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Direct links between dynamical, thermodynamic, and structural properties of liquids:
Modeling results
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We develop an approach to liquid thermodynamics based on collective modes. We perform extensive
molecular-dynamics simulations of noble, molecular, and metallic liquids, and we provide direct evidence
that liquid energy and specific heat are well-described by the temperature dependence of the Frenkel (hopping)
frequency. The agreement between predicted and calculated thermodynamic properties is seen in the notably
wide range of temperature spanning tens of thousands of Kelvin. The range includes both subcritical liquids and
supercritical fluids. We discuss the structural crossover and interrelationships between the structure, dynamics,
and thermodynamics of liquids and supercritical fluids.

DOI: 10.1103/PhysRevE.95.032116

I. INTRODUCTION

It is an interesting fact that the liquid state has proven
to be difficult to describe by theory throughout the history
of condensed-matter research [1–12]. The problem extends
beyond condensed matter and exists in other areas where strong
interactions are combined with dynamical disorder, such as
field theory.

In a weakly interacting system such as a dense gas, the
potential energy is much smaller than the kinetic energy.
These systems are amenable to perturbation treatment giv-
ing corrections to the noninteracting case [5]. Perturbation
approaches have been widely explored to calculate liquid
thermodynamic properties, but they have not been able to
agree with experiments. For example, the analysis of tractable
models such as van der Waals or hard-spheres systems returns
the gaslike result for the liquid constant-volume specific heat
cv = 3

2kB [12–14]. This is in contrast to experimental results
showing that cv of monatomic liquids close to the melting
point is nearly identical to the solidlike result, cv = 3kB,
and decreases to about 2kB at high temperature [15,16]. As
expected on general grounds, the perturbation approach does
not work for strongly interacting systems.

Strong interactions are successfully treated in solids, crys-
tals, or glasses, where the harmonic model is a good starting
point and gives most of the vibrational energy. However, this
approach requires fixed reference points around which the
energy expansion can be made. With small vibrations around
mean atomic positions, solids meet this requirement but liquids
seemingly do not: the ability of liquids to flow implies that the
reference lattice is nonexistent.

Therefore, liquids seemingly have no simplifying features
such as small interactions of gases or small displacements of
solids [12]. In other words, liquids have no small parameter.
One might adopt a general approach that does not rely on
approximations and seek to directly calculate the liquid energy
for a model system in which interactions and structure are
known. This meets another challenge: because the interactions
are both strong and system-dependent, the resulting energy and
other thermodynamic functions will also be strongly system-
dependent, precluding their calculation in general form and
understanding using basic principles, in contrast to solids and

gases [12]. Consistent with this somewhat pessimistic view, the
discussion of liquid thermodynamic properties has remained
scarce. Indeed, physics textbooks have very little, if anything,
to say about liquid specific heat, including textbooks dedicated
to liquids [1–12].

As recently reviewed [17], emerging evidence advances
our understanding of the thermodynamics of the liquid state.
The starting point is the early theoretical idea of Frenkel [1],
who proposed that liquids can be considered as solids at times
smaller than liquid relaxation time, τ , the average time between
two particle rearrangements at one point in space. This implies
that phonons in liquids will be similar to those in solids for
frequencies above the Frenkel frequency ωF:

ω > ωF = 1

τ
. (1)

The above argument predicts that liquids are capable of
supporting shear modes, the property hitherto attributable to
solids only, but only for frequencies above ωF.

We note that low-frequency modes in liquids, sound waves,
are well-understood in the hydrodynamic regime ωτ < 1 [18],
however Eq. (1) denotes a distinct, solidlike elastic regime of
wave propagation where ωτ > 1. In essence, this suggests the
existence of a cutoff frequency ωF above which particles in
the liquid can be described by the same equations of motion as
in, for example, solid glass. Therefore, liquid collective modes
include both longitudinal and transverse modes with frequency
above ωF in the solidlike elastic regime and one longitudinal
hydrodynamic mode with frequency below ωF (the shear mode
is nonpropagating below frequency ωF, as discussed below).

Recall the earlier textbook assertion [12] that a general
thermodynamic theory of liquids cannot be developed because
liquids have no small parameter. How is this fundamental
problem addressed here? According to Frenkel’s idea, liquids
behave like solids with small oscillating particle displacements
serving as a small parameter. Large-amplitude diffusive parti-
cle jumps continue to play an important role, but they do not
destroy the existence of the small parameter. Instead, the jumps
serve to modify the phonon spectrum: their frequency, ωF,
sets the minimal frequency above which the small-parameter
description applies and solidlike modes propagate.

2470-0045/2017/95(3)/032116(9) 032116-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.032116


WANG, YANG, DOVE, FOMIN, BRAZHKIN, AND TRACHENKO PHYSICAL REVIEW E 95, 032116 (2017)

It has taken a long time to verify this picture experimentally.
The experimental evidence supporting the propagation of
high-frequency modes in liquids currently includes inelastic
x-ray, neutron, and Brillouin scattering experiments, but most
important evidence is recent and follows the deployment of
powerful synchrotron sources of x rays [19–35].

Early experiments detected the presence of high-frequency
longitudinal acoustic propagating modes and mapped dis-
persion curves that bore a striking resemblance to those in
solids [19]. These and similar results were generated at a
temperature just above the melting point. The measurements
were later extended to high temperatures considerably above
the melting point, confirming the same result. It is now
well established that liquids sustain propagating modes with
wavelengths extending down toward interatomic separations,
comparable to the wave vectors of phonons in crystals at the
Brillouin zone boundaries [20–31]. More recently, the same
result has been asserted for supercritical fluids [24,30,31].
Importantly, the propagating modes in liquids include acoustic
transverse modes. These were first seen in highly viscous fluids
(see, e.g., Refs. [32,33]), but they were then studied in low-
viscosity liquids on the basis of positive dispersion [20–22]
(the presence of high-frequency transverse modes increases
sound velocity from the hydrodynamic to the solidlike value).
These studies included water [34], where it was found that the
onset of transverse excitations coincides with the inverse of
liquid relaxation time [35], as predicted by Frenkel [1].

More recently, high-frequency transverse modes in liquids
were directly measured in the form of distinct dispersion
branches and verified on the basis of computer modeling
[25–29], and the striking similarity between dispersion curves
in liquids and their crystalline (polycrystalline) counterparts
was noted. We note that the contribution of high-frequency
modes is particularly important for liquid thermodynamics
because these modes make the largest contribution to the
energy due to quadratic density of states.

The above discussion calls for an important question about
liquid thermodynamics. In solids, collective modes (phonons)
play a central role in the theory, including the theory of
thermodynamic properties. Can collective modes in liquids
play the same role, in view of the earlier Frenkel proposal
and recent experimental evidence? We started exploring this
question [36] just before the high-frequency transverse modes
were directly measured, and subsequently we developed it
in a number of ways [17]. This involves calculating the
liquid energy as the phonon energy where transverse modes
propagate above ωF in Eq. (1).

The main aim of this paper is to provide direct computa-
tional evidence of the phonon theory of liquid thermodynamics
and its predictions. We achieve this by calculating the liquid
energy and ωF in extensive molecular-dynamics simulations.
In the next section, we briefly discuss the main steps involved
in calculating the liquid energy. We then proceed to calculate
the liquid energy and Frenkel frequency independently from
molecular-dynamics simulations using several methods that
agree with each other. We do this for three systems chosen from
different classes of liquids: noble, metallic, and molecular,
and we find good agreement between predicted and calculated
results in the wide range of temperature and pressure. The
range includes both subcritical liquids and the supercritical

state below the Frenkel line where transverse waves propagate.
We calculate and analyze liquid energy and cv using several
different methods. Finally, we discuss how our results offer
insights into interrelationships between structure, dynamics,
and thermodynamics in liquids and supercritical fluids.

II. PHONON APPROACH TO LIQUID
THERMODYNAMICS

A. Calculating liquid energy

We summarize the main result of the calculation of the
liquid energy on the basis of propagating modes. A detailed
discussion can be found in a recent review [17].

According to the previous discussion, the propagating
modes in liquids include two transverse modes propagating
in the solidlike elastic regime with frequency ω > ωF. The
energy of these modes, together with the energy of the
longitudinal mode, gives the liquid vibrational energy. In
addition to vibrations, particles in the liquids undergo diffusive
jumps between quasiequilibrium positions, as discussed above.
Adding the energy of these jumps to the phonon energy in the
Debye model gives the total energy of thermal motion in the
liquid [17,36]:

ET = NT

[
3 −

(
ωF

ωD

)3]
, (2)

where N is the number of particles, ωD is the transverse Debye
frequency, and the subscript T refers to thermal motion. Here
and below, kB = 1.

At low temperature, τ � τD, where τD is the Debye
vibration period, or ωF � ωD. In this case, Eq. (2) gives the
specific heat cv = 1

N
dE
dT

close to 3, which is the solidlike
result. At high temperature when τ → τD and ωF → ωD,
Eq. (2) gives cv close to 2. The decrease of cv from 3 to 2
with temperature is consistent with experimental results in
monatomic liquids [15,16]. The decrease of cv is also seen in
complex liquids [37].

Equation (2) attributes the experimental decrease of cv with
temperature to the reduction of the number of transverse modes
above the frequency ωF = 1

τ
. The comparison of this effect

with experiments can be more detailed if cv is compared in the
entire temperature range where it decreases from 3 to 2. This
meets the challenge that ωF in Eq. (2) is not directly available in
the cases of interest. ωF (τ ) is measured in dielectric relaxation
or NMR experiments in systems responding to electric or
magnetic fields only. These liquids are often complex and
do not include simple model systems that are widely studied
theoretically, such as liquid Ar. Importantly, the range of
measured ωF does not extend to high frequency comparable
to ωD, and it is in this range where liquid cv undergoes an
important change from 3 to 2 as discussed above. ωF can be
calculated from the Maxwell relationship ωF = G∞

η
, where

G∞ is the instantaneous shear modulus and η is the viscosity
taken from a different experiment [17]. More recently, it
has been suggested [39] that taking the shear modulus at a
finite high frequency (rather than infinite frequency) agrees
better with the modeling data. Apart from rare estimations
[38,39], G∞ is not available. In practice, the comparison
of experimental cv and cv predicted as dE

dT
with E given by
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FIG. 1. The Frenkel line in the supercritical region. Particle
dynamics includes both oscillatory and diffusive components below
the line, and it is purely diffusive above the line. Below the line,
the system is able to support rigidity and transverse modes at high
frequency. Above the line, particle motion is purely diffusive, and the
ability to support rigidity and transverse modes is lost at all available
frequencies. Crossing the Frenkel line from below corresponds to the
transition between the “rigid” liquid to the “nonrigid” gaslike fluid.

Eq. (2) is done by keeping G∞ as a free parameter, obtaining
a good agreement between experimental and predicted cv and
observing that G∞ lies in the range of several GPa typical for
liquids [17,36]. In the past few years, Eq. (2) and its extensions
to include the phonon anharmonicity and quantum effects of
phonon excitations were shown to account for the experimental
cv of over 20 different systems, including metallic, noble,
molecular, and network liquids [17].

In view of the persisting problem of liquid thermodynamics,
it is important to test Eq. (2) directly by linking the liquid
energy (cv) on one hand and ωF on the other and testing
the theory in a precise way. This, together with achieving
consistency with other approaches to calculate the liquid
energy, is one of the objectives of this study. Importantly,
this program includes supercritical fluids as well as subcritical
liquids, as discussed below.

B. Thermodynamics of supercritical fluids

If the system is below the critical point (see Fig. 1), the
temperature increase eventually results in boiling and the
first-order transition, with cv discontinuously decreasing to
about 3

2 in the gas phase. The intervening phase transition
excludes the state of the liquid where cv can gradually reduce
to 3

2 and where interesting physics operates. However, this
becomes possible above the critical point. This brings us
to the interesting discussion of the supercritical state of
matter. Theoretically, little is known about the supercritical
state, apart from the general assertion that supercritical fluids
can be thought of as high-density gases or high-temperature
fluids whose properties change smoothly with temperature
or pressure and without qualitative changes of properties.
This assertion followed from the known absence of a phase
transition above the critical point. We have recently proposed
that this picture should be modified, and that a new line, the
Frenkel line (FL), exists above the critical point and separates
two states with distinct properties (see Fig. 1) [13,14,40,41].

Physically, the FL is not related to the critical point, and it
exists in systems where the critical point is absent.

The main idea of the FL lies in considering how the particle
dynamics changes in response to pressure and temperature.
Recall that particle dynamics in the liquid can be separated into
solidlike oscillatory and gaslike diffusive components. This
separation applies equally to supercritical fluids as it does to
subcritical liquids. Indeed, increasing temperature reduces τ ,
and each particle spends less time oscillating and more time
jumping; increasing pressure reverses this and results in
the increase of time spent oscillating relative to jumping.
Increasing temperature at constant pressure or density (or
decreasing pressure at constant temperature) eventually results
in the disappearance of the solidlike oscillatory motion of
particles; all that remains is the diffusive gaslike motion. This
disappearance represents the qualitative change in particle
dynamics and gives the point on the FL in Fig. 1. Most
important system properties change qualitatively either on the
line or in its vicinity [13,14,40,41]. In a given system, the FL
exists at arbitrarily high pressure and temperature, as does the
melting line.

Quantitatively, the FL can be rigorously defined by pressure
and temperature at which the minimum of the velocity
autocorrelation function (VAF) disappears [14]. Above the
line defined in such a way, velocities of a large number
of particles stop changing their sign, and particles lose the
oscillatory component of motion. Above the line, the VAF is
monotonically decaying as in a gas [14]. For the purposes of
this discussion, the significance of the FL is that the phonon
approach to liquids and Eq. (2) apply to supercritical fluids
below the FL to the same extent as they apply to subcritical
liquids. Indeed, the presence of an oscillatory component of
particle motion below the FL implies that τ is a well-defined
parameter and that transverse modes propagate according to
Eq. (1). The ability of the supercritical system to sustain
solidlike rigidity at a frequency above ωF suggested the term
“rigid” liquid to differentiate it from the “nonrigid” gaslike
fluid above the FL [13,14].

Therefore, the FL separates the supercritical state into two
states where transverse modes can and cannot propagate. This
is supported by direct calculation of the current correlation
functions [42] showing that propagating and nonpropagating
transverse modes are separated by the Frenkel line. Interest-
ingly, Eq. (2) can serve as a thermodynamic definition of the
FL: the loss of the oscillatory component of particle motion
at the FL corresponds approximately to τ → τD (here, τD

refers to the Debye period of transverse modes) or ωF → ωD.
According to Eq. (2), this gives cv of about 2. Using the
criterion cv = 2 gives the line that is in remarkably good
agreement with the line obtained from the VAF criterion above
[14].

III. SIMULATION DETAILS

We have considered liquids from three important sys-
tem types: noble Ar, molecular CO2, and metallic Fe. We
have used the molecular-dynamics (MD) simulation package
DL_POLY [43] and simulated systems with 4576–8000 particles
with periodic boundary conditions. The interatomic potential
for Ar is the pair Lennard-Jones potential [44], known
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to perform well at elevated pressure and temperature. For
CO2 and Fe, we have used interatomic potentials that were
optimized and tested in the liquid state at high pressure
and temperature. The potential for CO2 is the rigid-body
nonpolarizable potential based on a quantum chemistry cal-
culation, with the partial charges derived using the distributed
multipole analysis method [45]. Fe was simulated using the
many-body embedded-atom potential [46]. In the case of CO2,
the electrostatic interactions were evaluated using the smooth
particle mesh Ewald method. The MD systems were first
equilibrated in the constant pressure and temperature ensemble
at respective state points for 20 ps. System properties were
subsequently simulated at different temperatures and averaged
in the constant energy and volume ensemble for 30 ps.

We are interested in the properties of real dense strongly
interacting liquids with potential energy comparable to kinetic
energy, and hence we have chosen fairly high densities:
ρ = 1.5 and 1.9 g/cm3 for Ar, ρ = 8 and 11 g/cm3 for Fe,
and ρ = 1.34 g/cm3 for CO2. The lowest temperature in each
simulation was the melting temperature at the corresponding
density, Tm. The highest temperature significantly exceeded
the temperature at the Frenkel line at the corresponding density,
TF, taken from the earlier calculation of the Frenkel line in
Ar [14], Fe [47], and CO2 [48]. As discussed above, the
temperature range between Tm and TF corresponds to the
regime where transverse modes progressively disappear and
where Eq. (2) applies. We have simulated 100–700 temperature
points at each pressure depending on the system. The number
of temperature points was chosen to keep the temperature step
close to 10 K.

As discussed above, Eq. (2) applies to subcritical liquids
as well as to supercritical fluids below the Frenkel line.
Accordingly, our simulations include the temperature range
both below and above the critical temperature. This will be
discussed in more detail below.

IV. RESULTS AND DISCUSSION

A. Liquid energy and heat capacity

We have calculated ωF in (2) from its definition in (1),
as ωF = 1

τ
. τ can be calculated in a number of ways. Most

common methods calculate τ as the decay time of the self-
intermediate scattering or other functions by the factor of e or
as the time at which the mean-squared displacement crosses
over from the ballistic to the diffusive regime [49]. These meth-
ods give τ in agreement with a method employing the overlap
function depending on the cutoff parameter ac provided ac =
0.3a, where a is the intermolecular distance [49]. We use the
latter method and calculate τ at 13–20 temperature points at
each density depending on the system. At each density, we fit
τ to the commonly used Vogel-Fulcher-Tammann dependence
and use ωF = 1

τ
to calculate the liquid energy predicted from

the theory. The predicted cv is calculated as cv = 1
N

dE
dT

, where
E is given by Eq. (2):

cv = 3 −
(

ωF

ωD

)3

− 3T ω2
F

ω3
D

dωF

dT
, (3)

where N is the number of atoms for Ar and Fe and the number
of molecules for CO2.

The first two terms in (3) give cv = 2 when ωF tends to its
high-temperature limit of ωF. The last term reduces cv below
2 by a small amount because dωF

dT
is close to zero at high

temperature [17].
We now compare the calculated energy and cv with those

directly computed in the MD simulations. We note that the
energy in Eq. (2) is the energy of thermal phonon motion, ET ,
which contributes to the total liquid energy as

E = E0 + ET, (4)

where E0 is the liquid energy at zero temperature and rep-
resents the temperature-independent background contribution
due to the interaction energy.

In comparing the calculated ET in Eq. (2) with the energy
from MD simulations, we therefore subtract the constant
term from the MD energy. The comparison of cv = 1

N
dE
dT

is performed directly because the constant term does not
contribute to cv . We have also calculated cv using the
fluctuations formula for the kinetic energy K in the constant
energy ensemble: 〈K2〉 − 〈K〉2 = 1.5(kBT )2N (1 − 1.5kB/cv)
[50]. Both methods agree well, as follows from Figs. 2(a) and
2(b).

There is only one adjustable parameter in Eq. (2), ωD, which
is expected to be close to the transverse Debye frequency.
ωF is independently calculated from the MD simulation as
discussed above. In Figs. 2 and 3, we compare the energy and
cv calculated on the basis of Eqs. (2) and (3), and we compare
them with those computed in MD simulations. The blue circle
in each figure shows the critical temperature. We observe good
agreement between predicted and calculated properties in a
temperature range including both subcritical and supercritical
temperature. This involved using τD ≈ 0.6 ps (ρ = 8 g/cm3)
and τD ≈ 0.2 ps (ρ = 11 g/cm3) for Fe, τD ≈ 0.9 ps (ρ =
1.5 g/cm3) and τD ≈ 0.3 ps (ρ = 1.9 g/cm3) for Ar, and τD ≈
0.5 ps for CO2, in reasonable order-of-magnitude agreement
with experimental τD of respective crystalline systems as well
as maximal frequencies seen in experimental liquid dispersion
curves (see, e.g., [26]). We note that the expected trend of τD

reduces with density.
At high temperature where ωF ≈ ωD, Eq. (3) predicts

cv close to 2, noting that the last term gives only a small
contribution to cv because ωF becomes slowly varying at high
temperature. Consistent with this prediction, we observe the
decrease of cv from 3 to 2 in Figs. 2 and 3.

The agreement between the predicted and calculated re-
sults supports the interpretation of the decrease of cv with
temperature discussed in the Introduction: ωF decreases with
temperature, and this causes a reduction in the number
of transverse modes propagating above ωF and hence the
reduction of cv .

For CO2, the same mechanism operates except that we
need to account for degrees of freedom in a molecular
system. We first consider the case of solid CO2. The MD
interatomic potential treats CO2 molecules as rigid linear units,
contributing the kinetic term of 2.5 to the specific heat per
molecule, including 1 from the rotational degrees of freedom
of the linear molecular and 1.5 from translations (here, we
have noted that CO2 molecules librate and rotate in the solid at
low and high temperature, respectively [51]). Noting that the
potential energy contributes the same term due to equipartition,
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FIG. 2. Energy per particle and specific heat of Ar at density
ρ = 1.5 g/cm3 (a) and ρ = 1.9 g/cm3 (b). Solid and dashed lines
correspond to results from simulations and theory, respectively. The
large (blue) circle corresponds to critical temperature. The black solid
curves in the insets show cv calculated as cv = 1

N

dE

dT
. Solid diamonds

correspond to cv calculated from the fluctuation formula (see the text).
The red (dashed) line is the theoretical result for cv .

the specific heat becomes 5 per molecule. This implies that
for molecular CO2, Eq. (2) modifies as ET = NT [5 − ( ωF

ωD
)3],

where N is the number of molecules and ωF is related to the
jump frequency of molecules and which gives cv = 5 in the
solid state where ωF is infinite. We use the modified equation
to calculate the energy and cv and compare them to those
computed from the MD simulation in Fig. 4.

Consistent with the above discussion, we observe that
cv for CO2 calculated directly from the MD simulations is
close to 5 at low temperature just above melting. At this
temperature, ωF � ωD, giving the solidlike value of cv as in
the case of monatomic Ar and Fe. As temperature increases,
two transverse modes of intermolecular motion progressively
disappear, resulting in the decrease of cv to the value of about
cv = 4, in agreement with cv calculated from the theoretical
equation for ET.
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FIG. 3. Energy per particle and specific heat of Fe at density ρ =
8 g/cm3 (a) and ρ = 11 g/cm3 (b). Solid and dashed lines correspond
to results from simulations and theory, respectively. The large (blue)
circle corresponds to critical temperature. The black solid curves in
the insets show cv calculated as cv = 1

N

dE

dT
. The red (dashed) line is

the theoretical result for cv .

We note that the temperature range in which we compare the
predicted and calculated properties is notably large (e.g., 200–
8000 K for Ar and 2000–55 000 K for Fe). This range is 10–100
times larger than those typically considered earlier [17]. The
higher temperatures for Fe might seem unusual, however we
note that liquid iron as well as supercritical iron fluid remains
an unmodified system up to very high temperature: the first
ionization potential of Fe is 7.9 eV, or over 90 000 K. Hence
the considered temperature range is below the temperature at
which the system changes its structure and type of interactions.

The very wide temperature range reported here is mostly
related to the large part of the temperature interval in
Figs. 2–4 being above the critical point where no phase
transition intervenes and where the liquid phase exists at high
temperature, in contrast to subcritical liquids where the upper
temperature is limited by the boiling line. The agreement
between predicted and calculated properties in such a wide
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FIG. 4. Energy per particle and specific heat of CO2 at density
ρ = 1.34 g/cm3. Solid and dashed lines correspond to results
from simulations and theory, respectively. The large (blue) circle
corresponds to critical temperature. The black solid curves in the
insets show cv calculated as cv = 1

N

dE

dT
. The red (dashed) line is the

theoretical result for cv .

temperature range adds support to the phonon approach to
liquid thermodynamics we propose.

We make three points regarding the observed agreement be-
tween the calculated and predicted results. First, the collective
modes contributing to the thermal energy in (2) are considered
to be harmonic. The anharmonicity can be accounted for in the
Grüneisen approximation, however this involves an additional
parameter [17]. We attempted to avoid introducing additional
parameters and sought to test Eq. (2), which contains only one
parameter, ωD.

Second, Eq. (2) involves the Debye model and quadratic
density of states (DOS). This approximation is justified
since the Debye model is particularly relevant for disordered
isotropic systems such as glasses [12], which are known to
be nearly identical to liquids from a structural point of view.
Furthermore, the experimental dispersion curves in liquids are
very similar to those in solids such as polycrystals [27–29].
Therefore, the Debye model can be used in liquids to the same
extent as in solids. One important consequence of this is that
the high-frequency range of the phonon spectrum makes the
largest contribution to the energy, as it does in solids including
disordered solids. We also note that the liquid DOS can be
represented as the sum of solidlike and gaslike components in
the two-phase thermodynamic model [52], and the solidlike
component can be extracted from the liquid DOS calculated
in MD simulations. This can provide more information about
the DOS beyond the Debye approximation.

Third, Eq. (2) assumes a lower-frequency cutoff for
transverse waves, ωF = 1

τ
, as envisaged by Frenkel in (1).

Our recent detailed analysis of the Frenkel equations shows
that the dispersion relationship for liquid transverse modes is

ω =
√

c2
s k

2 − 1
4τ 2 , where cs is the shear speed of sound and

k is the wave number [17]. Here, ω gradually crosses over
from 0 to its solidlike branch ω = csk when ω � ωF = 1

τ
.

FIG. 5. Schematic representation of a jump event in the liquid.

In this sense, using a lower-frequency cutoff in (2) might be
thought of as an approximation. However, we have recently
shown [53] that the square-root dependence of ω on τ gives
the liquid energy that is identical to (2).

B. Structural crossover and its relationship to dynamical and
thermodynamic properties

The results in the previous sections support the picture
in which the decrease of liquid cv from 3 to 2 is related to a
reduction of the energy of transverse modes propagating above
ωF as described by Eq. (3). According to Eq. (3), cv = 2 cor-
responds to the complete disappearance of transverse modes
at the FL when ωF ≈ ωD (the disappearance is supported by
the direct calculation of transverse modes on the basis of
current correlation functions [42]). Importantly, cv = 2 marks
the crossover of cv because the evolution of collective modes
is qualitatively different below and above the FL [17]. Below
the line, transverse modes disappear starting from the lowest
frequency ωF. Above the line, the remaining longitudinal mode
starts disappearing starting from the highest frequency 2πc

L
,

where L is the particle mean free path (no oscillations can
take place at distance smaller than L). This gives qualitatively
different behavior of the energy and cv below and above the
FL, resulting in their crossover at the FL [17].

Interestingly, the thermodynamic crossover at cv = 2 im-
plies a structural crossover. Indeed, the energy per particle in
a system with pairwise interactions is

E = 3

2
kBT + 4πρ

∫ ∞

0
r2U (r)g(r)dr, (5)

where ρ = N/V is the number density and g(r) is a radial
distribution function.

According to Eq. (4), the liquid energy is E = E0 + ET,
where ET is given by Eq. (2). If the system energy undergoes
the crossover at the FL where cv = 2, Eq. (5) implies that
g(r) should also undergo a crossover. Therefore, the structural
crossover in liquids can be predicted on the basis of the
thermodynamic properties.

We also expect the structural crossover at the FL to be
related to the dynamical crossover on general grounds. As
discussed above, below the FL particles oscillate around
quasiequilibrium positions and occasionally jump between
them. The average time between jumps is given by liquid
relaxation time, τ . (Figure 5 schematically shows a local jump
event from its surrounding “cage.”) This means that a static
structure exists during τ for a large number of particles below
the FL, giving rise to the well-defined medium-range order
comparable to that existing in disordered solids [54]. On the
other hand, the particles lose the oscillatory component of
motion above the FL and start to move in a purely diffusive
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FIG. 6. (a) Pair distribution functions of Ar at different tempera-
tures. The temperatures correspond to the first peak decreasing from
top to bottom at 250, 500, 1000, 2000, 4000, and 8000 K; (b) h − 1,
where h are the heights of PDF peaks at different temperatures. The
lines are linear fits to the low-temperature data range.

manner as in gases. This implies that the features of g(r) are
expected to be gaslike. As a result, g(r) medium-range peaks
are expected to have a different temperature dependence below
and above the FL. This behavior was observed in Ar in MD
simulations in the short-range structure [55]. More recently, the
crossover in supercritical Ne in the medium range at the FL was
ascertained on the basis of x-ray scattering experiments [56].

In Fig. 6(a) we plot pair distribution functions (PDFs) of Ar
at density ρ = 1.9 g/cm3 in a wide temperature range. Using
the FL criterion cv = 2 gives the temperature at the FL, TF, of
about 4000 K at that density, which we find to be consistent
with the criterion of the disappearance of the minimum of the
velocity autocorrelation function [14]. The PDF was calculated
with a distance step of 0.05 Å, giving 600 PDF points.

We observe PDF peaks in medium-range order up to about
20 Å at low temperature. The peaks reduce and broaden
with temperature. To study this in more detail, we plot the
peak heights versus temperature in Fig. 6(b). We observe

that the medium-range third and fourth peaks persist well
above the critical temperature (Tc = 151 K for Ar): the highest
temperature simulated corresponds to 53Tc. Interestingly, this
differs from the traditional expectation that the structure of the
matter so deep in the supercritical state has gaslike features
only. At a temperature above TF, the height of the fourth
peak becomes comparable to its temperature fluctuations
(calculated as the standard deviation of the peak height over
many structures separated in time by 1 ps at each temperature)
by an order of magnitude. The fifth- and higher-order peaks
disappear before the highest temperature in the simulated range
is reached.

We plot the peak heights in Fig. 6(b) in the double-
logarithmic plot because we expect to see an approximate
power-law decay of the peak heights at low temperature.
Indeed, the PDF in solids can be represented as a set
of Gaussian functions with peaks heights h depending on
temperature as h ∝ 1√

T
exp (− α

T
), where α is a temperature-

independent factor [1,57]. This temperature dependence of h

was also quantified in MD simulations [58]. h decreases mostly
due to the factor 1√

T
, whereas the effect of the exponential

factor on h is small and serves to reduce the rate at which
h decreases [58]. This implies that in solids, log h ∝ − log T

approximately holds.
In liquids, we expect the same relationship to hold below the

FL where τ � τD, corresponding to a particle oscillating many
times before diffusively moving to the next quasi-equilibrium
position. Indeed, the ratio of the number of diffusing particles
Ndif to the total number of particles N in the equilibrium state
is Ndif

N
= τD

τ
[17] at any given moment of time. Ndif

N
is small

when τ � τD below the FL and can be neglected. Hence,
log h ∝ − log T applies to liquids at any given moment of
time below the FL where τ � τD. This also applies to longer
observation times if h is averaged over τ [17]. We note that the
above result, h ∝ 1√

T
, involves the assumption that the energy

of particle displacements is harmonic (see, e.g., Ref. [1]).
Anharmonicity becomes appreciable at high temperature,
however the anharmonic energy terms are generally small
compared to the harmonic energy. This is witnessed by the
closeness of high-temperature cv to its harmonic result for
both solids and high-temperature liquids [59,60].

We therefore expect that log(h − 1) ∝ − log T approxi-
mately holds in the low-temperature range below the FL as
in solids but deviates from the linearity around the crossover
at the FL where τ → τD and where the dynamics becomes
gaslike [the calculated PDF in Fig. 6(a) is normalized to 1
where no correlations are present at large distances; hence we
plot h − 1 in order to compare it with the theoretical result
h ∝ 1√

T
, which tends to zero when no correlations are present

at high temperature]. We note that the crossover is expected
to be broad because τ � τD applies well below the FL only.
A substantial diffusive motion takes place in the vicinity of
the line where Ndif

N
cannot be neglected, affecting the linear

relationship.
Consistent with the above prediction, we observe the linear

regime at low temperature in Fig. 6(b), followed by the
deviation from the straight lines taking place around 3000 K
for the second peak, 5000 K for the third peak, and 4000 K
for the fourth peak, respectively. The smooth crossover in the
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3000–5000 K range is centered around 4000 K, consistent with
the temperature at the Frenkel line discussed above. We also
note that 4000 K corresponds to the specific heat cv = 2 in
Fig. 2(b), in agreement with the earlier discussion.

V. SUMMARY

As discussed in the Introduction, liquids have been viewed
as inherently complicated systems lacking useful theoretical
concepts such as a small parameter [12]. Together with recent
experimental evidence and theory [17], the modeling data pre-
sented here and its quantitative agreement with predictions are
beginning to change this traditional perspective. Our extensive
molecular-dynamics simulations of liquid energy and specific
heat provide direct evidence for the link between the dynamical
and thermodynamic properties of liquids. We have found this
to be the case for several important types of liquids at both

subcritical and supercritical conditions spanning thousands
of degrees Kelvin. This supports an emerging picture that
liquid thermodynamics can be understood on the basis of
high-frequency collective modes. A more general implication
is that, contrary to the prevailing view, liquids are emerging as
systems amenable to theoretical understanding in a consistent
picture, as is the case in solid-state theory. In addition to the link
between dynamical and thermodynamic properties, we have
discussed how these properties are related to liquid structure.
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