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Understanding quantum work in a quantum many-body system

Qian Wang1 and H. T. Quan1,2,*

1School of Physics, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

(Received 16 December 2016; published 7 March 2017)

Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys.
Rev. X 5, 031038 (2015)] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)], we
study the the correspondence principle between quantum and classical work distributions in a quantum many-body
system. Even though the interaction and the indistinguishability of identical particles increase the complexity
of the system, we find that for a quantum many-body system the quantum work distribution still converges to
its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle
between quantum and classical work distributions in an interacting quantum many-body system, especially in the
large particle number limit, and further justify the definition of quantum work via two-point energy measurements
in quantum many-body systems.
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I. INTRODUCTION

In recent years, the field of nonequilibrium statistical me-
chanics in small systems [1–4] has attracted lots of attention.
A major breakthrough in this field in the past two decades is
the discovery of exact fluctuation relations, which hold true for
systems driven arbitrarily far from equilibrium. Their validity
has been confirmed in various experimental and numerical
studies [5–13]. Now, these relations are collectively known as
fluctuation theorems (FTs). The FTs have provided insights
into the physics of nonequilibrium processes in small systems
where fluctuations are important [3]. Despite these great
developments, there are still some aspects of these FTs that
have not been fully understood. The definition of the quantum
work is one example. There have been many definitions of
quantum work for an isolated system [14]. However, only
the work defined through two projective measurements of the
system’s instantaneous energy, i.e., at the start (t = 0) and at
the end (t = τ ) of the driving process [11,15–20], satisfies
the FTs. Although this definition of quantum work satisfies
quantum nonequilibrium work relations, it might seem ad hoc.
This is because the collapse of the wave function [21], when
measuring the final energy, brings profound interpretational
difficulty to the definition of quantum work [22]. Therefore,
it is necessary to find other independent evidence (besides the
validity of the FTs) to justify the definition of quantum work
via two-point energy measurements.

Recently, the quantum work defined via two-point energy
measurements has been justified in both a one-dimensional
integrable system [22] and a chaotic system [23,24] through
the correspondence between quantum and classical work
distributions. By using the semiclassical method [25,26] and
the numerical simulation, it is shown that in the semiclassical
limit, i.e., h̄ → 0, the quantum work distribution converges
to the classical work distribution after ignoring the effect
due to interference of classical trajectories [22]. Therefore,
there is a quantum-classical correspondence principle of work
distributions. Thus, these studies provide some justification
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to the definition of the quantum work, because the classical
work is well defined without any ambiguity. Nevertheless,
for quantum many-body systems, the correspondence between
quantum and classical work distributions has not been studied
so far. The indistinguishability of identical particles [27,28]
and the interaction makes the properties of quantum work even
more elusive. Also, the nonequilibrium dynamic evolution of
a quantum many-body system is extremely difficult to solve.
Following a similar argument to that in Refs. [19,20], it can be
checked that quantum work defined via two-point energy mea-
surements in a quantum many-body system satisfies FT. For
example, the work fluctuations in bosonic Josephson junctions
has been studied in Ref. [29]. But a deeper understanding about
quantum work in a quantum many-body system is still lacking.
And the quantum work mentioned above has not been justified
in these systems. In this article we aim to explore the properties
of quantum work in a quantum many-body system, i.e., a
one-dimensional (1D) Bose-Hubbard (BH) model, and study
the correspondence principle of work distributions when both
indistinguishability and interaction play an important role.

The BH model which describes an interacting boson in
a lattice potential constitutes one of the most extensively
studied and most fundamental Hamiltonians in the field of
condensed matter theory and quantum simulation. It undergoes
a transition from a superfluid phase to an insulator phase as
the strength of the potential is increased [30–38]. Meanwhile,
this quantum many-body system has a classical limit. The
classical limit of this model is described by the celebrated
discrete nonlinear Schrödinger equation [39], which possesses
rich properties in both static and dynamic aspects. We study the
work distribution of this system in both quantum and classical
regimes. The results show that there indeed exists a quantum-
classical correspondence between work distributions in this
quantum many-body system. Furthermore, we investigate
when the correspondence principle between work distributions
will break down with the decrease of the number of particles.
Our study justifies the definition of the quantum work via two-
point energy measurements in a quantum many-body system.

The remainder of this article is organized as follows. In
Sec. II, we introduce the 1D BH model, briefly review its
properties, and discuss the classical limit of it. The quantum
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and classical work distributions are compared in Sec. III
where we prove that the correspondence principle between
quantum and classical work distributions can be reduced to the
correspondence principle between the quantum and classical
transition probabilities. Then we give definitions and discus-
sions of the quantum and classical transition probabilities
between different energy eigenstates. Our numerical results
and analysis are provided in Sec. IV where we show that the
quantum and classical transition probabilities in the 1D two-
site and three-site BH models converge in the semiclassical
limit. Finally, conclusions and discussions are given in Sec. V.

II. 1D BOSE-HUBBARD MODEL

The Hamiltonian of the standard 1D BH model is written
as

Ĥ =
L∑
j

[
−J (â†

j âj+1 + â
†
j+1âj ) + U

2
â
†
j âj (â†

j âj − 1)

]
,

(1)

where âj ,â
†
j are bosonic annihilation and creation operators for

the j th site and satisfy the usual bosonic commutation rules
[âi ,â

†
j ] = δij and L denotes the number of sites. U is a measure

for the on-site two-body interaction strength depending on
the s-wave scattering length, and J denotes the tunneling
amplitude, which depends on the barrier height [38,40].
Here the periodic boundary condition, i.e., aL+1 = a1, has
been assumed. Obviously, it is straightforward to check that
[Ĥ ,N̂ ] = 0 with N̂ = ∑

j â
†
j âj . The total number of particles

N = ∑
j nj is a conserved quantity, and the dimension of

the Hilbert space is dim[H ] = CN
N+L−1. Such a model can

be experimentally realized by using cold atoms in an optical
lattice [37,38,40–42].

The interactions between the bosons can be characterized
by a dimensionless coupling parameter [36,43–48]

λ = UN

J
. (2)

For the two-site case, depending on the values of λ, one
can identify three qualitatively different regimes [43–48]. The
Rabi regime (λ < 1), the Josephson regime (1 < λ � N2),
and the Fock regime (λ � N2). Due to the interplay between
the tunneling and the on-site interaction among the bosons, the
BH model exhibits rich and interesting dynamical properties.

The semiclassical limit of this model can be achieved when
N → ∞; in other words, the effective Planck constant is given
byh̄eff = 1/N [49]. With N → ∞, one can replace the annihi-
lation and creation operators by complex numbers [36,48–59]:

âj → ψj , â
†
j → ψ∗

j , (3)

with

ψj =
√

nj + 1

2
exp{iφj }. (4)

Then, one finds that the classical counterpart of the Hamilto-
nian (1) is given by

Hc =
L∑
j

[
−J (ψ∗

j ψj+1 + ψ∗
j+1ψj ) + U

2
|ψj |4

]
, (5)

with Poisson brackets

{ψi,ψ
∗
j } = δij , (6)

and

{Hc,N } = 0, (7)

where N = ∑
j |ψj |2 = N + L/2 [49–51,59]. The time evo-

lution of the complex valued mean-field amplitudes ψj are
given by the following equation [52]:

ih̄
∂ψj

∂t
= ∂Hc

∂ψ∗
j

= −J (ψj+1 + ψj−1) + U |ψj |2ψj . (8)

This equation can be regarded as the Hamilton equation of the
mean field ψj .

In the following sections, we will study the quantum-
classical correspondence of work distributions in the 1D BH
model based on the quantum and classical pictures given
above.

III. QUANTUM, SEMICLASSICAL, AND CLASSICAL
TRANSITION PROBABILITIES

Consider a quantum system, described by a Hamiltonian
Ĥ (J ), where J is an externally controlled parameter, usually
called the work parameter of the system in the field of
nonequilibrium statistical mechanics [3]. We study the time
evolution of the system when the work parameter J is varied
with time from initial value J (t = 0) = A to the finial value
J (t = τ ) = B. We assume that the the system at t = 0 is in
a thermal equilibrium state at an inverse temperature β. The
system is then detached from the heat bath and work is applied
when the work parameter J is varied. Then following the
definition of quantum work [15], the work distribution of this
nonequilibrium process is given by [15,22]

P Q(W ) =
∑

nB,mA

P Q(nB |mA)P Q(mA)δ
(
W − EB

n + EA
m

)
,

(9)
where EB

n and EA
m are the nth and the mth eigenvalues

of the final and initial Hamiltonian Ĥ (t = τ ), Ĥ (t = 0),
respectively. And the corresponding eigenstates are given by
|nB〉 and |mA〉, respectively. P Q(mA) is the probability of
sampling the mth eigenstate of Ĥ (t = 0) from the initial
thermal equilibrium state when making the initial energy
measurement:

P Q(mA) = 1

Z
Q
A

exp
[ − βEA

m

]
, (10)

with Z
Q
A = ∑

m exp[−βEA
m]. Given the initial mth eigenstate

of Ĥ (t = 0), the conditional probability of obtaining the nth
eigenstate of Ĥ (t = τ ) is given by the quantum transition
probability

P Q(nB |mA) ≡ |〈nB |Û (τ )|mA〉|2, (11)
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with

Û (τ ) = T̂ exp

[
− i

h̄

∫ τ

0
dt Ĥ (t)

]
, (12)

where T̂ is the time ordering operator.
For the classical case, we can follow the same lines as we do

in the quantum case, except that we are now in the phase space
instead of the Hilbert space. The classical work distribution
can be expressed in the following form [22]:

P C(W ) ≈
∑

nB,mA

P C(nB |mA)P C(mA)δ
(
W − EB

n + EA
m

)
,

(13)

where P C(nB |mA) and P C(mA) are the classical counterparts
of P Q(nB |mA) and P Q(mA), respectively.

With Eqs. (9) and (13), the classical and quantum work
distributions can be compared directly. We begin with com-
paring the classical and quantum initial probabilities P C(mA)
and P Q(mA). Following Ref. [22], we know that the initial
distribution for a d-dimensional classical system reads

P C(mA) =
∫ EA

m+1

EA
m

1

ZC
A

ρ̄(E)e−βEdE, (14)

where

ZC
A =

∫
ddpddq

(2πh̄)d
exp[−βHc(p,q)] (15)

is the classical partition function and ρ̄(E) is the density of
states (DOS) of the classical system. For the BH model which
we study here, ρ̄(E) has the following expression [60]:

ρ̄(E) =
(

4

π

)L ∫
dLpdLqδ[E − Hc(p,q)]

× δ

(
p2 + q2 − N − L

2

)
, (16)

with ψj = qj + ipj and q = (q1, . . . ,qL), p = (p1, . . . ,pL).
For the quantum case, P Q(mA) has the same form as the

classical case except that the partition function is given by
quantum expression and the DOS now reads

ρ(E) =
∑

n

δ(E − En), (17)

where En are the eigenvalues of the Hamiltonian in Eq. (1).
According to Gutzwiller [61], in the semiclassical limit, i.e.,
h̄ → 0, ρ(E) has the generic form [60]

ρ(E) = ρ̄(E) + ρ̃(E). (18)

Here the smooth part ρ̄(E) is purely classical, known as the
Weyl term, while the oscillatory part ρ̃(E) comes from the
quantum fluctuations and can be expressed in terms of classical
quantities, which are encoded in the classical periodic orbits. In
our study, the energy scale that we consider is much larger than
the periodicity of ρ̃(E), therefore, we can ignore the oscillatory
part and approximately take the DOS of the quantum system
to be ρ̄(E). Finally, we find that the initial distributions of the

quantum and classical cases are approximately equal [22,23]:

P Q(mA) =
∫ EA

m+1

EA
m

dE
1

Z
Q
A

ρ(E)e−βE (19)

≈
∫ EA

m+1

EA
m

dE
1

ZC
A

ρ̄(E)e−βE = P C(mA). (20)

Thus, in order to compare the quantum and classical work
distributions, the only thing one needs to clarify is the relation-
ship between the classical and quantum transition probabilities
P C(nB |mA) and P Q(nB |mA). In the following, we study these
transition probabilities in the 1D BH model explicitly.

In our study, we change J from J (t = 0) = 0 to J (t = τ ) =
0. Therefore, A = 0, B = 0, and both the initial and the final
energy eigenstates are given by the Fock states. The transition
probability between different energy eigenstates is given by
the transition probability between different Fock states. The
classical counterpart of the Fock states is a collection of micro-
scopic states �A ≡ {ψA

1 , . . . ,ψA
L } = {(nA

1 ,φA
1 ), . . . ,(nA

L,φA
L )},

with nA
j ’s equal to the number of particles on the j th site

and φA
j ’s are the independent random numbers which have a

uniform distribution in the range [0,2π ).

A. Quantum transition probability

In order to calculate the quantum transition probability, we
expand the wave function evolving under Ĥ [J (t)] as follows:

|�(t)〉 =
N∑

n2,...,nL

cn1,n2,...,nL
(t)|n1, . . . ,nL〉, (21)

where |n1, . . . ,nL〉 are the Fock basis, and the sum is con-
strained by N = ∑L

j=1 nj . Therefore, the particle number on

the first lattice site is given by n1 = N − ∑L
j=2 nj . cn1,n2,...,nL

’s
are expansion coefficients and satisfy the normalization con-
dition

N∑
n2,...,nL

∣∣cn1,n2,...,nL
(t)

∣∣2 = 1. (22)

Inserting Eq. (21) into Schrödinger equation

ih̄
∂

∂t
|�(t)〉 = Ĥ [J (t)]|�(t)〉, (23)

after some algebra, we finally get the equations of these
coefficients cn1,n2,...,nL

(t):

ih̄ċn1,...,nj ,...,nL
= U

2

L∑
j=1

nj (nj − 1)cn1,...,nj ,...,nL
− J (t)

L∑
j=1

× (
cn1,...,nj −1,nj+1+1,...,nL

√
nj (nj+1 + 1).

+ cn1,...,nj +1,nj+1−1,...,nL

√
(nj + 1)nj+1

)
,

(24)

where the dot denotes the time derivative. The quantum
transition probability between different Fock states, which we
denote by P Q(nB |nA) with |nA/B〉 = |nA/B

1 , . . . ,n
A/B

L 〉, reads

P Q(nB |nA) = ∣∣cn1,n2,...,nL
(τ )

∣∣2
, (25)
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where cn1,n2,...,nL
(τ ) solves Eq. (24) with the initial condition

given by cn1,n2,...,nL
(0). These results will be used in Sec. IV.

B. Semiclassical and classical transition probabilities

According to Refs. [49,59], one can write down the
semiclassical transition probability between different Fock
states of the BH model as follows:

P SC(nB |nA) = |KSC(nB,τ ; nA,0)|2, (26)

where KSC(nB,τ ; nA,0) is the semiclassical propagator, and
given by [49,59]

KSC(nB,τ ; nA,0) =
∑

γ

√
det′

1

(−2πih̄)

∂2Rγ (nB,τ ; nA,0)

∂nB∂nA

× exp

[
i

h̄
Rγ (nB,τ ; nA,0) + iμγ π

2

]
.

(27)

Here, γ indexes all classical trajectories satisfying Eq. (8) and
the boundary conditions

|ψj (t = 0)|2 = nA
j + 1

2 , (28)

|ψj (t = τ )|2 = nB
j + 1

2 , (29)

with j = 1, . . . ,L and arg ψ1(t = 0) = 0 and μγ denotes the
Maslov index of the γ th trajectory, while Rγ (nB,τ ; nA,0) is
the classical action of the γ th trajectory

Rγ (nB,τ ; nA,0) =
∫ τ

0

[ ∑
j

φ
γ

j (t)ṅγ

j (t) − Hγ
c (t)/h̄

]
dt.

(30)

The derivatives of the action Rγ with respect to nA
j and nB

j are

∂Rγ (nB,τ ; nA,0)

∂nA
j

= −h̄φ
γ

j (0), (31)

∂Rγ (nB,τ ; nA,0)

∂nB
j

= h̄φ
γ

j (τ ). (32)

The prime in the determinant

det′
(

∂2Rγ

∂nA∂nB

)
≡ det

(
∂2Rγ

∂nA
j ∂nB

k

)
j,k=2,...,L

(33)

indicates that the derivatives skip the first component. This
is a consequence of the conservation of the total number of
particles [49,59].

Following the same procedure as in Ref. [22], we can
further simplify the expression of the transition probability
by ignoring the interference terms between different classical
trajectories [49]

P SC(nB |nA)
diag≈

(
1

2πh̄

)L−1 ∑
γ

∣∣∣∣det′
[
∂φ(0)

∂nB

]∣∣∣∣, (34)

where φ(0) represents the vector of the initial phases for the
γ th trajectory, and has been obtained in Eq. (31). For the

classical case, the transition probability is given by [49]

P C(nB |nA) =
∫ 2π

0
dL−1φA

×
L∏

j=2

δ
[|ψj (nA,φA; τ )|2 − (

nB
j + 1/2

)]
. (35)

Using the property of δ function, Eq. (35) can be rewritten
as [59]

P C(nB |nA) =
(

1

2πh̄

)L−1 ∑
γ

∣∣∣∣det′
[
∂φ(0)

∂nB

]∣∣∣∣. (36)

By comparing Eqs. (34) and (36), we find that the semi-
classical transition probability (34) converges to the clas-
sical transition probability (36) after taking the diagonal
approximation [22,62–64]. Thus, similar to the single-particle
system [22,23], we have analytically proved that the quantum
work distribution will converge to the classical work distri-
bution in a quantum many-body system when ignoring the
interference effect of different classical trajectories. In the
following we will provide some numerical results of both
quantum and classical transition probabilities to demonstrate
our central result.

IV. NUMERICAL RESULTS

In this section, we give our numerical results of the 1D two-
site and three-site BH models. We set h̄ = 1, U = 5/N, τ =
10 and vary the work parameter J according to the following
protocol:

J (t) = J0

(
t − t2

τ

)
, (37)

with J0 = 5. In our study we also set the particle number N to
be an even number. Here, we stress that qualitatively similar
results can be obtained for any L-site BH model with L � 2.

To calculate the quantum transition probability between
different Fock states, we first use a Runge-Kutta method to
solve the set of coupled ordinary differential equations given
by Eq. (24), then use Eq. (25) to obtain the quantum transition
probability. For the classical case, the shooting method [65]
has been employed to find all classical trajectories from |nA〉 to
|nB〉 at the fixed transit time τ . Then we calculate the classical
transition probability via Eq. (36).

A. 1D Two-site Bose-Hubbard model

In this section we study the transition probability in the 1D
two-site BH model without periodic boundary condition

Ĥ = −J (â†
1â2 + â

†
2â1) + U

2
(â†

1â
†
1â1â1 + â

†
2â

†
2â2â2). (38)

This is an extensively studied [43–48,50,54–57,66–80]
paradigmatic model and can be realized in various systems,
for example, particles in a harmonic well [72]. Under the
well-known two-mode approximation, the 1D two-site BH
Hamiltonian in Eq. (38) can also be used to describe the
dynamics of an atomic Bose-Einstein condensate in a double-
well potential [68,73,74].
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E
n

250
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280

FIG. 1. Energy spectrum of the 1D two-site BH Hamiltonian (38)
as a function of the work parameter J for N = 100. Inset: The details
of the energy spectrum in the red rectangle.

We choose the ground state of Ĥ (t = 0) as our initial
state. The corresponding Fock state is the twin-Fock state,
therefore we have |nA〉 = |N/2,N/2〉. Its classical counter-
part is a collection of microscopic states �A = {ψA

1 ,ψA
2 } =

{(N/2,φA
1 ),(N/2,φA

2 )}, with φA
1 and φA

2 the uniformly dis-
tributed random numbers in the range [0,2π ). Here we should
point out that for small J all excited energy levels are
doubly degenerate and it splits with the increase of J (see
Fig. 1). However, the quantity that we studied is the transition
probability between different energy eigenstates, therefore we
do not need to consider the effect of the degeneracy. Due to the
fact that both the initial and the final values of J are equal to
zero, the Fock states |nA/B〉 are also the energy eigenstates
at the initial and the final moments. Hence, the quantum
and classical transition probabilities between different energy
eigenstates can be expressed as the transition probabilities

between different Fock states:

P Q(nB |mA) = P Q(nB |nA), (39)

P C(nB |mA) = P C(nB |nA). (40)

Here, the relation between the energy eigenstates |mA〉,|nB〉
and the Fock states |nA〉,|nB〉 are defined in the captions of
Figs. 2, 3, and 6.

In Fig. 2, we plot the quantum transition probability for
different number of particles as a function of the final energy
eigenstates |nB〉 (solid line). Comparing with the classical case
(dashed line), we find that the quantum probability oscillates
rapidly with nB . This feature has an origin in the wave nature of
the quantum system. Obviously, the correspondence between
P Q(nB |mA) and P C(nB |mA) is visually evident.

In order to smooth out the rapid oscillations and to compare
these two probabilities in a better way, we plot the cumulative
transition probabilities

∑
nB P Q(nB |mA) and

∑
nB P C(nB |mA)

in Fig. 3 for different number of particles N . Obviously,
the agreements between these two probabilities are not very
good for small N , but the convergence is improved when
N increases. The deviation observed in small N can be
explained as follows: when the number of particles N is
small, the characteristic actions of the system are not much
larger than the effective Planck’s constant h̄eff . Therefore, the
classical approximations adapted in Sec. II [cf. Eqs. (3)–(8)]
are expected to be a poor approximation.

We can also see that the jagged quantum cumulative
transition probability oscillates around the classical cumu-
lative transition probability. This phenomenon stems from
the interference between different classical trajectories [22].
The convergence displayed in Fig. 3 suggests that there
indeed exists a correspondence principle between quantum and
classical work distributions, despite the nonclassical feature
visible in Fig. 2.

The convergence of the quantum and classical transition
probabilities depends on the number of particles N (see

nB
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P
(Q

/C
) (

n
B
|m

A
)
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t
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J
(t

)
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(Q
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n
B
|m

A
)

0.00
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0.02

0.03

0.04

0.05
Quantum
Classical

(a) (b)

FIG. 2. Quantum [Eq. (25)] and classical [Eq. (36)] transition probabilities for the 1D two-site BH model with different number of particles
(a) N = 100, (b) N = 200. The solid blue curve represents the quantum case P Q(nB |mA), while the dashed red curve represents the classical
case P C(nB |mA). For the quantum case, the initial state is the ground state of H (t = 0) with |mA〉 = |nA〉 = |N/2,N/2〉. For the classical case,
the initial state is a collection of microscopic states �A = {ψA

1 ,ψA
2 } = {(N/2,φA

1 ),(N/2,φA
2 )}, with φA

1 and φA
2 the independent random numbers

evenly sampled in the range [0,2π ). Here, due to J (t = τ ) = 0, the finial energy eigenstates are given by the Fock states: |nB〉 = |nB
1 ,N − nB

1 〉
with nB

1 = 0,1, . . . ,N . Inset: Time dependence of the work parameter J (t).

032113-5



QIAN WANG AND H. T. QUAN PHYSICAL REVIEW E 95, 032113 (2017)

nB
0 2 4 6 8 10

n
B

P
(Q

/C
) (

Σ
n

B
|m

A
)

0.0

0.2

0.4

0.6

0.8

1.0
Quantum Classical

nB
0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0
Quantum Classical

n
B

P
(Q

/C
) (

Σ
n

B
|m

A
)

nB
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
Quantum Classical

n
B

P
(Q

/C
) (

Σ
n

B
|m

A
)

nB
0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0
Quantum Classical

n
B

P
(Q

/C
) (

Σ
n

B
|m

A
)

(a) (b)

(c) (d)

FIG. 3. Cumulative quantum and classical transition probabilities for the 1D two-site BH model with different number of particles: (a)
N = 10, (b) N = 50, (c) N = 100, (d) N = 200. The jagged blue solid curve shows the quantum case,

∑
nB P Q(nB |mA), while the smooth

dashed red curve shows the classical case,
∑

nB P C(nB |mA). For the quantum case, the initial state is chosen to be the ground state of
H (t = 0) with |mA〉 = |nA〉 = |N/2,N/2〉. The corresponding classical initial state is a collection of microscopic states �A = {ψA

1 ,ψA
2 } =

{(N/2,φA
1 )(N/2,φA

2 )}, where φA
1 and φA

2 are the uniformly distributed random numbers in the range [0,2π ). Due to the fact that J (t = τ ) = 0,
the final energy eigenstates are Fock states: |nB〉 = |nB

1 ,N − nB
1 〉 with nB

1 = 0, . . . ,N .

Fig. 3). In order to understand the correspondence of work
distribution in a better way, we use the root-mean-square
error (RMSE) [81] to quantify the difference between the
quantum and classical cumulative probabilities. For certain
N , the RMSE, which we denote by R(N ), between these two
cumulative probabilities is given by

R(N ) ≡
√√√√ 1

M

N∑
l=0

[
S

Q
l (N ) − SC

l (N )
]2

, (41)

where M = N + 1 represents the total number of eigenstates
and

S
Q/C

l (N ) =
l∑

nB=0

P Q/C(nB |mA), (42)

with l = 0, . . . ,N .
The RMSE R(N ) quantifies the average deviations between

two different probability distributions. If two probability
distributions are identical, we have R(N ) = 0. The closer
the two cumulative probability distributions S

Q
l and SC

l are,
the smaller R(N ) is. The vanishing of R(N ) implies the
correspondence principle [23]. Hence, the validity of the

correspondence principle can be quantitatively characterized
by the vanishing of the RMSE.

RMSE R(N ) as a function of particle numbers N is shown
in Fig. 4. It is seen that the value of R(N ) decreases with the

N
10 30 50 70 90

R
(N

)

0.01

0.02

0.03

0.04

0.05

FIG. 4. RMSE R(N ) (blue pentagrams) as a function of the
number of particles N . The other parameters are U = 5/N, τ =
10, h̄ = 1.
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FIG. 5. Energy spectrum of the 1D three-site BH model (44)
with the work parameter J for N = 20. Inset: The details of the red
rectangle.

increase of particle numbers N . In order to satisfy the classical
limit (N → ∞), large N is necessary. The behavior of R(N )
implies that its value will approach zero when the particle
numbers go to infinity, i.e.,

lim
N→∞

R(N ) → 0. (43)

This is in accordance with the well-known correspondence
principle that quantum mechanics and classical mechanics give
the same result in the classical limit.

B. 1D three-site Bose-Hubbard model

The 1D two-site BH model is simple and a special case of
BH model; in order to study a general case we extend our study
to the 1D three-site case. The Hamiltonian of the three-site

BH reads

Ĥ = −J

3∑
j=1

(â†
j âj+1 + â

†
j+1âj ) + U

2

3∑
j=1

nj (nj − 1), (44)

where the periodic boundary condition (i.e., a ring geometry)
âL+1 = â1 has been assumed. The three-site system is a
nonintegrable system and its energy spectrum (Fig. 5) is less
regular than that of the two-site system (Fig. 1). The dynamics
of its classical counterpart is chaotic due to the nonlinear
dynamics in a four-dimensional phase space, and its behavior
is much richer than the two-site setup [51,58,82–88].

In our study, we choose the initial state to be one
of three degenerate eigenstates of the 19th energy level
of the initial Hamiltonian. Its corresponding Fock state
is |nA〉 = |5,5,10〉. The classical counterpart of |nA〉 is
a collection of microscopic states �A = {ψA

1 ,ψA
2 ,ψA

3 } =
{(5,φA

1 ),(5,φA
2 ),(10,φA

3 )}, where φA
1 , φA

2 , and φA
3 are the uni-

formly distributed random numbers in the range [0,2π ). The
classical counterpart of the Hamiltonian (44) can be found in
Sec. II. And the classical dynamics of the system satisfies three
coupled differential equations of ψj (j = 1,2,3) [cf. Eq. (8)].

Figure 6(a) shows the quantum and classical transition
probabilities of the three-site BH model with N = 20. It can
be seen that unlike the 1D two-site case where the behavior of
the classical transition probability is regular, in the three-site
system the classical transition probability is irregular. This
phenomenon stems from the fact that the dynamics of the 1D
three-site BH model is nonintegrable and becomes more and
more chaotic as λ increases. Surprisingly, for the three-site
BH model, the agreement between the quantum and classical
cumulative transition probabilities is very good even for small
N [see Fig. 6(b)].

V. CONCLUSIONS AND DISCUSSIONS

The quantum-classical correspondence principle for work
distribution in a quantum many-body system, i.e., 1D BH
model, has been studied in this article. Since the initial

nB
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FIG. 6. Quantum (solid blue curve) and classical (dashed red curve) transition probabilities of the 1D three-site BH model: (a) Transition
probabilities between different energy eigenstates, (b) Cumulative transition probabilities. For the quantum case, the number of bosons is
N = 20 and the initial state is one of the three degenerate eigenstates of the 19th energy level of H (t = 0) with |mA〉 = |nA〉 = |5,5,10〉. The
classical counterpart of |mA〉 is a collection of microscopic states �A = {ψA

1 ,ψA
2 ,ψA

3 } = {(5,φA
1 ),(5,φA

2 ),(10,φA
3 )}, with φj ’s (j = 1,2,3) the

uniformly distributed random numbers in the range [0,2π ). Due to the fact that the final value of J is zero, the energy eigenstates of H (t = τ )
are the Fock states: |nB〉 = |nB

1 ,nB
2 ,N − nB

1 − nB
2 〉 with nB

1 = 0,nB
2 = 0, . . . ,N ; nB

1 = 1,nB
2 = 0, . . . ,N − 1; . . . ; nB

1 = N,nB
2 = 0.
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quantum and classical probability distribution functions are
approximately equal, the correspondence principle between
quantum and classical work distributions is equivalent to the
correspondence between the quantum and classical transition
probabilities between different energy eigenstates. We first
analytically demonstrate the convergence of the quantum and
the classical transition probabilities by utilizing the analytical
expression of the semiclassical propagator between Fock
states [49,59], and then we numerically calculate the quantum
and classical transition probabilities in the two-site and three-
site 1D BH models. We find that the numerical results agree
with the analytic result.

A direct comparison of the quantum and classical transition
probabilities shows that the quantum transition probability
oscillates rapidly along the classical transition probabilities
due to the interference of different classical trajectories, while
the classical transition probability is smooth and continuous
for the integrable case and irregular for the nonintegrable case.
Therefore, the classical and quantum probabilities are man-
ifestly different. However, for the cumulative probabilities,
we have observed good agreement between them. Our results
also demonstrate that the convergence, which is characterized
by the vanishing of the statistical quantity RMSE, between
cumulative quantum and classical probabilities becomes better
with the increase of the particle numbers of the system, and
vanishes as N → ∞. This behavior of RMSE implies that in
the classical limit the quantum work distribution converges

to the classical work distribution. Therefore, there indeed
exists a quantum-classical correspondence principle of work
distributions in a quantum many-body system, even though
the indistinguishability and interaction make the properties of
quantum work elusive.

Finally, we stress that the quantum-classical correspon-
dence of the BH models studied in this article is a dynamic
one [22,23], namely, for a system governed by a time-
dependent Hamiltonian, the quantum and classical transition
probabilities converge to each other in the classical limit.
Whereas, the usual studies of the quantum-classical corre-
spondence in the BH models [43–45,50,51,82,89,90] are the
static case, where the Hamiltonian of the system is time
independent. Our work, therefore, complements the previous
static correspondence principle in the BH model, which
has been studied extensively. Furthermore, this work also
complements the recent progress established in Refs. [22,23],
and justifies the definition of quantum work via two-point
energy measurements in a quantum many-body system.
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