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Density-functional theory for fluid-solid and solid-solid phase transitions
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We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical
statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of
the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts
of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres
interacting via inverse power potentials u(r) = ε(σ/r)n, where parameter n measures softness of the potential.
We find that for 1/n < 0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n � 0.154
the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon
increasing the density. The calculated phase diagram is in good agreement with the one found from molecular
simulations.
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I. INTRODUCTION

Considerable efforts have been made over several decades
to develop a first-principles theory that can predict the phase
diagram of a system interacting via known interparticle
interactions [1]. Most of these efforts have, however, been
limited to finding the fluid-solid phase boundary [2–4]. Many
real as well as model systems are known to have more than one
crystalline solid phase. The phase diagrams of such systems
have therefore one or more solid-solid phase boundaries in
addition to the fluid-solid boundary. The well known example
is of water, whose pressure-temperature (P-T) phase diagram
has several solid-solid phase boundaries and triple points [5].
Most metallic elements on the left-hand side of the periodic
group together with all the lanthanides and actinides are
found to freeze at low pressures into a body-centred-cubic
(bcc) structure and transform to other structures at higher
pressures [6]. Model systems with sufficiently soft repulsive
interactions also show similar behavior [7].

The computational study of a variety of model systems
[7–10] has led researchers to derive a fundamental link
between the macroscopic phase behavior and the interparticle
interactions. In the case of particles interacting via spherically
symmetric potentials it is found that the crystalline structure
that emerges at the freezing point is predominantly controlled
by the nature of the repulsive component of the interparticle
potential. Harsh repulsion favors a compact structure such as
the face-centred-cubic (fcc) or the hexagonal-closed-packed
(hcp) structures whereas soft repulsion favors a relatively open
structure such as bcc. The open structure transforms into one
of the compact structures at higher pressure.

While fluid is isotropic and homogeneous, a crystalline
solid is highly inhomogeneous system with sharp peaks in
the one-particle density distribution ρ(�r) at the lattice sites,
and values falling to essentially zero in the interstitial region.
The thermodynamic potentials and correlation functions of
a crystal are functionals of ρ(�r) whereas those of the fluid
are simply a function of fluid density ρf (=Nf

V
, Nf being

the number of particles in volume V ). The density functional
formalism of classical statistical mechanics can be used to
write expressions for the thermodynamic potentials of an
inhomogeneous system in terms of correlation functions. The

functional derivatives of the reduced Helmholtz free energy
A[ρ] with respect to ρ(�r) are related to the direct correlation
functions of the system [4,11].

An exact expression for A[ρ] can be found by double
functional integrations in the density space of a relation
that connects the second functional derivative of A[ρ] with
respect to ρ(�r) to the direct pair correlation function (DPCF)
[see Eq. (2.3)]. The resulting expression involves both the
symmetry conserving and the symmetry broken parts of
the DPCF [12,13]. The symmetry broken part takes care
of the specificity of the inhomogeneity of the crystalline
structure [13]. This free energy functional has been used to
study the fluid-solid transition in several model systems in
two and three dimensions [13–17]. Results found for freezing
parameters and the crystalline structures that emerge at the
fluid-solid transition point are in very good agreement with
simulation results in all cases.

In this paper we extend the theory to describe solid-solid
transitions. This enables us to calculate full phase diagrams
showing regions of fluid and crystalline phases. The paper is
organized as follows: In Sec. II we describe a theory that uses
a density functional formalism to write the exact expression
for the difference in the grand thermodynamic potentials
of the two coexisting phases. In Sec. III we calculate and
report results for the fluid-solid and the solid-solid transitions
in systems interacting via inverse power potentials. The
calculated phase diagram is compared with results found from
computer simulations. The paper ends with a brief summary
and conclusion given in Sec. IV.

II. THEORY

In a symmetry broken phase such as a crystal, the cor-
relation functions are the sum of two qualitatively different
contributions: one that preserves the continuous symmetry of
the fluid and one that breaks it and vanishes in the fluid [12,13].
Thus, for the DPCF in a crystal, we write

c( �r1, �r2) = c(0)(| �r2 − �r1|; ρ) + c(b)( �r1, �r2; [ρ]), (2.1)

where c(0) and c(b) represent, respectively, the symmetry
conserving and the symmetry broken contributions. While
c(0) depends on the magnitude of interparticle separation
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r = | �r2 − �r1| and is function of average density ρ, c(b) depends
on both position vectors, �r1 and �r2, and is a functional of ρ(�r)
(indicated by square brackets). Because of crystal symmetry,
c(b) is invariant only under a discrete set of translations
corresponding to lattice vectors �Ri , and can be expressed as

c(b)( �r1, �r2; [ρ]) =
∑
K

ei �K· �rc c(K)(�r), (2.2)

where �rc = 1
2 ( �r1 + �r2) is a center-of-mass variable, �r = �r2 − �r1

a difference variable, and �K reciprocal lattice vectors (RLVs)
of the crystal. Since c(K)(�r) is real and symmetric with respect
to interchange of �r1 and �r2,

c(−K)(�r) = c(K)(�r) and c(K)(−�r) = c(K)(�r).

An exact expression for the reduced free energy A[ρ] is
found by double functional integrations in density space of the
relation [13]

δ2A[ρ]

δρ( �r1)δρ( �r2)
= δ( �r1 − �r2)

ρ( �r1)
− c(0)(| �r2 − �r1|; ρ)

− c(b)( �r1, �r2; [ρ]), (2.3)

where δ is the Dirac delta function. The first term on the
right-hand side of (2.3) corresponds to the ideal gas and is

integrated analytically. The second term, which corresponds
to the symmetry conserving contribution is integrated using
a homogeneous system as a reference system. The third term
which corresponds to the symmetry broken contribution is
integrated in density space along a path defined by parameters
which raise the number density and the order parameters
[see Eq. (2.6)] from zero to their final values.

To locate the transition one uses the grand thermodynamic
potential defined as

−W = A[ρ] − βμ

∫
d�r ρ(�r), (2.4)

where μ is the chemical potential and β the inverse temperature
in units of the Boltzmann constant kB . At the transition point
μ1 = μ2 and �W = W1 − W2 = 0, where subscripts 1 and 2
refer to two coexisting phases.

A. Fluid-solid transition

For the fluid-solid transition the symmetry conserving
contribution is found by using the coexisting fluid which has
same value of chemical potential as the solid, as the reference
system. The functional integration of (2.3) leads to following
expression for �Wf c = Wf − Wc, where subscripts f and c

refer, respectively, to the fluid and the crystal [13–17]:

�Wf c =
∫

d�r
[
ρc(�r) ln

ρc(�r)

ρf

− [ρc(�r) − ρf ]

]
− 1

2

∫
d �r1

∫
d �r2[ρc( �r1) − ρf ][ρc( �r2) − ρf ]c(0)(r,ρf )

−
∫

d �r1

∫
d �r2[ρc( �r1) − ρc][ρc( �r2) − ρc]c̄(b)

c ( �r1, �r2), (2.5)

where

c̄(b)
c ( �r1, �r2) = 2

∫ 1

0
dλ(1 − λ)

∫ 1

0
dξ (1 − ξ )c(b)

c

× ( �r1, �r2; λρc,ξρK ). (2.6)

Here ρf is density of the coexisting fluid and ρc(�r) is the
single-particle density distribution of the crystal formed at the
freezing point. The function ρc(�r) can be expanded in Fourier
series as

ρc(�r) = ρc +
∑
K

ρKei �K·�r , (2.7)

where ρc = ρf (1 + �ρ∗) is the average density of the crystal,
�ρ∗ is the relative change in density upon freezing, ρK are the
order parameters, and �K are the RLVs of the crystal.

The fluid-solid coexistence is found when �Wf c = 0 and
δ�Wf c

δρ(�r) = 0 are simultaneously satisfied. The minimization of
�Wf c is done with an assumed form of ρc(�r). The first
term of (2.5) is calculated using a form of ρc(�r) which is a
superposition of normalized Gaussians centered around lattice
sites:

ρc(�r) =
(

αc

π

)3/2 ∑
i

exp
[−αc

(�r − �R(c)
i

)2]
, (2.8)

where αc is the localization parameter and �R(c)
i are lattice

vectors. For other terms of Eq. (2.5) it is convenient to use
Eq. (2.7) for ρc(�r). The order parameters ρK that appear in (2.7)

are related to αc as

ρK = ρc exp[−K2/4αc]. (2.9)

B. Solid-solid transition

At the solid-solid phase boundary, the phase that has lower
density will be referred to as low density crystal (LDC) and
the one that has higher density as high density crystal (HDC);
letters l (for LDC) and h (for HDC) will be used to indicate
quantities of these phases.

Let the single-particle density distribution of the LDC
be expressed in a Fourier series and in the superposition of
normalized Gaussians as

ρl(�r) = ρl +
∑
K �=0

ρKei �K·�r and

ρl(�r) =
(

αl

π

)3/2 ∑
i

e−αl (�r− �R(l)
i )2

with ρK = ρle
− K2

4αl ,

(2.10)

and for the HDC as

ρh(�r) = ρh +
∑
G �=0

ρGei �G·�r and

ρh(�r) =
(

αh

π

)3/2 ∑
i

e−αh(�r− �R(h)
i )2

with ρG = ρhe
− G2

4αh ,

(2.11)
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where ρh = ρl(1 + �ρ∗), ρl and ρh are average densities of
the LDC and the HDC, respectively, and �ρ∗ is the relative
change in density at the transition. �K and �G are RLVs and
ρK and ρG are order parameters. αl and αh are localization
parameters.

The difference in the grand thermodynamic potential of
these phases is expressed as

�Wlh = Wl − Wh = A[ρh] − A[ρl]

−βμh

∫
d�r ρh(�r) + βμl

∫
d�r ρl(�r), (2.12)

where A[ρh] and μh are reduced free energy and chemical
potential of the HDC and A[ρl] and μl are those of the LDC.

The expressions for A[ρh] and A[ρl] are found from
functional integrations of (2.3). The ideal gas part, as stated
above, is found analytically. For evaluation of the symmetry
conserving part we choose a homogeneous system of density
ρl (the same as the average density of the LDC), chemical
potential μ0 which, in general, is different from μl and μh, and
the reduced free energy A(ρl), as a reference system. The func-
tional integration of (2.3) gives following expression for A[ρl]:

A[ρl] − A(ρl) =
∫

d�r
[
ρl(�r) ln

ρl(�r)

ρl

− [ρl(�r) − ρl]

]
+ βμ0

∫
d�r[ρl(�r) − ρl] − 1

2

∫
d �r1

∫
d �r2[ρl( �r1) − ρl]

× [ρl( �r2) − ρl]c
(0)(r,ρl) −

∫
d �r1

∫
d �r2[ρl( �r1) − ρl][ρl( �r2) − ρl]c̄

(b)
l ( �r1, �r2), (2.13)

where

c̄
(b)
l ( �r1, �r2) = 2

∫ 1

0
dλ(1 − λ)

∫ 1

0
dξ (1 − ξ )c(b)

l ( �r1, �r2; λρl,ξρK ). (2.14)

In writing (2.13) use has been made of the relation [4]

ln(ρl�) − c(1)(ρl) = βμ0, (2.15)

where c(1)(ρl) is the one-particle direct correlation function of the reference system and � is the cube of the thermal wavelength
associated with a particle. A similar expression can also be written for A[ρh].

Substituting expressions of A[ρl] and A[ρh] in (2.12), we get

�Wlh =
∫

d�r
[
ρh(�r) ln

ρh(�r)

ρl

− ρl(�r) ln
ρl(�r)

ρl

− [ρh(�r) − ρl(�r)]

]
− β(μ − μ0)

∫
d�r[ρh(�r) − ρl(�r)]

− 1

2

∫
d �r1

∫
d �r2{[ρh( �r1) − ρl][ρh( �r2) − ρl] − [ρl( �r1) − ρl][ρl( �r2) − ρl]}c(0)(|�r2 − �r1|,ρl)

−
∫

d �r1

∫
d �r2[ρh( �r1) − ρh][ρh( �r2) − ρh]c̄(b)

h ( �r1, �r2) +
∫

d �r1

∫
d �r2[ρl( �r1) − ρl][ρl( �r2) − ρl]c̄

(b)
l ( �r1, �r2), (2.16)

where c̄
(b)
l ( �r1, �r2) is defined by (2.13) and

c̄
(b)
h ( �r1, �r2) = 2

∫ 1

0
dλ(1 − λ)

∫ 1

0
dξ (1 − ξ )c(b)

h

× ( �r1, �r2; λρh,ξρG). (2.17)

In writing (2.16) we assumed μh = μl , which happens only
at the phase boundary. The quantity β(μ − μ0) that appears
in (2.16) is found from following relation [11],

β(μ − μ0) = �f (ρl,αl) + ρl

∂�f (ρl,αl)

∂ρl

∣∣∣∣
T ,V

, (2.18)

where

�f (ρl,αl) = min

[
1

Nl

(A[ρl] − A(ρl))

]
(2.19)

and Nl = Vρl , V being volume of the system. The minimum
in (2.19) is found for a given ρl by minimizing 1

Nl
{A[ρl] −

A(ρl)} by varying αl . The minimum found at a particular value
of αl for given ρl is �f (ρl,αl) (see Fig. 3).

Equations (2.5), (2.13), and (2.16) are exact but involve
DPCFs, c(0) and c(b), which need to be known. Approximation

in the theory enters through them. The value of c(0)(r) is
found from the integral equation theory which consists of the
Ornstein-Zernike (OZ) equation and a closure relation that
connects correlation functions with the interparticle potential
[11]. For the symmetry broken part of DPCF, c(b)(�r1,�r2), a
perturbative series expressed in powers of order parameters is
used [13]. This series involves higher-body direct correlation
functions of a homogeneous system of density equal to the
average density of the crystal. For example, for LDC the series
is written as

c
(b)
l ( �r1, �r2; [ρ]) =

∫
d �r3c

(0)
3 ( �r1, �r2, �r3; ρl)(ρl( �r3) − ρl)

+ 1

2

∫
d �r3

∫
d �r4c

(0)
4 ( �r1, �r2, �r3, �r4; ρl)[ρl( �r3)

− ρl][ρl( �r4) − ρl] + · · · , (2.20)

where c(0)
m is m-body direct correlation function of a homoge-

neous system of density ρl and ρl(�r) − ρl = ∑
K �=0 ρKei �K·�r .

The values of c(0)
m (for m � 3) are found from the exact
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relation [4,11]

∂m−2c(0)(|�r2 − �r1|,ρl)

∂ρm−2
=

∫
d�r3 · · ·

∫
d�rmc(0)

m (�r1, . . . ,�rm,ρl).

(2.21)

The methods for calculating c(0)
m and c(b)( �r1, �r2) are discussed

in detail in Ref. [16] and briefly summarized in Ref. [18].
For most systems of our interest, the first two terms written
explicitly in (2.20) are enough to find accurate values of
c(b)( �r1, �r2) [16,17]. With known values of c(0) and c(b), phase
boundaries are found from expressions of �W given above.

III. CALCULATION OF PHASE BOUNDARIES:
RESULTS AND DISCUSSIONS

We report results for a family of inverse power potentials
(IPPs);

u(r) = ε

(
σ

r

)n

, (3.1)

where r is molecular separation and ε, σ , and n are potential
parameters. The parameter n measures softness of the po-
tential; n = ∞ corresponds to a hard sphere and n = 1 to a
one-component plasma. These potentials have a simple scaling
property, according to which the density and temperature can
be combined to give a single parameter defined as

γ = ρσ 3(βε)3/n = ρ∗T ∗−3/n
. (3.2)

In term of γ the IPPs are written as

βu(r) =
(

4π

3
γ

)n/3 1

rn
, (3.3)

where r is measured in units of a0 = (3/4πρ)1/3.
The computational study of phase diagrams of these

potentials shows that more repulsive (n > 7) systems freeze
into an fcc crystal whereas soft sphere systems n � 7
freeze into a bcc crystal [7,8,19]. When pressure is increased
the bcc crstal transforms to the fcc crystal [7]. The fluid-bcc-fcc
triple point occurs at 1/n � 0.15. For 1/n > 0.15, three
phases—fluid, bcc, and fcc—are found.

A. Fluid-solid phase boundary

In [16] we calculated the fluid-solid transition parameters
for several values of n ranging from ∞ to 4 and found the
fluid-bcc-fcc triple point at 1/n = 0.158 which is somewhat
higher than the simulation value 1/n = 0.150. Here we repeat
the calculation of [16] and include a few more values of n

( 1
n

= 0.17, 0.20, and 0.225) so that values of the triple point
and the phase boundary as a function of softness parameter 1

n

can be determined accurately. Equation (2.5), after substitution
of expression of ρc(�r) given by Eqs. (2.7) and (2.8), reduces to

�Wf c

Nc

= 1

1 + �ρ∗ +
[

3

2
ln

(
αc

π

)
− 5

2
− ln ρf

]

− 1

2
ρc

(
�ρ∗

1 + �ρ∗

)2

ĉ(0)(0)− 1

2ρc

∑
K

|ρK |2ĉ(0)(K)

− 1

ρc

∑
K

∑
K1

ρK1ρ|− �K− �K1| ˆ̄c
(K)

(
�K1 + 1

2
�K
)

, (3.4)

where [16,18]

ĉ(0)(K) =
∫

d�r c(0)(r)ei �K·�r ,

ˆ̄c(K)

(
�K1 + 1

2
�K
)

=
∫

d�r c̄(K)(�r)e−i( �K1+ 1
2

�K)·�r . (3.5)

Here Nc (= ρcV ) is used to divide �W , and a0

[=(3/4πρc)1/3] corresponding to solid average density
is used to reduce distance r and localization parameter αc. The
function �Wf c

Nc
is minimized with respect to γf , �ρ∗, and αc.

It is found that when γf is close to the fluid-solid transition,
�Wf c

Nc
develops a minimum at some value of αc. The value of

minimum of �Wf c

Nc
and of αc at which this minimum occurs

depend on value of �ρ∗. We calculated �Wf c

Nc
as a function

of αc (varying αc from 15 to 35 at intervals of 0.5) for several
values of γf in the neighborhood of the expected transition
value and for each γf for several values of �ρ∗. The variation
of �Wf c

Nc
with γf , αc, and �ρ∗ is shown in Fig. 1. The lowest

value of γf for which the condition �Wf c

Nc
= 0 is satisfied

and the corresponding values of �ρ∗ and αc are taken as the
fluid-solid transition parameters [see Fig. 1(c)]. The result
has been confirmed from simultaneous solution of equations
∂
∂α

(�Wf c

Nc
) = 0, ∂

∂�ρ∗ (�Wf c

Nc
) = 0, and �Wf c

Nc
= 0.

Values of localization parameter αc found for the bcc crystal
at the transition point are in the range of 15–17. This may
raise question about the accuracy of the ideal gas term (in
the square brackets) in Eq. (3.4), which is found by neglecting
overlap between the Gaussians of neighboring lattice sites. We
evaluated for α = 15 the contribution arising from the overlap
of Gaussians of nearest neighbors in a bcc crystal and found
this contribution to be negligible (see the Appendix).

Values of γf , γc, and the Lindemann parameter Lc (the
subscript c stands for fcc for 1/n < 0.154 and for bcc for
1/n � 0.154) are given in Table I for few values of 1/n and
compared with simulation values in Fig. 2. These values of
freezing parameters are close to those reported in [16] and in
are good agreement with simulation values [7,19]. The fluid-
bcc-fcc triple point is now found at 1/n = 0.154, which is
slightly lower and closer to the simulation value [7,19] than
the value of 0.158 reported in [16].

B. Solid-solid phase boundary (bcc-fcc boundary)

We first use Eq. (2.13) to calculate β(μ − μ0) and αl .
After substitution of the Gaussian and Fourier forms of ρ(�r),
Eq. (2.13) reduces to

�f = A[ρl] − A(ρl)

Nl

= 3

2

[
ln

(
αl

π

)
− 1

]

− ln ρl − 1

2ρl

∑
K

|ρK |2ĉ(0)(| �K|)

− 1

ρl

∑
K

∑
K1

ρK1ρ|− �K− �K1| ˆ̄c
(K)
l

(
�K1 + 1

2
�K
)

. (3.6)

where �K is a RLV of the bcc crystal.
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0.0008

ΔWfc/Nc

Δρ∗ = 0.0026

Δρ∗ = 0.0039

Δρ∗ = 0.0052
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γf = 3.296
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FIG. 1. Variation of
�Wf c

Nc
as a function of αc and �ρ∗ for 1/n =

0.20 is shown. The minimum of
�Wf c

Nc
and the value of αc at which

this minimum occurs depend on �ρ∗. In (a) the variation is shown
for γf = 3.296 for three values of �ρ∗. in all cases the minimum
is greater than zero; the lowest minimum is for �ρ∗ = 0.0039. In
(b) we show the plot for γf = 3.297 where the condition

�Wf c

Nc
= 0

is satisfied for �ρ∗ = 0.0039 and αc = 16.3. In (c) the variation of
minimum of

�Wf c

Nc
for γf = 3.297 as a function �ρ∗ is shown.

We choose closely spaced values of γl starting from a
value found at the fluid-bcc transition and calculated �f as a
function of αl . Note that in this case �ρ∗ = 0. In Fig. 3 we
show variation of �f as a function of αl for a few values
of γl . The function �f (γl,αl) that appears in Eq. (2.19)
corresponds to minimum value of �f (shown by a filled
circle in Fig. 3) for each γl . The value of β(μ − μ0) is
calculated from Eq. (2.18) from known values of �f (γl,αl).
This provides us values of β(μ − μ0) and αl for each γl used in
Eq. (2.16).

TABLE I. Values of transition parameters for the fluid-solid (fcc
or bcc) and for the bcc-fcc transitions for IPPs, for some values of
softness parameter 1/n. The subscript c stands for fcc for 1/n <

0.154 and for bcc for 1/n � 0.154

fluid-solid bcc-fcc
1/n γf γc Lc γbcc γf cc Lbcc Lf cc

1/7 1.859 1.878 0.120
2/13 2.040 2.058 0.120
1/6 2.326 2.342 0.177 2.398 2.406 0.169 0.120
0.170 2.402 2.417 0.177 2.493 2.501 0.169 0.120
0.200 3.297 3.312 0.176 3.460 3.469 0.165 0.120
0.225 4.297 4.310 0.176 4.571 4.578 0.161 0.119
0.250 5.528 5.540 0.175 5.864 5.870 0.160 0.119

The bcc-fcc phase boundary is found from Eq. (2.16), which
is rewritten as

�Wl−h

Nh

= 3

2

[
ln

(
αh

π

)
− 1

(1 + �ρ∗)
ln

(
αl

π

)]

− �ρ∗

(1 + �ρ∗)

[
ln

ρh

(1 + �ρ∗)
+ �μ + 5

2

]

− 1

2

[
�ρ∗2ρh

(1 + �ρ∗)2
ĉ(0)(0) + 1

ρh

∑
G

|ρG|2ĉ(0)(| �G|)

− 1

ρl(1 + �ρ∗)

∑
K

|ρK |2ĉ(0)(| �K|)
]

− 1

ρh

∑
G

∑
G1

ρG1ρ|− �G− �G1| ˆ̄c
(G)
h

(
�G1 + 1

2
�G
)

+ 1

ρl(1 + �ρ∗)

∑
K

∑
K1

ρK1ρ|− �K− �K1|

ˆ̄c(K)
l

(
�K1 + 1

2
�K
)

, (3.7)

where �μ = β(μ − μ0) and Nl = Nh/(1 + �ρ∗). Nl and Nh

are numbers of particles in volume V , respectively, in the LDC
(bcc crystal) and the HDC (fcc crystal).

The function �Wl−h

Nh
is minimized with respect to γl , �ρ∗,

and αh as the value of αl is already known. The minimization
procedure is same as described above. In Fig. 4 we show the
variation of �Wl−h

Nh
as a function of αh for different �ρ∗ for

1/n = 0.2. At the transition point �Wl−h

Nh
= 0 [see Fig. 4(c)].

In Table I we give values of γl , γh, and the Lindemann
parameter L. The values of L given in the table for the bcc
crystal are 0.176 ± 0.001 along the fluid-bcc boundary and
0.165 ± 0.005 along the bcc-fcc boundary. For the fcc crystal
the value of L is 0.12 along both the fluid-fcc and bcc-fcc
boundaries. The simulation value of L reported in Refs. [7,20]
for the bcc crystal along the fluid-bcc boundary is 0.18, which
is in very good agreement with the theoretical value. However,
for the fcc crystal the simulation value is 0.15, which is
somewhat higher than the theoretical value.

The phase diagram in a plane of softness parameter 1/n

and the scaled quantity γ is plotted in Fig. 2 and compared
with simulation results [7]. From the figure we see that the
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0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
1/n

1

2

3

4

5

6

γ

fcc

bcc

flu
id

1/n = 0.154

FIG. 2. Phase diagram of systems interacting via IPPs. The
dashed line represents the theoretical values for the fluid-solid phase
boundary and the full line represents those for the bcc-fcc phase
boundary. Open squares and full circles represent, respectively,
simulation values [7] for the fluid-solid (fcc or bcc) and the bcc-fcc
transition points.

agreement between the two values is good for both the fluid-
solid and the solid-solid transition densities. In Fig. 5 we plot
for 1/n = 0.2 the fluid-bcc and bcc-fcc phase boundaries in
the ρ∗-T ∗ plane. For this we used the relation γ = ρ∗T ∗−3/5.
It is seen from the figure that the stability region of the bcc
phase is somewhat underestimated by the theory. The density
of a fluid at the fluid-solid transition is marginally higher, and
the density of the bcc phase at the bcc-fcc transition is lower
than simulation values. However, as the estimated error in the
phase transition densities due to limited statistics in simulation
is quoted as 3×10−2 [7], the difference in the theoretical and
simulation values of densities falls within the error bounds.
It may also be noted that the change in density at the bcc-
fcc transition is considerably smaller than at the fluid-solid
transition. This suggests that the bcc-fcc transition is a weak

16 18 20 22 24 26 28 30
α

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Δf

γ=5.53
γ=5.60
γ=5.70
γ=5.80
γ=5.87

FIG. 3. Variation of �f as a function of αl for different γl . The
minimum found at a value of αl for each γl (shown in figure by full
circle) is �f (γl,αl) [see Eq. (2.19)].

30 32 34αh

0

0.0004

0.0008

0.0012

ΔWl-h/Nh

Δρ∗ = 0.0013

Δρ∗ = 0.0026

Δρ∗ = 0.0039

30 32 34αh

0

0.0004

0.0008

0.0012

ΔWl-h/Nh

Δρ∗ = 0.0013

Δρ∗ = 0.0026

Δρ∗ = 0.0039

0.001 0.002 0.003 0.004 0.005
Δρ∗

0

0.0002

0.0004

ΔWl-h/Nh

(a)
γbcc = 3.459

(b)
γbcc = 3.46

(c)

γbcc = 3.46

FIG. 4. Variation of �Wl−h

Nh
as a function of αh and �ρ∗ for 1/n =

0.20 is shown. In (a) the variation is shown for γbcc = 3.459 for three
values of �ρ∗. The lowest minimum occurs at �ρ∗ = 0.0026. In
(b) the variation is for γbcc = 3.46, where the condition �Wl−h

Nh
= 0

is satisfied for �ρ∗ = 0.0026 and αh = 32.0. In (c) the variation of
�Wl−h

Nh
for γbcc = 3.46 as a function of �ρ∗ is shown.

first-order transition compared to the fluid-solid transition. In
the case of weak the first-order transition the finite-size effects
need careful examination even for a sample size as large as
that considered in Ref. [7].

Accuracy of theoretical values of the transition parameters
depends on accuracy of the input values of c(0)(r) and
c(b)( �r1, �r2). We have used the closure relation of Rogers and
Young [21] and numerical procedures which have been found
to yield accurate values of correlation functions to calculate
values of these functions [16,18]. While c(0) is known to favor
fcc structure, it is c(b) which plays a crucial role in stabilizing
the bcc structure.
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0.6 0.8 1 1.2 1.4 1.6 1.8 2
T*
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3

4

5

ρ∗

fcc

bcc

fluid

FIG. 5. The density-temperature phase diagram of the IPP for
n = 5 (or 1/n = 0.20). The dashed lines represent simulation values
[7] and the full lines theoretical values.

IV. SUMMARY AND CONCLUSION

The theory developed in Refs. [12] and [13] and employed
to investigate fluid-nematic and fluid-crystal transitions in
two and three dimensions[12–17] is extended here to study
crystal-crystal phase transitions. The expressions for the
difference in the grand thermodynamic potential of the two
coexisting phases at the phase boundary given by Eq. (2.5)
for the fluid-crystal and Eq. (2.16) for crystal-crystal phase
transitions are exact and involve the symmetry conserving part
of DPCF, c(0)(r,ρ), and the symmetry broken part, c(b)( �r1, �r2).
The integral equation theory which consists of the OZ equation
and the Roger-Young closure relation [21] has been used to
calculate c(0)(r,ρ), ∂c(0)(r,ρ)

∂ρ
, and ∂2c(0)(r,ρ)

∂ρ2 for the IPPs. The

values of ∂c(0)(r,ρ)
∂ρ

and ∂2c(0)(r,ρ)
∂ρ2 and the factorization ansatz have

been used to find values of the three-body direct correlation
function c

(0)
3 ( �r1, �r2, �r3; ρ) and four-body direct correlation func-

tion c
(0)
4 ( �r1, �r2, �r3, �r4; ρ) from exact relations [see Eq. (2.21)].

These equations are solved numerically using an iterative
method. The function c(b)( �r1, �r2) is calculated from Eq. (2.20).
As shown in [16], the contribution made by the second term of
Eq. (2.20) is very small compared to the first term and needs
to be considered only for n � 6.

The agreement found between the calculated phase diagram
for systems interacting via the IPPs with the one found from
molecular simulations suggests that the theory provides an
accurate description of the fluid-solid and the solid-solid
transitions and can be used to calculate phase diagrams of
systems interacting via known interparticle interactions.
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APPENDIX: EVALUATION OF THE IDEAL GAS PART
OF THE GRAND THERMODYNAMIC POTENTIAL

The ideal gas part

�Wid

Nc

= 1

Nc

∫
d�r

[
ρc(�r) ln

ρc(�r)

ρf

− (ρc(�r) − ρf )

]
(A1)

in Eq. (2.5) as well as in Eqs. (2.13)–(2.16) is evaluated using
Eq. (2.8) for ρc(�r). When the localization parameter αc is large
so that overlap between the Gaussians centered at the lattice
sites can be neglected, (A1) is solved to give

�Wid

Nc

= ρc

1 + �ρ∗ + 3

2

(
ln

(
α

π

)
− 5

2
− 2

3
ln ρf

)
. (A2)

However, when α is small the overlap between Gaussians
located on neighboring lattice sites cannot be neglected. For
the fluid-bcc transition the α value is found to be in the range
of 15–17. We evaluate the correction to (A2) arising due to
overlap.

If Nc is the number of lattice sites and the origin is located
at a lattice site, Eq. (2.8) can be written as

ρ(�r) = Nc

(
αc

π

)3/2
[
e−αcr

2 +
∑
1,n

e−αc(�r− �R1,n)2

+
∑
2,m

e−αc(�r− �R2,m)2 + · · ·
]
, (A3)

where r is confined in a cell of radius a0 = (3/4πρc)1/3.
�R1,n are lattice vectors of nearest neighbors (1 indicates

first neighbor and n the number) and so on. When we
substitute (A3) in first term of (A1) we get

1

Nc

∫
d�r

[
ρc(�r) ln

ρc(�r)

ρf

]
=

(
αc

π

)3/2 ∫
d�r

[
e−αcr

2 +
∑
1,n

e−αc(�r− �R1,n)2 + · · ·
]

×
{(

3

2
ln

(
αc

π

)
− αcr

2

)
+ ln

(
1 + e−αcR

2
1

∑
1,n

e2αcrR1 cos(θ1,n−θ) + · · ·
)}

, (A4)

where θ1,n is the angle of one of the nearest neighbors and θ is the angle of displacement r and R1 is the magnitude of lattice
vectors of nearest neighbors.
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Limiting ourselves to the nearest neighbors only we find (A3) has the following contributions:

I1 =
(

αc

π

)3/2 ∫
d�r e−αcr

2

(
3

2
ln

(
αc

π

)
− αcr

2

)
, (A5)

I2 =
(

αc

π

)3/2 ∫
d�r e−αcr

2
ln

(
1 + e−αcR

2
1

∑
1,n

e2αcrR1 cos(θ1,n−θ)

)
, (A6)

I3 =
(

αc

π

)3/2

e−αcR
2
1

∫
dr r2 e−αcr

2

(
3

2
ln

(
αc

π

)
− αcr

2

) ∫ π

0
dθ sin θ

∫ 2π

0
dφ

∑
1,n

e2αcrR1 cos(θ1,n−θ), (A7)

where r is measured in units of a0.
I1 when substituted in (A1) gives the expression (A2), and

I2 and I3 are corrections due to overlap with nearest neighbors.

We calculated the values of I2 and I3 for αc = 15 for a bcc
lattice and found their values to be negligibly small (at the
fourth decimal place).
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