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We consider the exclusion process on a ring with time-dependent defective bonds at which the hopping rate
periodically switches between zero and one. This system models main roads in city traffics, intersecting with
perpendicular streets. We explore basic properties of the system, in particular dependence of the vehicular flow
on the parameters of signalization as well as the system size and the car density. We investigate various types of
the spatial distribution of the vehicular density, and show existence of a shock profile. We also measure waiting
time behind traffic lights, and examine its relationship with the traffic flow.
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I. INTRODUCTION

We often experience traffic jams during rush hours in cities.
In urban networks, traffic flows are controlled by traffic lights.
Ideally, the cycles of the traffic lights should be coordinated
in a way that optimizes the travel times in the network or
avoids deadlock situations. The motivation of this work is to
explore systematically the optimization of traffic flow, by using
a simple transport model. In traffic engineering excluded-
volume effect and stochastic fluctuations are usually not
taken into account. The totally asymmetric simple exclusion
process (TASEP) [1,2] is a minimal model that includes these
features. The TASEP is one of cellular-automaton models with
stochastic time evolution, which are systems of interacting
particles on lattices. In the TASEP, each site of the lattice
is either occupied by a particle or empty, and each particle
stochastically hops to the right neighboring site, if this target
site is empty. Undoubtedly the TASEP has played a prominent
role as a paradigmatic model for describing many driven
nonequilibrium systems, especially physics of transport phe-
nomena [2,3]. Since its introduction for theoretical description
of the kinetics of protein synthesis [4], the TASEP has been
generalized in many ways for, e.g., describing biological
transports, in particular the motion of molecular motors [5–7].
One of the intriguing disciplines which owe much to the
TASEP is vehicular traffic flow [8]. Various features of
traffic flow have been investigated in the framework of the
TASEP such as overtaking [9], intersection of streets [10],
flow at junctions [11], queuing process [12], anticipation
effect [13], time and spatial headway at intersections [14],
on-ramp simulation [15], pedestrian-vehicles flow [16,17],
roundabout [18], and shortcut [19]. Models of traffic flow at
intersections have been also investigated by other approaches
than the TASEP, mainly in discrete-time frameworks [20–26].

In order to investigate the effects of traffic lights, one
can introduce time-dependent hopping probabilities in some
particular sites of lattice traffic models. For example in [27],
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discrete-time models were analyzed on regular square lattices
and some traffic-light strategies applied to optimize the flow
in the system. On a simpler geometry, i.e., ring, discrete-
time models were also employed [28–30] and fundamental
diagrams (the curve of flow versus the density of cars) were
found to become constant when the density is in a certain range.

In this work we focus on the control of traffic flow on
a single main road of city networks, and analyze different
strategies to optimize unidirectional flow by signalization.
Specifically we use the continuous-time TASEP on a ring
rather than more sophisticated discrete-time models [8], which
have been originally introduced for modeling highway traffic.
Compared to these traffic models, in the continuous-time
TASEP the cars’ velocities fluctuate stronger. In our system,
there is a traffic light which controls the conflicting flow of
vehicles at each point intersected by a perpendicular street;
see Fig. 1. The traffic lights are regarded as local defects.
As a special case, our model includes one of well-known
inhomogeneous TASEPs, which was introduced by Janowsky
and Lebowitz [31]. We also remark that similar variants of
the TASEP were introduced, e.g. [32], where the TASEP
with time-dependent exit rate has been investigated and [33]
where one site in the lattice can be blocked or unblocked
stochastically for description of conformation changes in
filamentous substrate.

This work is organized as follows. We first (Sec. II)
analyze the case where there is only one traffic light on the
street. We explore extensively its basic properties, mainly
the fundamental diagrams, in various parameter regimes. We
also consider various types of density profiles, according
to averaging procedure. In particular the density profile by
sample average converges to a periodic function in time. (In
the Appendix, we give a proof of the periodicity of physical
quantities.) On the other hand, we observe a shock in the
density profile by averaging over a large time window. Next
(Sec. III) we investigate the case where there is more than
one traffic light. For simplicity traffic lights are equidistantly
located. We treat two strategies for defining the difference
between the offsets of two adjacent traffic lights: fixed and
random ones [27]. We examine the current, which depends
on the strategies. We also measure the total waiting time
of cars behind traffic lights, and explore its average and
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FIG. 1. Illustration of our model. In the one-dimensional lattice,
each car moves to the next site if it is empty with rate 1. If a car is
on a site just before a traffic light in red phase, the movement is not
allowed.

distribution in the two strategies. It turns out that there is
an interrelation between the total waiting time and the current,
in the case where the average distance a car drives in a period
of lights and the distance between two adjacent lights are
comparable. Finally (Sec. IV), we summarize this work and
mention possible future studies.

II. TASEP WITH A SINGLE TRAFFIC LIGHT

Let us consider first the TASEP with only one traffic light
on a ring with L sites. Each site is either empty or occupied by
at most one particle (car). We denote the global density (i.e.,
the ratio between the number of cars and L) by ρ, and the
occupation number of site j at time t by τj (t). The “hopping”
rate of cars from site j to j + 1 is set to be 1. Without loss of
generality, we put the light between sites L and 1. We assume
that the light periodically changes its status from green to red
and from red to green. We denote the cycle length (period) and
the green phase ratio by T and 0 < g < 1, respectively, which
are basic parameters in our model. The signal is green for gT

unit of time and red for the rest of the cycle, i.e., (1 − g)T .
More precisely, the jump rate from site L to 1 is given by the
following time-dependent function σ (t):

σ (t) =
{

1
(
k � t

T
< k + g

)
,

0
(
k + g � t

T
< k + 1

)
,

(1)

where the integer k = �t/T � is the cycle number. During
the green phase, cars are allowed to cross the intersection,
i.e., σ (t) = 1. If the signal is red, cars must wait behind the
traffic light, i.e., σ (t) = 0, until the signal becomes green.
Apparently the limiting case g → 1 corresponds to the usual
(homogeneous) TASEP on a ring, and g → 0 to reflecting
boundary conditions. In this work we consider only the case
where g is not close to 0 or 1.

One can define several types of density profiles. The
simplest one is the time average of the occupation number

ρj = 1

t2 − t1

∫ t2

t1

τj (t)dt, (2)

which is independent of time in the limit t2 → ∞. On the other
hand, the average over independent samples (simulation runs)
depends on time:

ρj (t) = 〈τj (t)〉sample. (3)

This converges to a periodically stationary density profile ρ
p
j (s)

[satisfying ρ
p
j (T + s) = ρ

p
j (s)] in the sense that

lim
κ→∞ ρj (κT + s) = ρ

p
j (s) (4)
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FIG. 2. Limits of the fundamental diagram. The thin lines are
parabolas J = ρ(1 − ρ) and J = gρ(1 − ρ).

with κ ∈ Z�0. This is alternatively obtained by averaging over
a time sequence in a single simulation run as

ρ
p
j (s) = lim

κ2→∞
1

κ2 − κ1

κ2−1∑
κ=κ1

τj (κT + s), (5)

with κ1,κ2 ∈ Z�0. As a general remark, any time-dependent
quantity Q(t) as well as the density profile converges to a
periodic function with the same period T , Qp(s), i.e., we
have Q(κT + s) → Qp(s) as κ → ∞ (κ ∈ Z�0). Actually
the periodicity is predicted by Floquet’s theory [34]. For
convenience we give the proof in the Appendix.

We are interested in the current as well as the density
profiles. The fundamental diagram (the relationship between
the current J and the density ρ) depends on the system length
L and the period T of the traffic light, as illustrated in Fig. 2.
Simulation results are also summarized in Fig. 3. In statistical
physics, analyses in the “thermodynamic” limit L → ∞ are
usually considered to be important. This would be a reference
case in our model, but simulations with finite L are also
relevant to real traffic.

Our traffic light model is very similar to the TASEP with a
“blockage,” which was introduced by Janowsky and Lebowitz
(JL) [31]. The JL model contains one “defective” bond
between sites L and 1 where a reduced transition rate r < 1
is independent of time. Within the mean-field approximation,
the fundamental diagram is found to be

J ≈
{
ρ(1 − ρ) (ρ � ρ∗ ∨ 1 − ρ∗ � ρ),

J ∗ (ρ∗ < ρ < 1 − ρ∗),
(6)

with the critical density ρ∗ = r
1+r

and the maximal current
J ∗ = r

(1+r)2 . In particular, for ρ∗ < ρ < 1 − ρ∗, a shock is
localized around the site S, which is determined by

ρ∗S + (1 − ρ∗)(L − S) = Lρ. (7)

It separates the density profile into low- and high-density
regions (0 < j < S and S < j < L, respectively). The true
current and density profile of the JL model seem to quali-
tatively agree with the above predictions. Because the exact
solution is lacking, it is still a challenging problem whether
the phase transitions are mathematically true in the limit
L → ∞ [35]. In the limit T → 0 our model is equivalent to the
JL model (Fig. 2), which can be understood as follows. Assume

032108-2



SIGNAL OPTIMIZATION IN URBAN TRANSPORT: A . . . PHYSICAL REVIEW E 95, 032108 (2017)

FIG. 3. Currents in the cases where (a),(b) L = 100, (c),(d) T =
100, and (e),(f) T = L. Simulations were performed on a ring with
one traffic light (g = 0.5), and averaged over 105 � t � 2 × 105. The
solid lines in (a), (c), and (e) are parabolas ρ(1 − ρ) and gρ(1 − ρ);
those in (b), (d), and (f) correspond to the values in the limits T → ∞,
L → ∞, and T = L → ∞, respectively. The dashed line in (a),(b)
correspond to the current of the JL model with the defect site with
rate r = 0.5.

that cars always want to jump from site L to site 1 with rate 1.
But jumps are only allowed when the signal is green. When T

is very small, i.e., in the very high frequency of the light, the
acceptance of the jump is almost stochastic with probability
g. In Fig. 3(a), we observe that the current J (for L = 100)
already agrees with the JL model for T = 1. From Fig. 3(b),
we expect that, for given g, the current takes a supremum in
the JL limit T → 0 [36]. We note that this case is not relevant
to real traffic. In reality no car can start to move when the
frequency of the light is too fast. Therefore, slow-to-start effect
is needed, when one wants to discuss an optimization problem
by adjusting the parameter T . Furthermore, we should take
into account a minimum period such that cars can go through
the intersection. However, the JL model provides qualitatively
essential features of our model, e.g., similar fundamental
diagrams in some cases and existence of a localized shock
in the density profile ρj , as defined in Eq. (2).
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FIG. 4. Periodic density profiles ρ
p
j (s) for T = 100, L = 1000,

and g = 0.5. The global density is chosen as (a) ρ = 0.1 and (b)
ρ = 0.4. Insets: enlarged view near j = 0 is shown.

In the opposite limit T → ∞ with L fixed, the current is
easy to calculate. In the green phase the system can be regarded
as the homogeneous TASEP on a ring (there is sufficient time
for relaxation); hence the current �JG = ρ(1 − ρ) L

L−1 . In the
red phase all the cars make a queue behind the traffic light and
no car can move; hence JR = 0. For the total current we have

lim
T →∞

J = gJG + (1 − g)JR = gρ(1 − ρ)L/(L − 1), (8)

neglecting the transient currents from the red phase to the green
phase and from green to red. The factor L/(L − 1) corresponds
to the exact finite-size effect, and we have

lim
L→∞

lim
T →∞

J = gρ(1 − ρ). (9)

One can consider another limit, i.e., L → ∞ with T

fixed; see Figs. 3(c) and 3(d). The fundamental diagram has
conjecturally a similar structure to the JL model, i.e.,

lim
L→∞

J =
{
ρ(1 − ρ) (ρ � ρ∗ ∨ 1 − ρ∗ � ρ),

J ∗ (ρ∗ < ρ < 1 − ρ∗),
(10)

where the plateau value J ∗ and critical density ρ∗ are different
from the JL model. In particular we expect

lim
T →∞

lim
L→∞

J =
{
ρ(1 − ρ) (ρ � ρ∗ ∨ 1 − ρ∗ � ρ),
g

4 (ρ∗ < ρ < 1 − ρ∗),
(11)

where ρ∗ is the smaller solution to ρ∗(1 − ρ∗) = g

4 , i.e.,

ρ∗ = 1−√
1−g

2 . Note that the order of the two limits here is
different from (9). The plateau current g

4 is explained as
follows: in the red phase, a long queue . . . 111 is formed
behind the light, and there is a large space without cars after
the light. Therefore, in the green phase, the car current through
the traffic light becomes 1

4 . As analyzed in the semi-infinite
lattice [37], the density profile ρ

p
j (t) has a similar sawtooth

structure. In the low- (high-) density case, only one sawtooth
profile appears after (before) the light; see Fig. 4(a). On the
other hand, in the intermediate density case, two sawtoothlike
profiles appear after and before the light; see Fig. 4(b). Far from
the light, they converge to ρ∗ and 1 − ρ∗, respectively, and the
shock position S is given by the same equation (7) as the JL
model.

Let us consider the case where L and T are in the same
order, say, 0.5 < L/T < 2. The relevant case to real traffic
would be L ∼ 100,T ∼ 100. A remarkable fact is that the
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FIG. 5. Density profiles (a) ρj vs j , (b) ρj (t) vs t for ρ = 0.4,
(c) ρ

p
j (s) vs j for ρ = 0.1, and (d) ρ

p
j (s) vs j for ρ = 0.4. The

parameters are T = L = 100, g = 0.5. For (a),(c),(d), we averaged
over 105 � t � 106 of one simulation run. For (b), we averaged over
103 simulation runs with the initial condition ρj (0) = ρ. The dashed
lines in (b) are numerical results of the mean-field equations (14)–
(16).

current does not always monotonically decrease as L or T

increases, when the density is low, and L and T are in the same
order; see Figs. 3(b) and 3(d). These “fluctuations” indicate
that, for given L, one can optimize the flow by changing T in
this simple geometry. Similar behavior has also been reported
in more sophisticated traffic models with traffic lights [27,28].
They can be considered as a signature of a periodic function
J (T ) which has been observed for a traffic model with smaller
noise amplitude [27]. In Fig. 3(e), there is still a plateau:

J ≈
{
f (ρ) (ρ � ρ∗ ∨ 1 − ρ∗ � ρ),

J ∗ (ρ∗ < ρ < 1 − ρ∗),
(12)

with some function f . In the limit L → ∞ with L/T fixed,
we expect that the plateau density becomes again J ∗ = g

4 ,

lim
T ,L→∞
T/L fixed

J =
{
f (ρ) (ρ � ρ∗ ∨ 1 − ρ∗ � ρ),
g

4 (ρ∗ < ρ < 1 − ρ∗).
(13)

The explicit form of the function f is unknown but it
should satisfy gρ(1 − ρ) < f (ρ) < ρ(1 − ρ). Note that the
limits (9), (11), and (13) are different.

Let us turn to the density profiles. One observes that the time
independent density profile ρj , defined in Eq. (2), exhibits a
shock, when the global density lies in the interval ρ∗ < ρ <

1 − ρ∗; see Fig. 5(a). In this case only the shock position
changes as ρ varies. On the other hand, when ρ is close to 0
or 1, no shock exists. Though the fully exact description of the
time dependent ρj (t) Eq. (3) is difficult, within the mean-field

approximation, the rate equations are

ρ̇1(t) = σ (t)ρL(t)[1 − ρ1(t)] − ρ1(t)[1 − ρ2(t)], (14)

ρ̇L(t) = ρL−1(t)[1 − ρL(t)] − σ (t)ρL(t)[1 − ρ1(t)], (15)

ρ̇j (t) = ρj−1(t)[1 − ρj (t)] − ρj (t)[1 − ρj+1(t)] (16)

for 2 � j � L − 1, where the dots stand for the time deriva-
tives. We numerically probed the time evolution of these equa-
tions, by using Euler’s method with discretization ρ̇j (t) →
[ρj (t + 10−4) − ρj (t)]/10−4, and the result is compared with
a simulation of the original stochastic problem in Fig. 5(b).
The periodicity ρj (t + T ) = ρj (t) can be already observed
from time t ≈ 2T as well as qualitative agreement between the
simulation and the mean-field approximation [38]. In Figs. 5(c)
and 5(d), periodic density profiles ρp(s) Eq. (4) versus j are
also provided. It is interesting that there is a relation between
flat profiles (a) with/without a shock and fluctuating profiles
(c),(d) via ρj = ∫ T

0 ρ
p
j (s)ds.

III. MANY TRAFFIC LIGHT PROBLEM

We now consider the general case, i.e., the TASEP on a
ring with n traffic lights, where the distance of each pair of
successive lights is constant � for simplicity. The ith light is
located at the bond between sites i� and i� + 1. In particular,
the nth light is between sites L := n� and 1. The switch of light
i between green σi(t) = 1 and red σi(t) = 0 phases is defined
in terms of the period T , the green phase ratio 0 < g < 1, and
the offset parameter 0 � �i < 1:

σi(t) =
{

1
(
k + �i � t

T
< k + g + �i

)
,

0
(
k + g + �i � t

T
< k + 1 + �i

)
,

(17)

with k = �t/T − �i� showing the cycle number. In other
words, the ith light periodically becomes green at t = (k +
�i)T and red at t = (k + g + �i)T . In this work we consider
only the case where all the traffic lights have identical values
of T and g.

Analogous to the argument for the n = 1 case, the limit
T → 0 of the model corresponds to the TASEP with n static
defective bonds where hopping rates are reduced to g. In the
opposite limit T → ∞, the current becomes J ≈ Gρ(1 − ρ),
where G is the ratio between the period T and the duration
when all the lights are green, i.e., G = 1

T

∫ T

0 σ1(t) · · · σn(t)dt .
On the other hand, in the limit � → ∞, the current is expected
to be ρ(1 − ρ) for the low and high density cases (ρ < ρ∗,ρ >

1 − ρ∗), and flat when ρ∗ < ρ < 1 − ρ∗, with some critical
density ρ∗. But again we are interested in the case where � and
T are in a same order rather than these limits.

The current J depends on the offset parameters {�i} as well
as T , g, and �. In this work we discuss two types of offsetting
of traffic lights, i.e., fixed and random offset strategies (see,
e.g. [40–42] for other types). In the fixed offset strategy, the
difference of the offsets are set as �i+1 − �i = δ (modulo 1)
for i = 1,2, . . . ,n − 1, with some 0 � δ < 1. The choice
of δ is restricted as δ = m/n (m = 0,1, . . . ,n − 1), so that
no inhomogeneity is caused to the nth light: �1 − �n = δ

(modulo 1). The car-hole symmetry J |ρ→1−ρ = J is no longer
true except for δ = 0,1/2, but we have an extended symmetry
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FIG. 6. (a) Current J and (b) J/[ρ(1 − ρ)] vs the global density
ρ and the difference of offset parameters δ in the fixed offset strategy.
The parameters were set as � = 60, n = 20, T = 100, and g = 0.5,
corresponding to the surface plots. For comparison we plotted data
of n = 1 by markers ◦ in the face δ = 0. In order to emphasize the
effect of δ in the low and high density cases, we divide the current
by ρ(1 − ρ) in (b). (c) Optimal δ vs ρ. The curves correspond to the
green wave strategy.

J |ρ→1−ρ,δ→1−δ = J . On the other hand, in the random offset
strategy, �i for each i is randomly chosen from the unit
interval.

Figure 6(a) shows the fundamental diagram for n = 20,
� = 60, and T = 100 in the fixed offset strategy. As in the
single-light (n = 1) case, there are regimes ρ < ρ∗ and 1 −
ρ∗ < ρ, where the current depends on the global density ρ.
When ρ∗ < ρ < 1 − ρ∗, the current J = J ∗ is independent of
ρ. The dependence of this plateau current on δ is also weak;
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FIG. 7. (a) Illustration of the total waiting time of each light
per period. In this example of a kymograph, the total waiting is the
area enclosed by the bold line. (b) Average waiting time 〈W 〉/(ρ�)
vs the global density ρ and the difference of offset parameters δ.
The parameters were set as T = 100, g = 0.5, � = 60, and n = 20
(L = 1200), corresponding to the surface plots. For comparison we
plotted data of n = 1 by markers ◦ in the face δ = 0.

see Figs. 6(a) and 6(b). On the other hand, in the cases of low
and high densities, the dependence on δ becomes significant.
In Fig. 6(c), we plot the value of δ which gives maximum
of J for given ρ. One may naively think that the so-called
green wave strategy, i.e., δ = �/(vT ) (modulo 1) with v =
1 − ρ, maximizes the current. However, it should be noted
that v = 1 − ρ corresponds to the stationary velocity of the
usual TASEP. Due to the stochasticity of the TASEP, the actual
particle velocities and local densities fluctuate around their
average stationary values. In our case, there is a subtle interplay
between density and velocity fluctuations at one hand and the
optimal control of traffic lights at the other hand. This is why
the optimization of δ is a nontrivial task and the green wave
strategy does not work, as we see in Fig. 6(c).

Let us turn to investigation on the total waiting time
(TWT) [20,43]. For each car, the waiting time behind a traffic
light is defined by the duration from joining a queue to moving
again. The TWT Wk,i for the kth period of the ith light is then
the summation of waiting times over all cars in the queue; see
Fig. 7(a). This is also rephrased as the queue length integrated
over time. We also denote by 〈W 〉 the average of TWT over k

and i. The TWT is one of quantities which we want to minimize

(a)

t

j

(b)

t

j

(c)

t

j

(d)

t

j

FIG. 8. Kymographs for the fixed offset strategy with (a) (δ,ρ) =
(0.5,0.1) and (b) (0.5,0.4), and the random offset strategy with (c)
ρ = 0.1 and (d) ρ = 0.4. The other parameters are T = 100, g = 0.5,
� = 60, and n = 20.
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FIG. 9. Plots of (J,〈W 〉) as δ varies for global density (a) ρ = 0.1
and (b) 0.4. We have set the other parameters as � = 60, g = 0.5,
T = 100, and n = 20. For the fixed offset strategy, we varied the
value of δ as 0,0.05,0.1, . . . ,0.95. The small dots • (and partially the
markers with various shapes) were obtained by averaging over 105 �
t � 106. The lines are guides for eyes. For the random offset strategy,
each marker + was obtained by averaging over 105 � t � 2 × 105 of
one simulation run with a randomly chosen set of parameters {�i}.
Furthermore, we averaged 40 simulation runs of the random offset
strategy. (c) and (d) show probability distributions of the average
TWT for ρ = 0.1 and 0.4, respectively, in the fixed offset strategy,
where the average values are indicated by markers with a vertical bar.
In the insets, we compare the distributions in the cases of n = 1 and
n = 20 with δ = 0. The dashed line in (c) is the Gaussian fitting for
(ρ,δ) = (0.1,0.9).

in real city traffic. In Fig. 7(b) the surface plot corresponds
to simulation results of the average TWT normalized by ρ�,
which is equivalent to average waiting time per car per cycle.
When the global density is large (ρ > 0.75), a queue created
behind the ith light in the kth red phase can reach the (i − 1)th
light, and/or it can last still in the (k + 1)th red phase. In this
case we cannot define a TWT per cycle. Therefore, we show
only meaningful data of ρ � 0.75 in Fig. 7(b). The dependence
on δ is again strong in the low density case.

In kymographs, Fig. 8, we observe the following facts. For
the low density case (a),(c), Wk,i is fluctuating with respect to
k, but we partially see that packets are propagated. On the other
hand, in the plateau current region (the intermediate density
regime) (b),(d), Wk,i highly depends on i in a time window, say
t1 � t � t1 + 1000. This property is true for the fixed offset
strategy even though there is no inhomogeneity among the
lights, i.e., when Wk,i is large (as compared to other lights),
Wk+1,i is also large. (This dependence on i disappear when we
consider the average over k in a much longer time window.)

In the low density regime, there is the following tendency
(agreeing with our intuition) as δ varies: when the TWT is

minimized (maximized), the current is maximized (mini-
mized); see Fig. 9(a) for example with ρ = 0.1. However,
the relation between J and 〈W 〉 is not a perfect one-to-one
correspondence. On the other hand, in Fig. 9(b), we provide
plots for ρ = 0.4 as an example in the intermediate density
regime. We cannot observe a clear tendency of the relationship
between J and 〈W 〉, as their ranges are too small. For
comparison, we plot (J,〈W 〉) of the random offset strategy
in Figs. 9(a) and 9(b). We notice, in (a), that the curve made
by the fixed offset strategy encloses the samples of random
offset strategy with randomly chosen parameters {�i} as well
as the average over {�i}. For intermediate densities ρ∗ < ρ <

1 − ρ∗, there is no big difference in J as δ varies; see (b).
Let us investigate the probability distribution P (W ) of the

TWT. One may naively expect that the distributions of the cases
n = 1 and n = 20 with δ = 0 are similar to each other. How-
ever, this guess fails; see the insets of Figs. 9(c) and 9(d), where
we observe very different curves. For ρ = 0.1, we observe
various types of distributions in Fig. 9(c). For δ = 0.2 except
for the vicinity of W = 0, the distribution is almost flat, as com-
pared to other values of δ. For δ = 0.55, we observe a strong
oscillation, where peaks appear with a period slightly smaller
than gT = 50. For δ = 0.7, the distribution is exponential-like
(but with a peak at a positive W ). For δ = 0.9, a simple
Gaussian fitting agrees with the simulation data. On the other
hand, for ρ = 0.4 (with n = 20), P (W ) does not drastically
change its form as we change the value of δ; see Fig. 9(d).

IV. SUMMARY AND CONCLUSIONS

In this work we analyzed the TASEP with dynamic
defective bonds which correspond to the traffic lights at
intersections. Our model can be considered as an approach
to the regulation of traffic flow on arterial roads in urban
areas. We explored possible optimization strategies of the
flow and waiting time behind a traffic light. Our choice of
the traffic model, i.e., the continuous-time TASEP, leads to
rather strong fluctuations of cars’ velocities. This implies that
the ballistic motion of cars, which might be relevant at low
densities, is not considered by our approach. These fluctuations
limit the efficiency of the traffic-light optimization schedules
based on the typical traveling time between two intersections.
In our systematic approach, we started with the single-light
problem. We saw that the fundamental diagrams quantitatively
depend on the parameters of signalization as well as the system
size. Although these time-average fundamental diagrams are
qualitatively similar to that of the JL model, the time-periodic
rate at the intersection gives interesting phenomena in various
types of density profiles. In particular, the temporary density
profile nicely reflects formation and relaxation of a queue
behind the light, which enables us to optimize the flow by
tuning the period of the traffic light. In contrast to deterministic
discrete-time models, even at low densities it is not possible
to avoid queueing of cars completely, but the impact of the
signal period and system size is significant. Another interesting
observation is that the average of the time-periodic profile over
one cycle can exhibit a shock.

For the many-light problem, we measured the total waiting
time of cars behind traffic lights, and explored relations to the
flow. We found that, for the low density regime, the distribution
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of the total waiting time takes various forms depending on
the offset parameter δ of the fixed offset strategy. Moreover,
the flow and the waiting times are correlated. When the
density becomes larger, the flow and the waiting time cannot
be controlled by the offset parameters, and the correlation
between the flow and the waiting time becomes weaker.

Our results refer to the steady state of a periodic system,
which we characterized in some details. We believe that
our approach sets a firm ground for the analysis of more
sophisticated traffic models as well as in other geometries.
The step toward more complex lattices has already been
made, for example, at an intersection of two perpendicular
segments [44–48] or in more complicated networks [49–53].
Despite the relevance of these studies for city traffic, in these
works traffic optimization has been understood as optimization
of the flow. For realistic city traffic, however, it is also
important to understand how the cars are distributed in the
network as well as to optimize traffic flow with respect to the
drivers’ waiting times. Although we addressed these issues
in a rather simple geometry, we observed that the density of
cars is strongly varying at different sections of the roads. This
observation is of great relevance for city traffic since a queue
on a main road may block a whole section of the city network.

APPENDIX : PROOF OF THE PERIODIC STATIONARITY

Here we prove that (the ensemble average of) any quantity
Q(t) converges to a periodic function with period T , as t →
∞. We consider only the single-light problem, but the proof

can be generalized to the many-light problem. The probability
distribution |P (t)〉 at time t is evolved by the master equation
in continuous time [3]

|Ṗ (t)〉 = M(t)|P (t)〉, M(t) =
{
Mp (t ′ � g),

Mr (t ′ > g),
(A1)

where t ′ := t/T − �t/T �, and Mp and Mr are transition
rate matrices of the TASEPs with the usual periodic
and reflecting boundary conditions, respectively. The se-
ries {|P (κT )〉}κ∈Z�0 obeys a discrete-time Markov process
|P ((κ + 1)T )〉 = M|P (κT )〉 with the transition probability
matrix M = eMr(1−g)T eMpgT . This process has a stationary
state |Pst〉, i.e., |P (κT )〉 = Mκ |P (0)〉 → |Pst〉 in the limit
κ → ∞, which satisfies |Pst〉 = M|Pst〉. Using the notation
s ′ = s/T − �s/T �, we find

|P (κT + s)〉

=
{

eMps
′TM�s/T �+κ |P (0)〉 (s ′ � g),

eMr(s ′−g)T eMpgTM�s/T �+κ |P (0)〉 (s ′ > g),
(A2)

→
{

eMps
′T |Pst〉 (s ′ � g),

eMr(s ′−g)T eMpgT |Pst〉 (s ′ > g),
(A3)

as κ → ∞ (κ ∈ Z�0). We denote Eq. (A3) by |Pst(s)〉
satisfying |Pst(T + s)〉 = |Pst(s)〉. We find that any quantity
Q(κT + s) = 〈Q|P (κT + s)〉 converges to 〈Q|Pst(s)〉, which
is also periodic, 〈Q|Pst(T + s)〉 = 〈Q|Pst(s)〉.
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