size limit, the deviation from equilibrium is small
and one can use Fick’s law to describe the hydrodynamic
behavior [3]. In this section, we study numerically more
subtle properties such as finite-size corrections to the product
measure.

Specifically, we consider the 2-GEP on a finite chain with
L − 1 bulk sites connected to reservoirs with densities ρ0 and
ρL; see Fig. 7. The couplings to the reservoirs are described
by injection and extraction rates α,β,γ,δ; see Fig. 7. These
rates are determined by the densities ρ0,ρL and the bulk
hopping rates; see Appendix D for details. We use simulations
and scaling considerations to shed light on nonequilibrium
steady states. We perform simulations for the 2-GEP with
particle-uniform rates. In our simulations, we consider extreme
boundary densities, ρ0 = 2 and ρL = 0. Further, we perform
a time average over 107 � t � 109 and an ensemble average
over 10 independent runs.

A. Density profiles in the open system

In the long-time limit, the density profile in the open system
becomes stationary and the current is uniform. The knowledge
of D(ρ) allows us to determine the density profile by solving
the stationary diffusion equation d

dx
[D(ρ) dρ

dx
] = 0 and by

imposing the boundary conditions matching the densities of
reservoirs, ρ(0) = ρ0 and ρ(1) = ρL. (Here, x = i/L is the
rescaled length.) This gives the implicit form of the density
profile, ∫ ρ(x)

ρ0

D(ρ ′)dρ ′ = x

∫ ρL

ρ0

D(ρ ′)dρ ′, (51)

valid for 0 � x � 1. Since this form contains both ρ0 and ρL,
the density profile ρ(x) depends, of course, on these boundary
densities. Replacing the exact diffusivity D(ρ) by Dn(ρ)
(for n = 1,2,3, . . .) derived in the previous section leads to

FIG. 8. (a) ρ(x) for the system of size L = 1024 and ρ0(x)
obtained from Eq. (51) with replacement D → D0. (b) The difference
between ρ0(x) and ρ(x) observed in simulations. The difference
ρ0(x) − ρ3(x) is shown for comparison. (c) The difference ρ0(x) −
ρ(x) for x = 3/8 and 7/8 as a function of system size. The difference
ρ0(x) − ρ3(x) for the same two values of x is also shown. For the
three panels, we choose the boundary densities (ρ0,ρL) = (2,0).

increasingly accurate approximations ρn(x) of the true profile
ρ(x). As shown in Fig. 8(a), the difference between ρ(x) and
ρ0(x) is already too small to be visible when L = 1024, namely
it is less than 0.004 in absolute value; see Fig. 8(b). However,
the discrepancy between ρ(x) and ρ0(x) is systematic and is
not due to statistical errors: Fig. 8(c) indicates that it does
not vanish in the L → ∞ limit. Figures 8(b) and 8(c) also
demonstrate that ρ(x) − ρ0(x) is well fitted by ρ3(x) − ρ0(x).
Generally, ρn(x) with increasing n provide more and more
accurate predictions for ρ(x).

If the gradient condition is satisfied, as for the misanthrope
process, the exact bulk diffusivity is given by D0(ρ) and
therefore ρ0(x) becomes identical to ρ(x) in the hydrodynamic
limit L → ∞.
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FIG. 9. The scaled correlation function L�i vs the scaled coordi-
nate i/L for three different system sizes. The data collapse supports
the emergence of the scaling expressed by (54).

B. Finite-size corrections to the product measure

Because the stationary measure is not factorized in finite
systems with open boundaries, the knowledge of the local
densities,

ρi = 〈τi〉 = P[τi = 1] + 2P[τi = 2], (52)

is not sufficient to determine the stationary state. In an open
system of size L, deviations from the product measure scale
as L−1 in leading order. To probe these deviations, we first
consider the quantity

�i = aP[τi = 1]2 − P[τi = 0]P[τi = 2], (53)

which vanishes for infinite systems and for finite systems on
the ring; see Eq. (18). Figure 9 shows simulation results in the
system with particle-uniform rates (11) and reservoir densities
ρ0 = 2 and ρL = 0. The plots indicate that �i acquires a
scaling form:

�i  L−1ω(x) (54)

in the scaling limit

L → ∞, i → ∞, x = i

L
= finite. (55)

Next we consider the one-point functions P[τi = r]. The
corresponding finite-size corrections have a similar form to
(54):

P[τi = r] − Wr (ρi)  L−1κr (x) (56)

with scaling functions κr obeying

κ0 = −κ1

2
= κ2 = − ω(x)√

1 − (1 − 4a)ρ(x)[2 − ρ(x)]
. (57)

We verified (56) for the particle-uniform rates (11), and we
expect (56) to hold for a generic choice of hopping rates.

The pair correlation function between two adjacent sites
plays a crucial role in the following analysis. We use notations

Xrs
i = P[τi = r ∧ τi+1 = s], (58a)

Y rs
i = P[τi = r]P[τi+1 = s], (58b)

with r,s ∈ {0,1,2}, and we focus on the connected version of
the pair correlation function,

Crs
i = Xrs

i − Y rs
i . (59)

For a periodic or infinite system, Crs
i = 0. However, this is

generally not true for open systems of size L. In the scaling
limit (55), the pair correlation function acquires a scaling form

Crs
i  L−1ϕrs(x). (60)

Note that these correlation functions satisfy simple sum rules,

ϕr0(x) + ϕr1(x) + ϕr2(x) = 0 (r = 0,1,2), (61a)

ϕ0s(x) + ϕ1s(x) + ϕ2s(x) = 0 (s = 0,1,2), (61b)

obtained by summing over the possible occupations of the
right-hand side of (59). Only four of the nine functions ϕrs are
independent. In Fig. 10, all nine functions are plotted. The sum
rules are obeyed, thereby providing a check of our simulations.

C. Hydrodynamic limit for the current

We finally derive an alternative formula for the diffusion
coefficient D(ρ) by taking the continuous limit of the exact
expression for the microscopic current. It is crucial to keep the
dominant corrections to the product measure defined in (60).
This approach allows us to identify the missing contribution in
the naive hydrodynamic limit of [34]. The alternative formula
for D(ρ) is again checked by numerical simulations.

The current between site i and i + 1 reads

Ji =
∑
1�r�2
0�s�1

prs

(
Xrs

i − Xsr
i

)
, (62)

and it can be rewritten as

Ji = Ĵi + (p21 + p10 − p20)
(
C21

i − C12
i

)
, (63a)

Ĵi =
∑
1�r�2
0�s�1

prs

(
Y rs

i − Y sr
i

)
, (63b)

see Appendix E for details. The term Ĵi involves only
the products Y rs

i of one-point functions. The second term
on the right-hand side of (63a) vanishes when the 2-GEP
satisfies the gradient condition (i.e., for the misanthrope
process).

In the scaling limit (55), the term Ĵi becomes

Ĵ (x) = − 1

L
D0(ρ)

dρ

dx
, (64)

where D0 is the zeroth-order approximation of the diffusivity
(see Appendix F for details). Note that (64) is identical to the
naive hydrodynamic limit [34].

The second term on the right-hand side of (63a) also
simplifies in the scaling limit (55), namely it turns into
L−1μ(x) with

μ(x) = (p21 + p10 − p20)[ϕ21(x) − ϕ12(x)]. (65)

Combining (64) and (65), we arrive at

LJ (x)  −D0(ρ)
dρ

dx
+ μ(x), (66)
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FIG. 10. Correlation functions (59) multiplied by the system size
L. The data collapse supports the emergence of the scaling behavior
(60). The sum rules (61a) and (61b) are obeyed.
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FIG. 11. (a) L(C21
i − C12

i ) vs x = i/L for three different system
sizes; μ3 [Eq. (70)] is shown for comparison. (b) Simulation results
for I = ∫ 2

0 D(ρ)dρ and Î = ∫ 2
0 D0(ρ)dρ . The estimates In with n =

0,2,3 are also shown.

which in conjunction with Fick’s law implies that

D(ρ) = D0(ρ) − μ(x)
dx

dρ
. (67)

Here x = x(ρ) is the inverse function of the stationary density
profile ρ(x) given by (51). Equation (67) allows us to obtain
numerical plots of D(ρ) since x = x(ρ) and μ(x) can be
determined accurately from simulations. (This procedure was
used in preparing Fig. 4.)

Rewriting Eq. (67) and using the implicit equation for the
profile (51), we obtain

μ(x) = [D0(ρ) − D(ρ)]
dρ

dx
=

[
1 − D0(ρ)

D(ρ)

]
I (68)

with

I ≡ −
∫ ρL

ρ0

D(ρ)dρ. (69)

Replacing D by Dn, one obtains

μn(x) =
[

1 − D0(ρ)

Dn(ρ)

]
In, In = −

∫ ρL

ρ0

Dn(ρ)dρ . (70)

Simulation results for μ(x) are well fitted by μ3(x); see Fig. 11.
In Fig. 11 we also plot I defined in (69) as a function of L.
We observe an excellent agreement between I (simulations)
and I3 (theory) as L increases. We also verify that Î ≡
− ∫ ρL

ρ0
D0(ρ)dρ converges to I0 when L → ∞. This confirms
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the usefulness of Eq. (68) for numerical measurements of
the diffusion coefficient, as an alternative to the standard
Green-Kubo formula.

V. CONCLUSIONS

Interacting many-particle systems generically exhibit
macroscopic behaviors that can be described by fluctuating
hydrodynamics. This is particularly well understood in the
realm of stochastic lattice gases with symmetric hopping. In
these diffusive lattice gases, the hydrodynamic behavior is
described by the single scalar function, the coarse-grained
density ρ(x,t), satisfying the diffusion equation. Fluctuations
and large deviations in diffusive lattice gases are described by
two coupled scalar fields evolving according to equations of
the macroscopic fluctuation theory. Remarkably, all details
of the microscopic hopping rules are encapsulated in the
diffusion coefficient D(ρ) and the conductivity σ (ρ). These
transport coefficients enter into the diffusion equation and the
governing equations of the macroscopic fluctuation theory.
The determination of the transport coefficients is a challenge
even for the simplest diffusive lattice gases. Apart from very
special models, known as gradient systems, for which a simple
perturbation approach provides the correct answer, there exists
no general technique to derive closed formulas for the transport
coefficients.

In this work, we used the Varadhan-Spohn variational
formula for the diffusion coefficient, and we employed an
approach resembling the Ritz method to derive analytical
approximations for D to an arbitrary degree of precision.
The Varadhan-Spohn formula is essentially the Green-Kubo
formula for diffusive lattice gases. We illustrated our approach
by investigating the 2-GEP, a generalization of the symmetric
exclusion process in which a site can accommodate at most
two particles. The 2-GEP is nongradient gas with unknown
transport coefficients. For the 2-GEP in one dimension we
showed that the Varadhan-Spohn variational formula can be
used to derive analytical approximations to D in a systematic
manner—after a few iterations, the precision of the order
of a few parts per million is reached. Thus the simplest
approximations are already remarkably accurate, resembling
the success of continuous fraction approximations of irrational
numbers. We emphasize that our approximate expressions
for the diffusion coefficient are intrinsically different from
perturbative, Taylor-type expansions around some special
value of the density; on the contrary, they are global and
uniform estimates, valid on the whole range of admissible
densities. To check for the practicality of our approximation
procedure, we performed simulations in open systems coupled
to reservoirs at different densities. The precise variational
estimate of the diffusivity allowed us to study the density
profile in the open system. In addition, an analysis of the
finite-size corrections to the equilibrium measure led to an
alternative formula for diffusivity that can be used for high-
precision numerical measurements.

Nongradient lattice gases are the rule, not the exception,
and the procedure used in this work can be extended in various
directions. One could study one-dimensional processes with
local hopping rates that depend in an arbitrary way on the
occupation numbers of the original and of the target site.

Further, the variational formula is valid in arbitrary spatial
dimension. For instance, one can apply it to study the diffusion
coefficient and conductivity of kinetically constrained lattice
gases [37] in two and higher dimensions.

Different variational methods have been applied to a
number of lattice-gas models in Ref. [38], while techniques
similar to ours have been recently introduced to approximate
the thermal conductivity for stochastic energy exchange
models [39,40]. It would be interesting to clarify connections
between these approaches. Another avenue for further research
concerns the phenomenon of self-diffusion describing the
diffusivity of a tagged particle in a lattice gas. The coefficient
of self-diffusion is unknown even for diffusive lattice gases
satisfying the gradient condition, e.g., for the simple exclusion
process in two and higher dimensions. The coefficient of
self-diffusion can be written in a variational form [2], and it is
perhaps possible to derive excellent analytical approximations
for this coefficient using a procedure similar to the one
developed in this article.
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APPENDIX A: EXTREME VERSIONS OF THE 2-GEP

For the 2-GEP, the expressions (14) for the one-site
probabilities indicate that unusual behaviors may occur in
the extreme cases of a = 0 and a = ∞. The latter case,
a = ∞, is realized when p20 = 0. The 2-GEP in this case
is not a diffusive lattice gas. Instead, starting from an arbitrary
initial configuration, the system gets trapped in a jammed
configuration like

. . . 002020002222022202022200002022202 . . . ,

where each site is empty or occupied by two particles. In the
long-time limit, the configuration looks like

. . . 020201022221222020222001020222102 . . . .

These 1’s diffuse, 10 ↔ 01 and 12 ↔ 21, and annihilate,
11 → 20 or 11 → 02, i.e., 1’s disappear due to the single-
species diffusion-controlled annihilation (see [11] for a re-
view). In one dimension, the density of 1’s decays as t−1/2.
Thus, the 2-GEP with p20 = 0 is not diffusive, and the system
gets trapped in a jammed final state.

The case of a = 0 is realized when p11 = 0 (see also [29]).
Note that, in this case, D(ρ) is not continuous at ρ = 1,
and correspondingly d2F

dρ2 diverges at this point. Elsewhere the
Einstein relation (2) should be satisfied. If the global density
is ρ < 1 and additionally we start with a configuration where
each site is occupied by at most one particle, τi(0) � 1, such an
occupation arrangement will persist, so we recover the classic
exclusion process. Similarly, if the global density is ρ > 1 and
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additionally we start with a configuration where each site is
occupied by at least one particle, τi(0) � 1, the process can be
mapped into the classic exclusion process after interpreting a
site with two particles as occupied and a site with one particle
as empty. Generally when ρ �= 1, the 2-GEP with p11 = 0
essentially reduces to the classic exclusion process after an
earlier regime when the system reaches the state with τi � 1
(if ρ < 1) or τi � 1 (if ρ > 1). A novel behavior can only
occur when ρ = 1. In the long time, the configuration will
look like

. . . 11111011111111112111110111111111211111 . . .

with 0’s and 2’s diffusing and annihilating upon colliding:
02 → 11, 20 → 11. For this two-species diffusion-controlled
annihilation process (see [11] for a review), the density of
defects (0’s and 2’s) is known to decay as t−1/4. (This is
certainly valid when both species of defects, 0’s and 2’s, have
the same diffusion coefficients, that is, when p10 = p21.) Thus
at the half-filling, ρ = 1, the 2-GEP with p11 = 0 algebraically
approaches the uniform final state where each site is occupied
by one particle.

APPENDIX B: VALIDITY OF THE PRODUCT
MEASURE FOR THE 3-GEP

Here we briefly consider the 3-GEP to appreciate possible
qualitative differences with the 2-GEP. The 3-GEP is generally
characterized by nine nonvanishing rates prs with r = 1,2,3
and s = 0,1,2. The detailed-balance relations (17) lead again
to (18) and additionally to

p30W3W0 = p12W1W2, p31W3W1 = p22W
2
2 . (B1)

The equilibrium probabilities take the form (5), viz.,

W0 = 1

Z
, W1 = λ

Z
, W2 = a2

λ2

Z
, W3 = a3

λ3

Z
,

with a3 = a2p12/p30 and the same a2 = p11/p20 as for the
2-GEP. All this is valid, however, only when the constraint

p31p12p20 = p30p22p11 (B2)

following from (B1) is obeyed. Thus for the 3-GEP, the
factorization holds when the constraint (B2) is satisfied;
similar conditions for the k-GEPs with k � 4 are discussed
in Ref. [28].

APPENDIX C: DETAILS FOR n = 3

Solving ∂Q

∂fξηζ
= 0 (ξ,η,ζ ∈ {0,1,2}), one arrives at 13

homogeneous relations (we use the shorthand notation gabc =
fabc + fcba),

f020 + f202 = 2f111 = f000 + f222,

g001 − g011 = 2f101 − 2f111 = 2f000 − 2f010,

f111 − f212 = f121 − f222 = g122 − 2f222,

f111 − f212 = g011 − g012 = g021 − g022,

g001 − f101 = g002 − f202 = 2f111 − f222,

f222 + f020 = g022,

f101 + f202 = g102,

f111 + f212 = g112,

and four inhomogeneous relations,

f101 − f100 + f200 − f201 = U1,

f121 − f120 + f220 − f221 = U2,

f120 − f101 + f201 − f210 + f212 − f222 = U3,

f111 − f110 + f210 − f211 = U4.

Here Ui = AiZ/B, Ai are polynomials of the fourth degree
in λ, and B is the polynomial of the sixth degree. For the
particle-uniform rates (11),

A1 = 70 + 164λ + 175λ2 + 95λ3 + 24λ4,

A2 = 148 + 340λ + 336λ2 + 164λ3 + 35λ4,

A3 = 350 + 960λ + 1039λ2 + 527λ3 + 105λ4,

A4 = 50 + 106λ + 97λ2 + 45λ3 + 10λ4.

For the site-uniform rates (12),

A1 = 15 + 42λ + 64λ2 + 50λ3 + 21λ4,

A2 = 21 + 50λ + 64λ2 + 42λ3 + 15λ4,

A3 = 3(1 + λ)2(15 + 22λ + 15λ2),

A4 = −3(1 + λ)4.

For the misanthrope process, Ai = 0. The expressions for B(λ)
for the particle-uniform and site-uniform rates are presented
in Sec. III E.

APPENDIX D: MICROSCOPIC COUPLING
TO THE RESERVOIRS

At the left boundary, the site number 1 of the open system
is connected to a reservoir at density ρ0. Particles are injected
to site 1 at a rate α(τ1) and removed from site 1 at a rate γ (τ1).
These rates depend on the occupation τ1 of site 1, so there are
four different values: α(0), α(1), γ (1), and γ (2). Imposing a
local equilibrium condition with the left reservoir at density
ρ0 implies the following constraints:

α(0)W0(ρ0) = γ (1)W1(ρ0),

α(1)W1(ρ0) = γ (2)W2(ρ0). (D1)

The weights W0, W1, and W2 are the 2-GEP equilibrium
probabilities (14) at density ρ0; the corresponding fugacity
λ0 = λ(ρ0) is obtained from (22). Relations (D1) allow some
freedom in choosing the boundary rates. The following choice
is suitable:

α(0) = p10W1(ρ0) + p20W2(ρ0) = p10λ0 + p11λ
2
0

Z
,

α(1) = p11W1(ρ0) + p21W2(ρ0) =
p11λ0 + p21p11

p20
λ2

0

Z
,

γ (1) = p10W0(ρ0) + p11W1(ρ0) = p10 + p11λ0

Z
,

γ (2) = p20W0(ρ0) + p21W1(ρ0) = p20 + p21λ0

Z
.

032121-11



CHIKASHI ARITA, P. L. KRAPIVSKY, AND KIRONE MALLICK PHYSICAL REVIEW E 95, 032121 (2017)

The local detailed balance relations are readily checked:

α(0)

γ (1)
= λ0 = W1(ρ0)

W0(ρ0)
,

α(1)

γ (2)
= λ0

p11

p20
= W2(ρ0)

W1(ρ0)
.

At the right boundary, the system is at local equilibrium
with a reservoir at density ρL; particles are extracted from site
L − 1 at rate β(τL−1) and injected with rate δ(τL−1). A suitable
choice of boundary rates is

β(r) =
∑
s=0,1

prsWs(ρL) (r = τL−1), (D2)

δ(r) =
∑
s=1,2

psrWs(ρL) (r = τL−1), (D3)

where now the weights Ws are evaluated for the value of λL,
obtained from ρL using (22).

In general, the product measure does not give the correct
stationary state, except for the case ρ0 = ρL. The difference
between the reservoir densities ρ0 and ρL gives a finite current
even in the stationary state.

Simulations shown in this work were performed in the
situation when the boundary densities are extreme, viz., the
left reservoir is fully packed, ρ0 = 2, while the right reservoir
is empty, ρL = 0; the corresponding values of the fugacity are
λ = ∞ and λ = 0, respectively. Accordingly, the injection and
extraction rates are

α = p2s (s = τ1), β = pr0 (r = τL−1), γ = δ = 0.

(D4)

APPENDIX E: DERIVATION OF EQS. (63a) AND (63b)

First, we show that Eq. (62) is equivalent to

Ji =
∑
r=1,2

pr0P[τi = r] −
∑
r=1,2

pr0P[τi+1 = r]

+ (p21 + p10 − p20)
(
X21

i − X12
i

)
. (E1)

Note that the top line on the right-hand side of Eq. (E1) is in
gradient form, but the bottom line is not (unless p10 − p20 +
p21 = 0). We use the following identities:

P[τi = 0] = 〈
δτi ,0

〉 = 1
2 〈(1 − τi)(2 − τi)〉,

P[τi = 1] = 〈
δτi ,1

〉 = 〈τi(2 − τi)〉,
P[τi = 2] = 〈

δτi ,2
〉 = 1

2 〈τi(τi − 1)〉
for τi ∈ {0,1,2}. The Kronecker delta δτi ,r indicates if site
i is occupied by r particles. Similar expressions are readily
written for two-point probabilities P[τi = r ∧ τi+1 = s]. The
expression (62) for the current Ji is thus given by the
expectation value

Ji = 1
2 〈(τi − τi+1)[2p10(2 − τi − τi+1)

+ p20(τi + τi+1 − 1) + (p21 + p10 − p20)τiτi+1]〉.
Introducing the observables

N1(τi,τi+1) = (τi − τi+1)(2 − τi − τi+1)

= δτi ,1 − δτi+1,1,

N2(τi,τi+1) = 1
2 (τi − τi+1)(τi + τi+1 − 1)

= δτi ,2 − δτi+1,2,

N3(τi,τi+1) = 1
2 (τi − τi+1)τiτi+1

= δτi ,2δτi+1,1 − δτi ,1δτi+1,2,

we obtain

Ji = p10〈N1(τi,τi+1)〉 + p20〈N2(τi,τi+1)〉
+ (p21 + p10 − p20)〈N3(τi,τi+1)〉

leading to (E1). Performing analogous calculations for Ĵi

defined in (63b), we find that Ji − Ĵi is given by

〈N3(τi,τi+1)〉 − 〈
δτi ,2

〉〈
δτi+1,1

〉 + 〈
δτi ,1

〉〈
δτi+1,2

〉
(E2)

times (p21 + p10 − p20). One can verify that (E2) is identical
to C21

i − C12
i . This completes the proof of (63a) and (63b).

APPENDIX F: CONTINUOUS LIMIT OF ̂Ji

We now derive (64), the continuous limit of Ĵi . We use the
scaling form (56) and obtain

Y rs
i − Y sr

i  Wr (ρi)Ws(ρi+1) − Ws(ρi)Wr (ρi+1)

+ 1

L

[
κr

(
i

L

)
κs

(
i + 1

L

)
−κs

(
i

L

)
κr

(
i+1

L

)]
.

(F1)

The second line on the right-hand side of Eq. (F1) vanishes
as O(L−2). To simplify the first line in Eq. (F1), we write the
Taylor expansion

W�(ρi+1)  W�(ρ) + 1

L

dρ

dx

dW�

dρ
(� = r,s). (F2)

Using this result and keeping only O(L−1) terms, we simplify
Eq. (F1) and arrive at

Ĵ (x)  1

L

dρ

dx

∑
r=1,2
s=0,1

prs

[
Wr

dWs

dρ
− Ws

dWr

dρ

]
. (F3)

We emphasize that the finite-size corrections κr cancel out in
(F3). Substituting (14) into (F3), we obtain

Ĵ (x)  − 1

L

dρ

dx

dλ

dρ

1

λ

∑
1�r�2
0�s�1

prsWrWs,

which indeed reduces to (64) once we recall that D0 is given
by (34).
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