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We revisit the problem of deriving the mean-field values of avalanche exponents in systems with absorbing
states. These are well known to coincide with those of unbiased branching processes. Here we show that for at
least four different universality classes (directed percolation, dynamical percolation, the voter model or compact
directed percolation class, and the Manna class of stochastic sandpiles) this common result can be obtained by
mapping the corresponding Langevin equations describing each of them into a random walker confined to the
origin by a logarithmic potential. We report on the emergence of nonuniversal continuously varying exponent
values stemming from the presence of small external driving – that might induce avalanche merging – that, to
the best of our knowledge, has not been noticed in the past. Many of the other results derived here appear in the
literature as independently derived for individual universality classes or for the branching process itself. Still, we
believe that a simple and unified perspective as the one presented here can help (1) clarify the overall picture, (2)
underline the superuniversality of the behavior as well as the dependence on external driving, and (3) avoid the
common existing confusion between unbiased branching processes (equivalent to a random walker in a balanced
logarithmic potential) and standard (unconfined) random walkers.
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I. INTRODUCTION

Directed percolation (DP) is the paradigmatic example of
a very large class of systems – including catalytic reactions,
growing interfaces in random media, damage spreading,
epidemic dynamics, and turbulence, to name but a few – ex-
hibiting a phase transition separating a quiescent or absorbing
state from an active one [1–6]. The essence of this very robust
universality class – which, curiously enough, had to wait a
long time for experimental backing [7] – is parsimoniously
encoded in the following Langevin equation [4–6,8,9]:

ρ̇(r,t) = aρ(r,t) − bρ2(r,t) + D∇2ρ(r,t) +
√

ρ(r,t)η(r,t),

(1)

where ρ(r,t) is the density of activity at coordinates r and
time t, a is the control parameter regulating the distance
to the critical point, b and D are constants, and η(t) is a
Gaussian white noise of variance σ 2. Critical exponents,
scaling functions, and, in general, all critical features can
be obtained using Eq. (1) as a starting point. The most
preponderant aspect of this equation, distinguishing it from
other classes, such as the Ising class [10], is the

√
ρ factor in

the noise amplitude. This square-root noise term stems from
the “demographic” nature of the particle-number fluctuations,
and it imposes that there are no fluctuations in the absence of
activity, as corresponds to the absorbing state [11].

The same type of demographic noise also appears in
other slightly different universality classes, such as (1) the
voter-model or neutral class describing the dynamics of neutral
theories in which two symmetric competing states are possible
[1,12–14], within this class there is no deterministic force
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except for diffusion, and the noise amplitude is different
from zero only at the interfaces separating the two absorbing
states, e.g., at ρ = 0 and ρ = 1, i.e., ρ̇(r,t) = D∇2ρ(r,t) +√

ρ(r,t)[1 − ρ(r,t)] [14]; (2) the dynamical percolation class
[15,16], in which reactivation of sites cannot occur and, as
a consequence, the nonlinear term in Eq. (1) needs to be
replaced by a non-Markovian term −ρ(r,t)

∫ t

−∞ dt ′ρ(r,t ′)
keeping track of past activity while the noise term remains
unchanged; and (3) the Manna class of systems with many
absorbing states such as sandpiles in which an additional
conservation law – that can be encapsulated in an additional
term −ρ(r,t)

∫ t

−∞ dt∇2ρ(r,t) [17,18] – exists, while the noise
term remains as in directed percolation.

All systems with absorbing states, including these four
classes and some other more infrequent ones, not specified here
share the feature of exhibiting avalanching behavior, meaning
that if the absorbing state is perturbed by a localized seed of
activity, this can trigger a cascade of events before falling back
again into the absorbing state. It is common knowledge that
avalanches turn out to be scale invariant at critical points; in
particular, the avalanche-size (S) and avalanche-duration (T )
probability distribution functions can be written at criticality as

P (S) ∼ S−τGS (S/SC),
(2)

F (T ) ∼ T −αGT (T/TC),

where GS (S/SC) and GT (T/TC) are cutoff functions, and the
cutoff scales, SC and TC , depend only on system size right at
the critical point and on the distance to criticality away from
it [19]. Similarly, the averaged avalanche size scales with the
duration as 〈S〉 ∼ T γ , where the exponent γ needs to obey
the scaling relation [20,21],

γ = α − 1

τ − 1
. (3)
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FIG. 1. Left: Illustration of a realization of the unbiased branch-
ing process, showing (highlighted) an avalanche of size S = 10 and
duration T = 3, together with the structure of the underlying rooted
binary tree on top of which it unfolds. Right: Visualization of the five
possible paths of S = 3 as counted by the Catalan number C(3) = 5.

In particular, for avalanches propagating in high-dimensional
systems (or in densely connected networks) mean-field
exponent values τ = 3/2, α = 2, and γ = 2 are obtained for
all systems with absorbing states. A compilation of avalanche
exponents for different dimensions and universality classes,
as well as scaling relationships, can be found in Refs. [22–25].

In order to explicitly compute these exponent values,
textbooks usually resort to the (Galton-Watson) branching
process [1,2,26,27]. In this, each node of a tree has two
branches emerging out of it; from an occupied (active) node
at time (generation) n each of its two out-branches (at time
[generation] n + 1) are occupied (active) with probability p

or left empty with complementary (1 − p). Observe that this
is just a variant of directed percolation running on a regular
tree (see Fig. 1). For illustration and completeness, we now
present a very simple derivation of its associated avalanche
distribution functions.

II. A SIMPLE CALCULATION FOR THE
BRANCHING PROCESS

To compute P (S) – where S is the total number of occupied
(active) nodes before the process comes to its end – one just
needs to evaluate the total number of connected trees of size
S, which is nothing but the Catalan number [28]

C(S) = 1

S

(
2S

S − 1

)
, (4)

and multiply it for the probability of each one to oc-
cur, pS−1(1 − p)S+1. Evaluating the resulting expression
P (S,p) = (2S)!/((S + 1)!S!)pS−1(1 − p)S+1 in the Stirling
approximation for S	1, one readily obtains

P (S,p) = N√
π

S−3/2[4p(1 − p)]S, (5)

where N is a normalization constant; in particular, this be-
comes a power law at the critical point p = 1/2: P (S,1/2) =
N√
π
S−3/2, implying τ = 3/2. The exponent γ can also be

derived using the statistics of branch lengths in Catalan trees
of a given size [29], leading readily to the result γ = 2; and
from this, using the scaling relation Eq. (3), one obtains α = 2.

These results for the branching-process avalanche statistics
can be derived in a more systematic way – for different types
of underlying regular or random tree topologies – within the
generating function formalism [30–32]; indeed, in 1949 Otter
computed the solution for the case of a Poissonian distribution
of branches per node [33]. Given that the result, e.g., a power
law with exponent 3/2 for the size distribution, is much more
general than any specific branching process in any specific
treelike topology, it is appealing from a theoretical point of
view to derive an even more general proof of these results,
covering all cases at once. From a slightly different perspective,
relying on field theory and scaling arguments [22,34,35] the
whole set of exponent values can be obtained for each specific
universality class, but again, the result – being common to all
classes, i.e., superuniversal – should be amenable for a more
generic explanation.

III. THE BRANCHING PROCESS AS A RANDOM WALK IN
A LOGARITHMIC POTENTIAL

The common feature shared by all the Langevin equations
of the different classes of systems with absorbing states, as
already mentioned above, is the presence of a demographic,
square-root, noise amplitude. As a matter of fact, as illustrated
in more detail in Appendix A, in the mean-field limit it is easy
to derive a common and unique effective Langevin equation
for all classes of systems with absorbing states at criticality, as

ρ̇ = √
ρξ (t), (6)

where ρ is the overall activity and ξ (t) is a Gaussian white
noise with zero mean and 〈ξ (t)ξ (t ′)〉 = 2σ 2δ(t − t ′), which
needs to be interpreted in the Itô sense in order to guarantee
that ρ = 0 is an absorbing state [36,37]. We refer to Eq. (6)
as a “demographic random walker” (DRW). To avoid the
complications of the Itô calculus, we write the equivalent
equation in the Stratonovich interpretation [36,37]:

ρ̇ = −σ 2

2
+ √

ρη(t), (7)

where now 〈η(t)η(t ′)〉 = σ 2

2 δ(t − t ′). Using standard calculus
to change variables to x = √

ρ directly gives [38]

ẋ = −σ 2

4x
+ η(t). (8)

The resulting equation is just a particular case of a one-
dimensional random walker (RW) moving in a logarithmic
potential U (x) = λ log x,

dx

dt
= −dU (x)

dx
+ η(t) = −λ

x
+ η(t), (9)

where λ is a positive constant and, in general, 〈η(t)η(t ′)〉 =
2μδ(t − t ′), with μ a generic positive constant. Observe that
Eq. (8) corresponds to the particular case, λ = μ = σ 2/4, that
we call balanced, in which the ratio between the amplitudes of
the logarithmic potential and the noise-correlation amplitude,
μ, is equal to unity: β ≡ λ/μ = 1. This perfect balance
between the deterministic force and stochastic coefficients is
essential for what follows, as we shall see. More in general, let
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FIG. 2. Illustration of the time evolution of a standard random
walk (RW) and a demographic random walk (DRW); each color
corresponds to a different realization. Upper panel: Standard RW
that, in principle, can freely cross the origin. Avalanches start and
end when the walker crosses the origin. Lower panel: The DRW can
be represented as a stochastic RW moving in a balanced logarithmic
potential that keeps the walker bounded to the origin. Since the
variable is always strictly positive, the avalanches can be defined
as the activity over a threshold ε → 0.

us remark that, in the presence of an external field, allowing
for the spontaneous generation of activity at a fixed rate h,
Eq. (7) needs to be complemented with an additional +h term.
Upon changing variables, this implies β = 1 → 1 − h/μ, in
Eq. (9), and thus, in the presence of external driving, the perfect
balance between coefficients breaks down.

To compute avalanche exponents from Eq. (9), let us define
an avalanche as a random walk x(T ), starting at x(t = 0) = 0+

and returning for the first time to the origin at time T , x(T ) = 0
(see Fig. 2). The distribution or its return times is nothing but
F (T ) as defined in Eq. (2). The problem of computing such a
return-time distribution for the random walk in a logarithmic
potential, i.e., by Eq. (8), was solved by Bray [39] and revisited
by Colaiori in the context of Barkhaussen crackling noise [40].
The solution requires writing the equivalent Fokker-Planck
equation for the Langevin dynamics, with a delta-like initial
condition centered at a value slightly larger than x = 0, and
computing the probability flux F at the origin as a function of
the time T (a more detailed sketch of the analysis is presented
in Appendix B for the sake of completeness). The resulting
first-return probability distribution function is

F (T ) = 4με2ν

�(ν − 1)
(1 + β)(4μT )−ν−1e

− x2

4μT

∼ T −ν−1 = T − 3+β

2 , (10)

where ν = (1 + β)/2, implying α = 3+β

2 . Observe that, in
the limit of vanishing potential amplitude, λ = 0, this result
reproduces the statistics of a freely moving random walk,
F (T ) ∼ T − 3

2 , while in the opposite perfectly balanced limit,
λ = μ (i.e., β = 1) the result is F (T ) ∼ T −2 in agreement
with the expectations for the unbiased branching process. It
is noteworthy that, despite the fact that the random walk in a
logarithmic potential gives a nonuniversal avalanche duration
exponent, for the undriven DRW case, in which the logarithmic
potential derives from a change of variables in Itô calculus,
there exists a perfect balance between the coefficients of
the equation; they both depend on the noise amplitude, and,
compensating each other, they generate the universal value
α = 2. However, as said above, in the presence of an external
field, β = 1 − h/μ breaking down the perfect balance between
coefficients, nonuniversal continuously varying avalanche
exponents appear (see Fig. 3); in particular,

α = 2 − h

2μ
. (11)
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FIG. 3. Size-avalanche and duration-avalanche distributions for the undriven demographic random walk as described by Eq.(6), as well as
for diverse values of the external driving field (marked with symbols) h = 0.01 (blue squares), h = 0.1 (yellow stars), h = 0.2 (green crosses),
and h = 0.3 (red triangles), with reference curves (solid lines) t−2+h/(2μ) and s−3/2+h/(4μ) (as derived in the text), respectively, illustrating the
agreement with theoretical predictions.
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TABLE I. Summary of the avalanche exponents for the standard
RW, for the demographic RW, and for the driven demographic RW
(in the presence of an external field, allowing for the spontaneous
generation of activity at a fixed rate h).

Unbiased Demographic Driven
RW RW demographic RW

P (T ) ∼ T −α α = 3/2 α = 2 α = 2 − h/2μ

P (S) ∼ S−τ τ = 4/3 τ = 3/2 τ = 3/2 − h/4μ

P (S|T ) ∼ T −γ γ = 3/2 γ = 2 γ = 2

In any possible discrete (particle) model with absorbing
states, this change of exponents stems from the fact that,
owing to the external driving, avalanches from different initial
seeds (each of them spontaneously generated by the external
driving field) can merge, which allows their combination to
survive longer and be larger, thus leading to smaller effective
exponents α and τ (see Table I).

Turning back to the general discussion, using the above
result together with simple scaling, we can readily derive
the associated avalanche size exponent, τ . In order to have
a unified notation let us use a generic variable v(t), which can
be in particular, x(t) for the RW, or ρ(t) for the DRW. The
size of any given avalanche is defined as the area under the
curve defined by the random walk, i.e., S = ∫ T

0 v(t)dt , and we
are interested in the distribution of such sizes as a function of
T , P (S|T ). Given that the typical displacement of a random
walk in time t scales as v ∼ √

t , for the DRW (for which
there is an additional square-root factor) we have v ∼ √

v
√

t ,
and thus, v ∼ t ; hence, we can write, in general, v ∼ tφ , with
φ = 1/2 and φ = 1 for the RW and the DRW (either driven or
undriven), respectively.

It is natural to define a new rescaled variable ṽ(t/T ) =
v(t)/T φ , which describes a random excursion in the interval
[0,1]. In these terms,

S =
∫ T

0
v(t) dt ∼ T φ+1

∫ 1

0
ṽ(z) dz. (12)

Thus, the average avalanche size, 〈S〉 obtained averaging over
all possible avalanche shapes, ṽ(z), scales also with T φ+1,
implying γ = φ + 1.

Using the previous result, P (S|T ) can be written as a scaling
form P (S|T ) = T −γG(S/T γ ) where the factor T −γ comes
from the normalization condition, and the unspecified scaling
function G obeys G(z) � 0 for all z and

∫ ∞
0 G(z) dz = 1.

Having computed the conditional probability P (S|T ), we can
explicitly obtain P (S) as

P (S) =
∫ ∞

0
dT P (S|T )F (T )

∼ C

∫ ∞

0
dT T −γ T −αG(S/T γ )

∼ CS−(γ+α−1)/γ
∫ ∞

0
duu

(α−1)
γ G(u), (13)

and, thus, τ = (γ + α − 1)/γ [which is nothing but the scaling
relation Eq. (3)]. Plugging the value of α and γ derived above
one obtains the well-known result τ = 4/3 for the standard

random walk [41] and

τ = 3

2
− h

4μ
, (14)

for the DRW, which reduces to the well-known result τ =
3/2 for the undriven case. Table I contains a summary of the
exponents for the different cases.

Results beyond critical exponents have also been obtained
in the literature; for example, the average shape of random-
walk excursions is a semicircle for standard unbiased random
walkers [21], while it is a parabola for demographic walkers
[42]. This can be easily seen by rescaling the walks to ṽ and the
times to t/T to collapse curves as described above. In this way
ṽ(t/T ) = F(t/T ) where F(t/T ) is a scaling function. Given
that, v(t) ∼ tγ−1, dividing by T γ−1, ṽ(t/T ) ∼ (t/T )γ−1, at
least for small times, t�T . Considering that a similar relation
holds for the reverse time walk starting from t/T = 1, then the
avalanche shape isF(t/T ) = [(t/T )(1 − t/T )]γ−1, which is a
semicircle for γ = 3/2 (RW) and a parabola for γ = 2 (DRW
and driven DRW).

IV. CONCLUSIONS

In summary, we have explicitly shown that the mean-field
values of avalanche exponents in systems with absorbing states
can be computed in a general way by mapping them into
a random walk confined by a logarithmic potential, Eq. (8).
Of course, this same conclusion could have been reached by
arguing in a heuristic way that all high-dimensional processes
involving absorbing states should be effectively described
by an unbiased branching process, and then constructing
a continuous description of it (i.e., a Fokker-Planck or
equivalently a Langevin equation) which would be nothing
but Eq. (6).

An interesting corollary is that the exponents do change
in the presence of spontaneous creation of activity, even if
the rate is arbitrarily small. This result, which stems from
the marginality of the associated logarithmic potential could
be relevant to understand empirical results; for instance, in
cortical networks, avalanches of neural activity have been
reported to exhibit branching process statistics [43]; still,
inspection of some of the most careful estimations reveals
possible deviations from τ = 3/2 [44], which could be
potentially ascribable to a nonvanishing inherent spontaneous
activation.

We hope that this short paper will help to avoid the frequent
confusion we have encountered (mostly in the neuroscience
literature) about branching processes and their relation with
random walks and also in interpreting empirical results con-
sidering the possibility of nonuniversal continuously varying
exponents.
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APPENDIX A: IRRELEVANCE OF NONLINEAR TERMS

For the directed percolation class in the mean-field
limit, where spatial heterogeneity is neglected, Eq. (1)
reduces to

ρ̇(t) = aρ − bρ2 + √
ρη(t). (A1)

At criticality, i.e., a = 0, there is still a nonlinear (saturation)
term −bρ2 which introduces a characteristic maximal activity
scale, thus apparently precluding scale invariance. The way out
of this apparent conundrum is that when studying avalanches
in discrete (particle) models, activity is created at a single loca-
tion, and in the continuous limit, this corresponds to vanishing
density of activity, ρ = 0. Thus, one needs to consider a large
but finite system size, say, � (e.g., one could think of a fully
connected network with � nodes), and perform a finite-size
scaling analysis. Defining y by ρ = y/� then, up to leading
order in �, Eq. (A1) reduces to ẏ(t̃) = √

yη(t̃) where t̃ = �t .
In other words, employing the correct rescaled variables y and t̃

the saturation term is never “seen” by the expanding avalanche,
which is compatible with the density being equal to zero, as the
avalanche invades an infinitely large system. Observe that in
the main text we keep the notation with ρ and t , for the sake of
simplicity.

Similarly, the voter-model (or compact directed percolation
[45] or neutral theory) class, characterized by two symmetric
absorbing states, is described, as said above, by the Langevin
equation [14]

ρ̇(t) = D∇2ρ(r,t) +
√

ρ(1 − ρ)η(r,t), (A2)

which, again, ignoring spatial dependencies and rescaling the
variables, readily becomes the DRW equation, Eq. (6). The
same reasoning applies also to the other universality classes
discussed in the Introduction (i.e., dynamical percolation
and the Manna class); also in these cases the corresponding
nonlinear terms, describing saturation effects, vanish upon
properly rescaling the system.

On the other hand, beyond the mean-field limit, the
nonlinearities are essential and control the “renormalized”
values of the avalanche exponents (see, e.g., Ref. [46]),

which differ for the various universality classes [22,24], and
avalanches can develop nonsymmetric shapes [47].

APPENDIX B: FIRST-RETURN TIME DISTRIBUTIONS

Following the general result of Ref. [39] (see also Ref. [40]),
here we summarize the computation of avalanche exponents
for a random walk in a logarithmic potential. The general
Fokker-Plank equation reads [37]

∂P (x,t)

∂t
= μ

∂

∂x

[
∂P (x,t)

∂x
+ β

x
P (x,t)

]
. (B1)

To calculate the probability distribution F (T ) of the return
times at which a walker starting close to the origin [P (x,0) =
δ(x − ε),ε → 0] first hits back the origin, the absorbing
boundary condition P (0,t) = 0 needs to be imposed. Note that
F (T ) is minus the probability flux at 0, F (T ) = −j (0,t = T ),
with

j (0,t = T ) = −μ

[
∂P (x,t)

∂x
+ β

x
P (x,t)

]
x=0

. (B2)

One can try a solution of the Eq. (B1) of the form P (x,t) =
r(x) exp(−μk2t) and note that the resulting equation can be
converted into a Bessel equation with the change of variable
r(x) = x

1−β

2 R(x),

x2R′′(x) + xR′(x) + (k2x2 − ν2)R(x) = 0, (B3)

where ν = (1 + β)/2. The general solution of this last equation
is a linear combination of Bessel functions of the first kind of
order ±ν. Putting the pieces back together, employing the
orthogonality property of the Bessel functions, and imposing
the initial condition leads to

P (x,t | ε,0) =
(x

ε

)1−ν

ε

∫ ∞

0
dkk[AJν(kε)Jν(kx)

+ BJ−ν(kε)J−ν(kx)]e−μk2t , (B4)

where A and B are numerical constants. The integral in
Eq. (B4) gives the modified Bessel function of the first kind
I±ν , and it is easy to compute the flux at the origin in the small
ε limit [39,40], leading to Eq. (10).
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Rev. Lett. 94, 230601 (2005).

[15] P. Grassberger, Math. Biophys. 63, 157 (1983).
[16] H. K. Janssen, Z. Phys. B 58, 311 (1985).

032115-5

https://doi.org/10.1103/PhysRevLett.99.234503
https://doi.org/10.1103/PhysRevLett.99.234503
https://doi.org/10.1103/PhysRevLett.99.234503
https://doi.org/10.1103/PhysRevLett.99.234503
https://doi.org/10.1007/BF01319549
https://doi.org/10.1007/BF01319549
https://doi.org/10.1007/BF01319549
https://doi.org/10.1007/BF01319549
https://doi.org/10.1007/BF01313803
https://doi.org/10.1007/BF01313803
https://doi.org/10.1007/BF01313803
https://doi.org/10.1007/BF01313803
https://doi.org/10.1103/PhysRevE.52.3218
https://doi.org/10.1103/PhysRevE.52.3218
https://doi.org/10.1103/PhysRevE.52.3218
https://doi.org/10.1103/PhysRevE.52.3218
https://doi.org/10.1103/PhysRevLett.87.045701
https://doi.org/10.1103/PhysRevLett.87.045701
https://doi.org/10.1103/PhysRevLett.87.045701
https://doi.org/10.1103/PhysRevLett.87.045701
https://doi.org/10.1103/PhysRevLett.94.230601
https://doi.org/10.1103/PhysRevLett.94.230601
https://doi.org/10.1103/PhysRevLett.94.230601
https://doi.org/10.1103/PhysRevLett.94.230601
https://doi.org/10.1007/BF01303673
https://doi.org/10.1007/BF01303673
https://doi.org/10.1007/BF01303673
https://doi.org/10.1007/BF01303673
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