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We study sample-to-sample fluctuations in a critical two-dimensional Ising model with quenched random
ferromagnetic couplings. Using replica calculations in the renormalization group framework we derive explicit
expressions for the probability distribution function of the critical internal energy and for the specific heat
fluctuations. It is shown that the disorder distribution of internal energies is Gaussian, and the typical sample-to-
sample fluctuations as well as the average value scale with the system size L like ∼L ln ln(L). In contrast, the
specific heat is shown to be self-averaging with a distribution function that tends to a δ peak in the thermodynamic
limit L → ∞. While previously a lack of self-averaging was found for the free energy, we here obtain results
for quantities that are directly measurable in simulations, and implications for measurements in the actual lattice
system are discussed.
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I. INTRODUCTION

A varying degree of impurities is present in every material
studied in the laboratory. The consequences of disorder vary
strongly from system to system, however. While for strong
disorder randomness is accompanied by frustration effects
and often leads to the absence of long-range order [1], the
case of weak disorder is less spectacular in that it cannot
destroy the low-temperature ferromagnetic ground state [2–4].
Still, in many cases one observes a change in the character of
the transition to this ferromagnetic phase. For pure systems
with continuous phase transitions, as revealed by Harris [5],
weak disorder is relevant for the critical behavior only if
the specific heat is divergent, i.e., the corresponding critical
exponent α > 0, as in these cases the random fluctuations
grow faster with system size than the energy fluctuations.
The critical behavior is then governed by a new, random
renormalization-group (RG) fixed point, and the pure fixed
point becomes unstable. On the other hand, first-order phase
transitions in pure systems are softened by the addition
of weak disorder and, in some cases, they are turned into
continuous transitions [6,7]. These effects of weak disorder
have been thoroughly studied both analytically [8–11] as well
as numerically [12–14], see Ref. [15] for a review.

An intriguing aspect of systems with quenched disorder
is related to the possibility of exceedingly strong disorder
induced fluctuations. In some cases, these might lead to a loss
of self-averaging [16–19], i.e., the behavior of a large sample
with a specific realization of impurities such as an actual
material sample in the laboratory will not be well described by
the ensemble average normally calculated in an analytical or
numerical approach. This clearly has profound consequences
for the physical interpretation of the outcomes and the pos-
sibilities for comparing theoretical and experimental results.
The presence or absence of self-averaging is connected to the
question of the relevance of disorder for the system studied
[17,18], and it affects static as well as dynamic properties

[20,21]. Recently, an explicit expression for the probability
distribution function of the critical free-energy fluctuations
for a weakly disordered Ising ferromagnet was derived for
d < 4 and its universal shape was obtained at d = 3 [22].
As free energies are not directly accessible in experimental
or numerical studies, however, it is desirable to study the
self-averaging properties of directly measurable quantities.

A system of particular interest is the Ising model in two
dimensions (2D), where a wealth of exact results are available
for the pure case [23]. When weak disorder in the form of
random but nonfrustrating bonds is added, the Harris criterion
is unable to decide its significance as α = 0 and the system
hence provides a marginal case. Still, it is now well established
that such weak disorder “marginally” modifies the critical
behavior of this system so the logarithmic singularity of
the specific heat is changed into a double logarithmic one
[24–27]. While a number of further aspects of this problem
have been studied, such as the effect of correlated disorder
in the form of extended impurities [28], the question of
the disorder distribution of measurable quantities and their
(lack of) self-averaging behavior was less studied. Following
the seminal works by Wiseman and Domany and Aharony
and Harris [16,17], the relative variance of thermodynamic
observables was usually studied as a measure to gauge the
presence or absence of self-averaging. It was shown that for
irrelevant disorder the relative variance weakly decreases as a
power of L, indicating the presence of “weak self-averaging,”
while for relevant disorder this ratio approaches a nonzero
constant as L → ∞, indicating a lack of self-averaging [17].
Results of numerical studies of this quantity for the disordered
2D Ising model [16,20,26,29], where the disorder is marginally
relevant, were not completely conclusive. Here we derive
the form of the distribution functions of sample-to-sample
fluctuations and discuss their asymptotics as L → ∞.

The rest of the paper is organized as follows. In Sec. II we
recall the description of the critical 2D Ising model in terms
of free Majorana fermions and show how this description
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can be extended to the disordered system. In Sec. III we
introduce the replica formalism for the energy distribution
of the model. Section IV contains the RG calculations for the
disorder distribution of the internal energy, where we show
that it lacks self-averaging at criticality. The typical value of
its sample-to-sample fluctuations scales with the system size L

in the same way as its average ∼L ln ln(L). In Sec. V we extend
this calculation to the specific heat and see that in contrast to
the energy it is self-averaging, and its distribution turns into a
δ function in the limit L → ∞. Finally, Sec. VI contains our
conclusions.

II. THE MODEL

It is well known that the critical behavior of the 2D
ferromagnetic Ising model can be described in terms of free
two-component Grassmann-Majorana spinor fields ψ(r) =
(ψ1(r), ψ2(r)) with the following Hamiltonian (see, e.g.,
Ref. [30]):

H0[ψ ; τ ] = 1

2

∫
d2r [ψ(r)∂̂ψ(r) + τ ψ(r)ψ(r)], (1)

where τ ∝ (T − Tc)/Tc � 1 and Tc denotes the critical
temperature [in what follows, to simplify formulas we define
τ ≡ (T − Tc)/Tc)]. Further,

∂̂ = σ̂1
∂

∂x
+ σ̂2

∂

∂y
, (2)

where

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i

i 0

)
,

(3)

σ̂3 = σ̂1 σ̂2 =
(

i 0
0 −i

)
,

are the Pauli matrices and ψ ≡ ψ σ̂3. At a given value of the
temperature parameter τ the partition function Z(τ ) of the
system (1) is

Z(τ ) =
∫

Dψ exp{−H0[ψ ; τ ]}, (4)

where the integration measure is defined as∫
Dψ =

∏
r

[
−

∫
dψ1(r) dψ2(r)

]
, (5)

and the integration and commutation rules are∫
dψα(r) = 0,

(6)∫
dψα(r) ψα(r) = − ∫

ψα(r) dψα(r) = 1,

ψα(r)ψβ(r′) = −ψβ (r′)ψα(r) , [ψα(r)]2 = 0. (7)

Hence the free energy is

F (τ ) = − ln[Z(τ )]. (8)

Note that we did not include the usual temperature prefactor in
the definition of the free energy (8). Our analysis is performed
close to Tc, which for simplicity is taken to be 1, and we
are looking only for the leading terms (singularities) in the

parameter τ = (T − Tc)/Tc = T − 1. Therefore, in the limit
τ → 0,

F (τ ) = −T ln[Z(τ )] = − ln[Z(τ )] − τ ln[Z(τ )]

= − ln[Z(τ )] + O(τ ). (9)

Simple integration of Eq. (4) yields

Z(τ ) = [det(∂̂ + τ σ̂0)]1/2, (10)

where σ̂0 is the unit matrix, and the term on the right-hand
side is a symbolic notation for the determinant of the L2 × L2

matrix defining the Hamiltonian (1) written in a discrete way
on an L × L lattice. The free energy reads

F (τ ) = −1

2
ln[det(∂̂ + τ σ̂0)]

∼ −L2
∫

|p|<1
d2p ln(p2 + τ 2). (11)

Note that the celebrated logarithmic divergence of the specific
heat in the limit τ → 0 follows immediately from Eq. (11):

C(τ ) = − ∂2

∂τ 2
F (τ ) ∼ L2

∫
|p|<1

d2p

p2 + τ 2

∼ L2
∫ 1

|τ |

dp

p
∼ L2 ln

1

|τ | . (12)

The presence of weak quenched disorder in the considered
system can be described by allowing for a spatially varying lo-
cal transition temperature Tc which, in turn, can be represented
by quenched spatial fluctuations of the temperature parameter
τ in the Hamiltonian (1) (see, e.g., Ref. [24]). In other words,
the critical behavior of the weakly disordered 2D Ising model
can be described by the spinor Hamiltonian

H [ψ ; τ,δτ ] = 1

2

∫
d2r {ψ(r)∂̂ψ(r)

+ [τ + δτ (r)]ψ(r)ψ(r)}, (13)

where the random function δτ (r) is characterized as a spatially
uncorrelated Gaussian distribution with zero mean, δτ (r) = 0,
and variance

δτ (r)δτ (r′) = 2g0 δ(r − r′), (14)

where the parameter g0 � 1 defines the disorder strength. For
a given realization of the quenched function δτ (r) the partition
function of the considered system is

Z[τ ; δτ ] =
∫

Dψ exp{−H [ψ ; τ,δτ ]} = exp{−F [τ ; δτ ]},
(15)

where F [τ ; δτ ] is a random free-energy function. The internal
energy of a given realization is the first derivative of this free
energy with respect to the temperature parameter:

E[τ ; δτ ] = ∂

∂τ
F [τ ; δτ ]. (16)

It is clear that E[τ ; δτ ] must be a singular function of τ in the
limit τ → 0 (in the pure system E0(τ ) ∼ τ ln(1/|τ |)). Addi-
tionally, E[τ ; δτ ] also must be a random function exhibiting
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sample-to-sample fluctuations. The distribution function of
these fluctuations is the main target of the present study.

III. REPLICA FORMALISM

From the definition (16) we have

E[τ ; δτ ] = lim
ε→0

1

ε
(F [τ + ε; δτ ] − F [τ ; δτ ]). (17)

Thus for a given finite value of ε (which has to be sent to zero
at the end) we have

ε E[τ ; δτ ] = F [τ + ε; δτ ] − F [τ ; δτ ]. (18)

According to the definition of the free energy, Eq. (15), the
above relation can be represented in terms of the ratio of two
partition functions,

exp{−ε E[τ ; δτ ]} = Z[τ + ε; δτ ] Z−1[τ ; δτ ]. (19)

Taking the N th power of both sides of the above equation and
performing the disorder average we find∫

dE Pτ (E) exp(−εNE) = ZN [τ + ε; δτ ] Z−N [τ ; δτ ].

(20)

Here Pτ (E) is the probability distribution over disorder of
the internal energy of the system at a given value of the
temperature parameter τ and (...) denotes the average over
the random functions δτ (r). Following the standard tricks of
the replica formalism the above relation can be represented

in the following way:∫
dE Pτ (E) exp(−εNE)

= lim
M→0

ZN [τ + ε; δτ ] ZM−N [τ ; δτ ]

≡ lim
M→0

Z(M,N ; τ,ε). (21)

In terms of this formalism, first it is assumed that both M

and N are integers such that M > N . Then, after deriving
Z(M,N ; τ,ε) as an analytic function of M and N , these
parameters are analytically continued to arbitrary real values
and the limit M → 0 is taken. Finally, we introduce a new
analytic parameter s = εN and, provided that it exists, take the
limit ε → 0, such that the relation (21) becomes the Laplace
transform of the probability distribution function Pτ (E),∫

dE Pτ (E) exp(−s E)

= lim
ε→0

lim
M→0

Z(M,s/ε; τ,ε) ≡ Z̃(s,τ ). (22)

Thus, the above procedure, although it is not well founded
from a mathematical point of view, at least formally allows
to reconstruct the function Pτ (E) by the inverse Laplace
transform:

Pτ (E) =
∫ +i∞

−i∞

ds

2πi
Z̃(s,τ ) exp(sE). (23)

To proceed, consider the structure of the replica partition
function Z(M,N ; τ,ε). According to the definitions (15)
and (21),

Z(M,N ; τ,ε) =
∫

Dψ

(
exp

{
−

N∑
a=1

H [ψa; τ + ε,δτ ] −
M∑

a=N+1

H [ψa; τ,δτ ]

})
. (24)

Substituting here the Hamiltonian (13) and performing Gaussian averaging over δτ (r) using Eq. (14) we find:

Z(M,N ; τ,ε) =
∫

Dψ exp{−HM,N [ψ ; τ,ε]} ≡ exp{−F(M,N ; τ,ε)}, (25)

where F(M,N ; τ,ε) can be called the “replica free energy” and

HM,N [ψ ; τ,ε] =
∫

d2r

[
1

2

M∑
a=1

ψa(r)∂̂ψa(r) + 1

2

M∑
a=1

ma(ψa(r)ψa(r)) − 1

4
g0

M∑
a,b=1

(ψa(r)ψa(r))(ψb(r)ψb(r))

]
, (26)

where

ma =
{

(τ + ε) for a = 1,...,N,

τ for a = N + 1,...,M.
(27)

The expression obtained, Eq. (26), has the form of an effective
Hamiltonian of the random Ising model but with replica-
dependent masses. As we will see below, this difference will
further influence properties of the internal energy distribution.
In the next section we will derive the function F(M,N ; τ,ε)
of Eq. (25) using standard procedures of the RG approach.

IV. RENORMALIZATION GROUP CALCULATIONS

It is well known that the spinor-field theory with four-
fermion interactions is renormalizable in 2D, and the renor-
malization equations lead to “zero-charge” asymptotics for
the charge g and mass m (see, e.g., Ref. [24]). Renor-
malization of the replica Hamiltonian (26) can be achieved
in a standard way by integrating out short-wavelength de-
grees of freedom in the band �̃ < p < �, where � and
�̃ are the old and new ultraviolet momentum cutoffs, re-
spectively. One can easily show that the renormalization
of the charge g and the mass ma in the Hamiltonian (26)
is given by the following equations (cf. Eqs. (4.28) in
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Ref. [24]):

d

dξ
g(ξ ) = − 1

π
(2 − M) g2(ξ ), (28)

d

dξ
ma(ξ ) = − 1

π

[
ma(ξ ) −

M∑
b=1

mb(ξ )

]
g(ξ ), (29)

where ξ = ln(�/�̃) and

ma(ξ ) =
{
m̃(ξ ) for a = 1, . . . ,N,

m(ξ ) for a = N + 1, . . . ,M,
(30)

with the initial conditions g(0) = g0, m̃(0) = (τ + ε) and
m(0) = τ . Substituting Eq. (30) into Eq. (29) we get:

d

dξ
m̃(ξ ) = − 1

π
[m̃(ξ ) − Nm̃(ξ ) − (M − N )m(ξ )] g(ξ ),

(31)

d

dξ
m(ξ ) = − 1

π
[m(ξ ) − Nm̃(ξ ) − (M − N )m(ξ )] g(ξ ).

(32)

The solution of Eq. (28) is

g(ξ ) = g0

1 + 1
π

(2 − M) g0 ξ
. (33)

Equations (28) and (29) have been obtained in the one-loop
approximation. The two-loop approximation has been studied

in Ref. [31], where it was shown that it gives only a next-order
logarithmic correction to the one-loop result. Therefore, being
interested in the leading asymptotics, we proceed further
within the one-loop approximation. Substituting the above
solution (33) into Eqs. (31) and (32) in the limit M → 0,
one easily finds [32]:

m(ξ ) =
[
τ + 1

2
(εN ) ln

(
1 + 2

π
g0 ξ

)]

(ξ ), (34)

m̃(ξ ) = m(ξ ) + ε 
(ξ ), (35)


(ξ ) = 1√
1 + 2

π
g0 ξ

. (36)

The critical properties of a model with “zero-charge”
renormalization [according to Eq. (33), g(ξ → ∞) ∼ 1/ξ →
0] can be studied exactly by RG methods [33,34] (see also
Ref. [24]). According to the standard procedure of RG calcu-
lations, the singular contribution of thermodynamic quantities
in the vicinity of the critical point is obtained by using
only the noninteracting part of the renormalized Hamiltonian
[the first two terms of the Hamiltonian (26)], in which
the mass terms ma, a = 1, . . . ,M , become scale-dependent
parameters, Eqs. (30) and (34)–(36). In other words, in the
process of the RG procedure the contributions originating in
the interaction terms of the Hamiltonian (25) are effectively
“absorbed” into the mass terms. In this case, similarly to the
pure system [see Eqs. (10) and (11)], we get:

F(0,N ; τ,ε) = − lim
M→0

ln[Z(M,N ; τ,ε)] = −L2 lim
M→0

∫
|p|<1

d2p

(2π )2
ln

{
M∏

a=1

det[ip̂ + ma(p)σ̂0]1/2

}

= −L2 lim
M→0

∫
|p|<1

d2p

(2π )2
ln{det[ip̂ + m̃(p)σ̂0]

N
2 × det[ip̂ + m(p)σ̂0]

M−N
2 },

= −L2
∫

|p|<1

d2p

(2π )2
ln{det[ip̂ + m̃(p)σ̂0]N/2 × det[ip̂ + m(p)σ̂0]−N/2}, (37)

where [cf. Eqs. (2) and (3)]

p̂ = σ̂1px + σ̂2py. (38)

Here the mass parameters m(p) and m̃(p) are taken to be dependent on the scale according to Eqs. (34)–(36) with ξ = ln(1/p).
Simple calculations yield [cf. Eq. (11)]

F(0,N ; τ,ε) = −L2
∫

|p|<1

d2p

(2π )2

{
1

2
N ln[p2 + m̃2(p)] − 1

2
N ln[p2 + m2(p)]

}

= − 1

4π
L2N

∫ 1

0
dp p ln

{
p2 + [m(p) + ε
(p)]2

p2 + m2(p)

}
. (39)

Substituting here the solutions (34)–(36) in the leading order in ε → 0 we get (see the Appendix for details):

F(0,N ; τ,ε) 	 − 1

4π
L2N

∫ 1

0
dp p ln

[
1 + ε

2m(p)
(p)

p2 + m2(p)

]

	 − 1

2π
L2(εN )

∫ 1

0
dp p

τ + 1
2 (εN ) ln

[
1 + 2

π
g0 ln(1/p)

]
[p2 + m2(p)]

[
1 + 2

π
g0 ln(1/p)

]
	 − 1

2π
L2(εN )

∫ 1

|τ |

dp

p

τ + 1
2 (εN ) ln

[
1 + 2

π
g0 ln(1/p)

]
1 + 2

π
g0 ln(1/p)

= E(τ )(εN ) − 1

2
E2

∗(τ )(εN )2, (40)
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where

E(τ ) = − 1

4g0
L2 τ ln

[
1 + 2

π
g0 ln(1/|τ |)

]
, (41)

E∗(τ ) = 1

2
√

2g0
L ln

[
1 + 2

π
g0 ln(1/|τ |)

]
. (42)

It should be stressed that the expression for the free energy
F(0,N ; τ,ε) obtained in Eq. (40) contains no higher-order
terms in powers of εN that were neglected. On the other hand,
the result is not exact and both E(τ ) and E∗(τ ) contain higher-
order logarithmic corrections of the form ln ln(1/τ ) which
were neglected in the limit τ � 1 considered here [see the
calculations given in the Appendix as well as the remark below
Eq. (33)]. Thus, for the replica partition function on the right-
hand side of relation (22) for the Laplace transform, we obtain
according to definition (25):

Z̃(s,τ ) = lim
ε→0

exp{−F(0,s/ε; τ,ε)}

= exp

{
−E(τ ) s + 1

2
E2

∗(τ ) s2

}
. (43)

Substituting this into the inverse Laplace transform relation
(23) we get:

Pτ (E) =
∫ +i∞

−i∞

ds

2πi
exp

{
−E(τ ) s + 1

2
E2

∗(τ ) s2 + s E

}
(44)

or

Pτ (E) = 1√
2πE∗(τ )

exp

{
− [E − E(τ )]2

2E2∗(τ )

}
. (45)

Thus, the sample-to-sample fluctuations of the critical internal
energy of the weakly disordered 2D Ising model are described
by a Gaussian distribution characterized by the mean value
E(τ ) given in Eq. (41) and typical deviations E∗(τ ) as given in
Eq. (42). Let us check the behavior of Pτ (E) as L → ∞ and
for τ → 0. If in this limit the distribution (45) tends towards
a δ function, then E is self-averaging; otherwise it is not. For
a fixed value of τ , Eqs. (41), (42), and (45) reveal that the
distribution function of the energy density e ≡ E/L2 in the
thermodynamic limit turns into a δ function: P (e) = δ[e −
e0(τ )] with e0(τ ) = −(τ/4g0) ln[1 + 2

π
g0 ln(1/|τ |)]. In other

words, in this case the energy density is self-averaging. On
the other hand, for finite L the limit τ → 0 cannot be used
directly in formulas (41), (42), and (45), since in this case
the correlation length (Rc(τ ) ∼ 1/τ ) exceeds the system size,
which makes no physical sense. The point is that the RG
procedure must be stopped at scales of the order of the system
size L (provided we take τ � L in the starting Hamiltonian).
Therefore, one will get the result given in Eqs. (41), (42),
and (45) again, but there the parameter τ has to be replaced
by 1/L which makes it temperature independent, as it
should be.

In close vicinity of the critical point where the disorder
induced critical behavior sets in, i.e., at τ � exp(−π/2g0),

one finds:

E(τ ) 	 − 1

4g0
L2 τ ln ln(1/|τ |), (46)

E∗(τ ) 	 1

2
√

2g0
L ln ln(1/|τ |). (47)

At large but finite value of the system size L, we expect the
pseudocritical temperature to scale as τc ∼ L−ν = 1/L, and
hence

Ec(L) ≡ E(τ = 1/L) ∼ − 1

g0
L ln ln(L), (48)

E∗
c (L) ≡ E∗(τ = 1/L) ∼ 1√

g0
L ln ln(L). (49)

Comparing Eqs. (46), (48), (49), and (45) one concludes that at
sufficiently large system size, L � exp(π/2g0), the critical
internal energy E can be written as a sum of its mean value
and a fluctuating part:

E ∼ − 1

g0
L ln ln(L) + 1√

g0
L ln ln(L)f, (50)

where the random quantity f does not scale with L, f ∼ 1,
and is described by a standard normal distribution

Pc(f ) = 1√
2π

exp

(
−1

2
f 2

)
. (51)

Equations (50) and (51) demonstrate that at criticality the
internal energy of the 2D random-bond Ising ferromagnet
is not self-averaging as the typical value of the sample-to-
sample fluctuations, E∗

c (L) ∼ g
−1/2
0 L ln ln(L), scales with the

system size in the same way as its average value, Ec(L) ∼
g−1

0 L ln ln(L). We note that the RG framework we use in our
analysis gives access to the singular part of thermodynamic
functions only and is not able to say anything about the
behavior of nonsingular background terms that are present
in a specific lattice realization. Therefore, it is this singular
part of the internal energy that is governed by the distribution
(45).

V. SPECIFIC HEAT

We now turn to an investigation of the behavior of the
specific heat. To this end, we repeat the steps performed in
Secs. II and III for the second derivative of the free energy,

C[τ ; δτ ] = − ∂2

∂τ 2
F [τ ; δτ ]. (52)

In terms of the replica formalism, instead of Eqs. (17)–(21) we
get

C[τ ; δτ ] = − lim
ε→0

1

ε2
(F [τ + ε; δτ ] + F [τ − ε; δτ ]

− 2F [τ ; δτ ]), (53)

so

exp{ε2 C[τ ; δτ ]} = Z[τ + ε; δτ ] Z[τ − ε; δτ ] Z−2[τ ; δτ ]

(54)
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and ∫
dC Pτ (C) exp(ε2N C)

= lim
M→0

ZN [τ + ε; δτ ] ZN [τ − ε; δτ ] ZM−2N [τ ; δτ ]

≡ lim
M→0

Zc(M,N ; τ,ε), (55)

where Pτ (C) is the probability distribution function of the
specific heat. Correspondingly, instead of Eqs. (22) and (23)
we have ∫

dC Pτ (C) exp(s C)

= lim
ε→0

lim
M→0

Zc(M,s/ε2; τ,ε) ≡ Z̃c(s,τ ), (56)

with s = ε2N in this case and

Pτ (C) =
∫ +i∞

−i∞

ds

2πi
Z̃c(s,τ ) exp(−s C), (57)

where

Zc(M,N ; τ,ε) =
∫

Dψ exp
{−H(c)

M,N [ψ ; τ,ε]
}

≡ exp{−Fc(M,N ; τ,ε)}, (58)

and the replica Hamiltonian H(c)
M,N [ψ ; τ,ε] is defined by the

right-hand side of Eq. (26) with

ma =
⎧⎨
⎩

(τ + ε) for a = 1, . . . ,N,

(τ − ε) for a = N + 1, . . . ,2N,

τ for a = 2N + 1, . . . ,M.

(59)

The renormalization of the charge g and the mass ma of this
Hamiltonian is given in Eqs. (28) and (29) where

ma =

⎧⎪⎨
⎪⎩

m1(ξ ) for a = 1, . . . ,N,

m2(ξ ) for a = N + 1, . . . ,2N,

m(ξ ) for a = 2N + 1, . . . ,M,

(60)

with the initial conditions m1(0) = (τ + ε),m2(0) = (τ − ε),
and m(0) = τ . One can easily show that in the limit M → 0,
the sum

lim
M→0

(
M∑

a=1

ma(ξ )

)
= N [m1(ξ ) + m2(ξ ) − 2m(ξ )] ≡ 0,

(61)

so the solutions of the RG equations (28) and (29) for
the masses m1(ξ ),m2(ξ ), and m(ξ ) turn out to be effec-
tively decoupled [unlike the situation for the internal energy,
Eqs. (34)–(36)]:

m1(ξ ) = τ + ε√
1 + 2

π
g0 ξ

, (62)

m2(ξ ) = τ − ε√
1 + 2

π
g0 ξ

, (63)

m(ξ ) = τ√
1 + 2

π
g0 ξ

. (64)

Correspondingly, instead of Eq. (39) we obtain

Fc(0,N ; τ,ε) = −L2
∫

|p|<1

d2p

(2π )2

{
1

2
N ln

[
p2 + m2

1(p)
] + 1

2
N ln

[
p2 + m2

2(p)
] − N ln[p2 + m2(p)]

}

= − 1

4π
L2N

∫ 1

0
dp p ln

{[
p2 + m2

1(p)
][

p2 + m2
2(p)

]
[p2 + m2(p)]2

}
. (65)

Substituting here the solutions (62)–(64) in the leading order
in ε → 0 we get [cf. Eq. (39)]

Fc(0,N ; τ,ε)

	 − 1

π
L2ε2N

∫ 1

0

dp p

[p2 + m2(p)]
[
1 + 2

π
g0 ln(1/p)

]
	 − 1

π
L2ε2N

∫ 1

|τ |

dp

p

1[
1 + 2

π
g0 ln(1/p)

]
= −ε2N C(τ ), (66)

where

C(τ ) = 1

2g0
L2 ln

[
1 + 2

π
g0 ln(1/|τ |)

]
. (67)

Substituting this into the inverse Laplace transform relation
(57) we get:

Pτ (C) =
∫ +i∞

−i∞

ds

2πi
exp{C(τ ) s − C s} = δ[C − C(τ )].

(68)

This result shows that unlike the singular part of the internal
energy the specific heat in the vicinity of the critical point is a
self-averaging quantity. In particular, at large but finite value
of the system size L � L∗ ∼ exp(2/πg0) at the critical point
at τc ∼ 1/L, according to Eq. (67) the critical specific heat
C(L) scales with the system size as

C(L) ∼ 1

2g0
L2 ln ln(L). (69)

Note that the distribution (68) describes only the singular
part of the specific heat, similarly to the distributions (45) and
(51) which describe the singular part of the internal energy. As
a matter of fact, the singular part of the “replica free energy”
represented in Eq. (66) is linear in the replica parameter
s = ε2N . Formally, by the inverse Laplace transform, this
results in the δ function (68), which may be misleading as the
specific heat of the system contains also a regular part that is
nonsingular in the limit τ → 0. As we have already mentioned,
this last part is out of control for the present RG approach;
however, it is a random quantity, too. According to the central
limit theorem, this regular part is normally distributed with its
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mean value proportional to the volume of the system (∼L2, in
the present case) and with a variance proportional to the square
root of the volume of the system (∼

√
L2 = L, in the present

case). In other words, the regular part of the specific heat can
be represented as C0L

2 + C∗Lζ where the random variable
ζ is normally distributed with zero mean and unit variance,
and the values of C0 and C∗ do not scale with L as L → ∞.
Correspondingly, in the replica representation this must give
two additional contributions to the replica free energy: In
addition to the expression presented in Eq. (66) one has two
more terms C0L

2s + (C∗L)2s2 (where s = ε2N ). Thus, after
the inverse Laplace transform the δ function (68) is replaced
by a Gaussian distribution with the mean value C(τ ) + C0L

2,
where C(τ ) is given in Eq. (67), and variance C∗L. In the limit
L → ∞ this results in the following behavior of the specific
heat:

C(τ = 1/L) ∼ L2 ln ln(L) � C0L
2 � C∗L. (70)

Consequently, in this limit the distribution of the specific
heat (which includes both the regular and the singular
part) turns into a δ function centered at C(L) ∼ L2 ln ln(L),
corresponding to self-averaging.

VI. CONCLUSIONS

We have derived an explicit expression for the probability
distribution function of the sample-to-sample fluctuations of
the internal energy of the weakly disordered critical 2D
Ising ferromagnet. The result obtained, Eqs. (50) and (51),
shows that the internal energy of this system is not self-
averaging. Instead, the typical value of its sample-to-sample
fluctuations scales in the same way as its average, proportional
to ∼L ln ln(L). On the other hand, the specific heat was shown
here to exhibit self-averaging, with a distribution function that
converges to a δ function in the limit of infinite system size. In
contrast to the free energy of the system, which was discussed
before in Ref. [22], the quantities discussed here are directly
observable in numerical simulations. It is not completely
obvious at this point how far the singular behavior is masked
in a lattice realization by the presence of regular background
terms and how clearly the lack or presence of self-averaging
could be seen experimentally. A numerical investigation of
this system geared towards resolving this intriguing question
is the subject of a forthcoming study.
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APPENDIX: DERIVATION OF EQ. (40)

In this Appendix we explain in more detail the derivation
of Eq. (40). Let us consider the quantity

I (τ ) =
∫

|p|<1

d2p

p2 + τ 2
f [ln(1/p)], (A1)

where f (ξ ) is a “sufficiently good” (not too divergent) function
in the limit ξ → ∞, i.e., limξ→∞ f (ξ ) exp{−ξ} → 0. The
leading singularity of I (τ ) in the limit τ → 0 can be estimated
in the standard way:

I (τ ) ∼
∫

|τ |<|p|<1

d2p

p2
f [ln(1/p)]

∼
∫ 1

|τ |

dp

p
f [ln(1/p)] ∼

∫ ln(1/|τ |)

0
dξ f (ξ ), (A2)

where ξ = ln(1/p). Now let us consider the slightly more
complicated object

Ĩ (τ ) ≡
∫

|p|<1

d2p

p2 + m2(p)
f [ln(1/p)], (A3)

where instead of τ 2 in the denominator we have a p-dependent
mass term m2(p),

m2(p) = τ 2

1 + 2
π
g0 ln(1/p)

, (A4)

which is the case when computing the specific heat singularity
of the weakly disordered 2D Ising model. One can consider
two limiting cases:

(a) 2
π
g0 ln(1/|τ |) � 1 or |τ | � exp(−π/2g0) ≡ τ∗. In this

case, while integrating over p one can just drop the presence
of the nontrivial denominator in (A4) and we get

Ĩ (τ ) ∼
∫ 1

|τ |

dp

p
f [ln(1/p)] ∼

∫ ln(1/|τ |)

0
dξ f (ξ ), (A5)

which coincides with the “pure” case (A2).
(b) 2

π
g0 ln(1/|τ |) � 1 or |τ | � τ∗. In this case, we have

Ĩ (τ ) ≡
∫

|p|<1

d2p

p2 + m2(p)
f [ln(1/p)]

∼
∫ 1

p∗(τ )

dp

p
f [ln(1/p)], (A6)

where p∗(τ ) is defined by the condition:

p∗ ∼ |τ |√
g0 ln(1/p∗)

, (A7)

which yields

p∗(τ ) ∼ |τ |√
g0 ln(1/|τ |) . (A8)

Substituting this into (A6), we get

Ĩ (τ ) ∼
∫ ξ∗(τ )

0
dξ f (ξ ), (A9)
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where in the limit |τ | → 0,

ξ∗(τ ) ∼ ln

[√
g0 ln(1/|τ |)

|τ |
]

= ln(1/|τ |) + 1

2
ln ln(1/|τ |) + 1

2
ln(g0)

∼ ln(1/|τ |) + O(ln ln(1/|τ |)). (A10)

Thus, in this case we get

Ĩ (τ ) ∼
∫ ln(1/|τ |)

0
dξ f (ξ ), (A11)

which means that in the limit τ → 0 in both cases (a) and
(b) we can cut the integration over p at p∗ ∼ τ . Note that in
the considered model |τ |−1 ∼ Rc is the correlation of the pure
system, and the presence of disorder produces not more than
a logarithmic correction to the correlation length.

In the case considered in this paper the situation is somewhat
more tricky due to the presence of the second term in the
brackets of Eq. (34). According to Eqs. (34)–(36) in the limit
τ → 0 (at |τ | � τ∗ where g0ξ � 1), we have

m(p) ∼ τ + 1
2 (εN ) ln(g0 ln(1/p))√

g0 ln(1/p)
. (A12)

According to the standard logic of the replica technique,
first we have to assume that for a given value of the replica
parameter N the value of the parameter ε is considered to be
less than everything else, such that (εN ) ln ln(1/|τ |) � 1, so
the integration over p is cut at p∗ ∼ τ as in the above examples.
On the other hand, in the further inverse Laplace transform
integration over analytically continued complex parameter N ,
its relevant value turns out to be of order 1/ε, which means
that the relevant value of the (complex) product (εN ) turns out
to be finite.
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