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Transition of multidiffusive states in a biased periodic potential
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We study a frequency-dependent damping model of hyperdiffusion within the generalized Langevin equation.
The model allows for the colored noise defined by its spectral density, assumed to be proportional to ωδ−1

at low frequencies with 0 < δ < 1 (sub-Ohmic damping) or 1 < δ < 2 (super-Ohmic damping), where the
frequency-dependent damping is deduced from the noise by means of the fluctuation-dissipation theorem. It is
shown that for super-Ohmic damping and certain parameters, the diffusive process of the particle in a titled periodic
potential undergos sequentially four time regimes: thermalization, hyperdiffusion, collapse, and asymptotical
restoration. For analyzing transition phenomenon of multidiffusive states, we demonstrate that the first exist
time of the particle escaping from the locked state into the running state abides by an exponential distribution.
The concept of an equivalent velocity trap is introduced in the present model; moreover, reformation of ballistic
diffusive system is also considered as a marginal situation but does not exhibit the collapsed state of diffusion.

DOI: 10.1103/PhysRevE.95.032107

I. INTRODUCTION

Diffusion in a periodic structure is of great interest, because
it is simple to formulate and can be used to describe a
surprising range of systems, including Josephson junctions [1],
charge-density waves [2], superionic conductors [3], rotation
of dipoles in an external field [4], phase-locking loops [5],
diffusion on surfaces [6], and separation of particles by
electrophoresis [7,8]. The monumental work on this topic is
to be found in Risken’s textbook [9], where the diffusion in
a washboard potential is analyzed within the framework of
the Fokker-Planck equation. Lately, with the term Brownian
motion on a periodic substrate, Marchesoni, Hänggi, and
collaborators have studied systemically Gaussian noise-driven
diffusion and transport in such a potential [10]. Understanding
particle diffusion in a one-dimensional system has been recog-
nized as a key issue in transport control, but then the authors did
not refer necessarily to a pointlike object diffusing in a periodic
potential [11]. When pumping a dilute mixture of interacting
particles through a narrow channel [12], either by applying
external (dc or ac) gradients [13] or by rectifying ambient fluc-
tuations, the efficiency of the transport mechanism is largely in-
fluenced by the diffusion of the pumped particles. In particular,
the notions of a hysteresis mechanism, multiple jumps, jump
reversal, and backward-to-forward rates have been discussed
in detail [14,15]. Those models may explain various instances
of low-frequency excess damping in material science.

The forced Brownian motion on periodic substrates also
provides an archetypal model of transport in a condensed
phase. Analytical calculations and a huge enhancement for
effective diffusion coefficient relative to the force-free case
have been addressed in the overdamped [16,17] and under-
damped [18–22] cases. In fact, the diffusion coefficient is
measured by the envelope width of the spatial distribution of
the particle. This is indeed realized through the phenomenon
of “diffusion helped by transport.” The problem is whether
or not one can change the scaling index of the coordinate
variance increasing with time. Recent studies on anomalous
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diffusion found across many different branches of physics are
mostly on the absence of potential or the constant force case
of the mean square displacement of the particle expressed as
〈x2(t)〉 ∼ t δ with 0 < δ < 2. An important aspect in regard to
understanding a random process, in particular an anomalous
diffusive system, is its behavior in external fields. To the
best of our knowledge, however, unexpected properties due
to “transport changing diffusive scaling law” in a corrugated
plane need to be investigated in detail.

Clearly, test particles in the unbiased periodic potential
are distributed over many spatial wells at long times, so
the diffusion changes eventually into a normal one [9,23].
Remarkably, our previous works showed that there exhibit
two motion modes: the running state and the oscillating
state for a super-Ohmic damping particle moving in a tilted
periodic potential [24,25]. The particle coordinate variance
(CV) was approximately written as a power function of time,
i.e., 〈�x2(t)〉 ∼ t δeff , where the index δeff can be enhanced
twice related to that of the force-free diffusive case. A minimal
non-Markovian embedding model of ballistic diffusion was
developed to interpret the hyperdiffusion phenomenon and
demonstrated that the transient hyperdiffusion will end up
in the long-time limit [26,27]. Nevertheless, there exists a
concern for transport that pervious numerical simulations may
be not efficient to achieve asymptotical results; moreover, for
a more general non-Markovian dynamics subjected to no-
Ohmic damping, the phenomenon of diffusion in a washboard
potential remains unclear.

This paper is organized as follows. In Sec. II, we give
numerical evidence for the existence of four regimes for diffu-
sion of the super-Ohmic damping particle in a biased periodic
potential. In Sec. III, we demonstrate that transformation from
the locked state to the running state obeys an exponential
law and analyze the complicated diffusive behavior in the
velocity space. Reformation of ballistic diffusion is discussed
in Sec. IV. A summary is drawn in Sec. V.

II. THE MODEL AND DIFFUSIVE PROPERTIES

We start by considering a generalized Langevin equation
(GLE) of a particle in a potential V (x) and subjected to a
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memory damping and a thermal colored noise,

mẍ + m

∫ t

0
γ (t − t ′)ẋ(t ′) dt ′ + V ′(x) = ξ (t), (1)

where the noise of the zero mean obeys both the Gaussian dis-
tribution and the fluctuation-dissipation theorem 〈ξ (t)ξ (t ′)〉 =
mkBT γ (|t − t ′|), kB is the Boltzmann constant, T denotes the
temperature, γ (t) = 2

mπ

∫ ∞
0 dωJ (ω)

ω
cos(ωt), and J (ω) is the

bath spectral density corresponding to the system coupled
bilinearly to a heat bath consisting of infinite harmonic
oscillators [28–31]. The GLE (1) under a constant biased force
F , thus where the potential is V (x) = −Fx, can be solved
analytically [31–34] for reference. The mean displacement
(MD) and the mean velocity (MV) of the particle are written
as

〈x(t)〉 = {x(0)} + F

m

∫ t

0
H (τ ) dτ,

〈v(t)〉 = {v(0)} + F

m
H (t). (2)

Herein we indicate by {· · · } the average with respect to the
initial values of the state variables, and by 〈· · · 〉 we denote
the average over the noise ξ (t), respectively. The CV and the
velocity variance (VV) are given by

〈�x2(t)〉 = 〈x2(t)〉 − 〈x(t)〉2

= 2kBT

m

∫ t

0
H (τ ) dτ +

[
{v2(0)} − kBT

m

]
H 2(t),

〈�v2(t)〉 = 〈v2(t)〉 − 〈v(t)〉2

= kBT

m
+

[
{v2(0)} − kBT

m

]
h2(t), (3)

where H (t) and h(t) = Ḣ (t) are two response functions and
the Laplace transform of H (t) is H̃ (s) = [s2 + sγ̃ (s)]−1 [35].

Within the non-Ohmic damping (friction) model [30],
as a widely applied one of non-Markovian dynamics,
we have J (ω) = mγδω

δ exp(−ω/ωc). Consequently, the
index in the frequency-dependent damping appears to be
linked, not only to δ as would be the case in a heat bath,
but also to characterize the color of noise. The Laplace
transform of memory damping function γ (t) is given by
γ̃ (s) = γδ/ sin(δπ/2)sδ−1 when s � ωc. The low-frequency
part of the spectral density governs long-time dynamics of the
particle. Herein the response function in Eqs. (2) and (3) is
expressed as H (t) ∼ sin(δπ/2)[γδ	(δ)]−1t δ−1 at long times
[30], and, thus the asymptotical CV of the particle subjected
to a constant force reads 〈�x2(t)〉 ∼ 2Dδt

δ/	(δ + 1), where
Dδ is the δ-dependent diffusion constant. In this work, we
pay attention to diffusion of a particle in the following tilted
washboard potential:

V (x) = −V0 cos(2πx) − Fx, (4)

where V0 is the amplitude strength of periodic potential and
F is equal to a constant. The potential V (x) has local minima
if the driving force F is smaller than the critical value,
Fc = V02π , and when F > Fc, the minima vanish.

Unfortunately, the colored noise with non-Ohmic spectrum
cannot be simulated directly, or there is not a set of Markovian

FIG. 1. Time-dependent MD and CV of the particle for various
biased forces F = 2.0,0.7,0.1 from top to bottom.

embedding equations through introducing additional variables
for GLE (1). In order to simulate transport process of a non-
Ohmic damping particle in a nonlinear potential, we develop an
efficient method by using the spectral approach [36–39] to gen-
erate the required colored noise and the Runge-Kutta algorithm
to solve numerically the GLE whole. In the calculations, the
natural units m = 1 and kB = 1, the dimensionless parameters
V0 = 1.0 and γδ = 1.0; the cutoff frequency ωc = 10.0, the
time step �t = 0.01, and 5 × 103 test particles are used.
All the test particles start from a minimum of the titled
washboard potential at x(0) = (2π )−1 arcsin[F/(2πV0)], and
their velocities are sampled from the Gaussian distribution
with zero mean and width {v2(0)} = kBT /m.

In Fig. 1 we reveal both supercurrent and superdiffusion of
the particle for δ = 1.5. For a large titled force F = 2.0 but be-
ing less than the critical value Fc, during a long-time window,
superdiffusion appears; however, for a very small force F =
0.1, there exhibits normal diffusion. For a moderate force F =
0.7, after a short initial period processing normal diffusion,
both MD and CV increase with time faster than t1.5 as t δeff with
effective power indices δeff = 2.4 and δeff = 3.6, respectively.
Nevertheless, the hyperdiffusion of this kind [23,25,26] is
only a transient behavior. If the tilted force is very large, for
example, F = 2.0, the time regime of hyperdiffusion extends
approximately over one decade from t = 1 to t = 10 with
δeff > 1.5, but then turns into the superdiffusion of δeff = 1.5.

In Fig. 2 we plot time-dependent CV and VV of the particle.
It is seen that the diffusive process can be distinguished into
four time regimes: thermalization, hyperdiffusion, collapse,
and asymptotical restoration. Snapshots of the particle coor-
dinate and velocity distributions at t = 0.1,10,200,2000 are
presented for various regimes. In the thermalized regime, both
CV and VV have small changes related to their initial values,
and thus, the distributions of coordinate and velocity of the
particle are always Gaussian forms. Then diffusive process
evolves into the hyperdiffusive regime. The particle gains
enough energy to overcome dissipation loss and thus moves
along the direction of biased force. This results in a long tail
in front of the peak of coordinate distribution at time t = 10.

The above phenomena can be understood well in the
velocity space. Up inspection, we find a prominent result:
The VV of the particle becomes rapidly large, and the velocity
distribution exhibits a bimodal structure. Namely, with time
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FIG. 2. Time-dependent CV and VV of the particle. Four regimes are divided with dashed vertical lines: 〈�x2(t)〉 ∼ t δeff , the thermalized
regime δeff ∼ 0, the hyperdiffusive regime δeff > δ = 1.5, the collapsed regime δeff < δ, and the asymptotical regime δeff = δ. The parameters
used are F = 2.0, T = 0.5, and δ = 1.5.

increasing, the test particles give gradually rise from the initial
Gaussian velocity distribution, which is regarded as the locked
state. For the running state, consequently, the peak of the
coordinate distribution moves with a certain acceleration. With
test particles escaping continuously from the locked state into
the running state, the VV arrives gradually at its maximum
and then begins declining. The CV increases with time slower
than before but follows an effective diffusive index δeff , which
is still larger than 1.5. This implies that the hyperdiffusive
regime may last a long time for smaller biased forces until the
numerical simulation finishes.

The criterion for the end of the second regime is that all the
test particles escape from the initial locked state to the running
state. Next, the third regime, i.e., the collapsed one, rises to
appear. All the test particles move toward to the direction of
biased force, and none are trapped by the potential well again.
The test particles with lower velocities will get the energies
larger than that of the faster ones, so that the CV of the particle
collapses with an effective index δeff = 1.2 in comparison
with δ = 1.5. In the velocity space, the tail behind the peak
of velocity distribution shortens gradually with the increase
of time. Finally, the asymptotical regime comes in turn. The
velocity distribution of the particle returns to a Gaussian form,
which gives rise to the diffusion returning to the superdiffusive
state with δeff = 1.5.

III. TRANSITION OF VELOCITY FROM LOCKED
STATE TO RUNNING STATE

As demonstrated herein, due to double modes of the
velocity distribution, we observe the strong amplification of

diffusive behavior in the underdamped case [21,22,40]. We
also find from Fig. 2 that both the locked state and the running
state of the particle velocity exist and expect to interpret the
complicated phenomena of hyperdiffusion. It is worth noticing
that for the super-Ohmic damping particle, its average velocity
is about equal to zero in the locked state, and the running state
is “running” with a velocity increasing with time rather than a
constant value. We admit that the velocity of the particle in the
running state emerges as v(t) ≈ F sin(δπ/2)t δ−1/[mγδ	(δ)]
according to Eq. (2). Once test particles enter the running
state, the average kinetic energy of the particle gained from
the external driving is larger than the dissipated energy due to
the memory damping effect, so these test particles will never
return to the locked state. A burning question is how the particle
transforms from the locked state to the running state.

In Fig. 3 we count negative velocity of 5 × 103 test particles
and take twice the value as the number of test particles
remaining in the locked state for various values of T , F , and
δ. The exponential characteristic of proportion decay in the
locked state is very like the escape process from a metastable
potential, thus we put forward a concept of equivalent velocity
“trap”. The locked state is considered as the one where test
particles are confined in the velocity trap, and the running
state is recognized as the one where test particles are driven by
an effective force f (t) ≈ F sin(πα/2)tα−2/[mγα	(α)]. This
is similar to the heuristic treatment of Ref. [19]. In the
hyperdiffusive time regime, the escape of the particle from
a spatial well can represent the effect of multiple scattering on
the barriers of the periodic potential.

Up observing Fig. 3, we assume that the first exit time
te of the particle escaping from the locked state follows an
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FIG. 3. Log-linear plotting of number of test particles remaining
in the locked state for various values of external force, temperature,
and power index.

exponential distribution:

p(te) = 1

t0
exp

(
− te

t0

)
. (5)

The mean exit time t0 can be extracted from the numerical
results. It is seen from Fig. 3 that t0 = 16.3 under the following
parameters: F = 2.0,T = 0.5,δ = 1.5; t0 = 244.0 under F =
1.0,T = 0.5,δ = 1.5; t0 = 124.1 under F = 1.0,T = 0.5,δ =
1.5; and t0 = 19.4 under F = 1.0,T = 0.5,δ = 1.5. At time t ,
the distribution of running time tr of the particle after escaping
over the locked state is defined by pr (tr ) = t−1

0 exp[−(t −
tr )/t0] with te + tr = t .

The temporal distribution of the first exit time can be
transformed into a normalized velocity distribution via v =
F sin(δπ/2)t δ−1

r /[mγδ	(δ)]; we obtain

pr (v) = 1

δ − 1
v

− 1
δ−1

0 v
2−δ
δ−1

× exp[(v/v0)1/(δ−1) − (vt/v0)1/(δ−1)]

1 − exp[−(vt/v0)1/(δ−1)]
, (6)

where v0 = F sin(δπ/2)t δ−1
0 /[mγδ	(δ)] and vt = F sin

(δπ/2)t δ−1/[mγδ	(δ)]. In fact, there are two contributions to
the width of pr (v). One is the expositional distribution due to
dispersion of emergence time from the velocity trap, and the
other comes from the thermal fluctuation. Considering both of
them, the modified velocity distribution of the particle in the
running state is written as

pm
r (v) =

∫ vt

0

1√
2πσ

exp

[
− (v − v′)2

2σ 2

]
pr (v′) dv′, (7)

where σ 2 = kBT /m.
In the spirit of relation between the group diffusion

and the phase diffusion [41], the total probability den-
sity function (PDF) p(v) is composed of two sub-PDFs:
pl(v) (the locked state) and pr (v) (the running state).
We yield p(v) = a(t)pl(v) + [1 − a(t)]pr (v), where a(t) =
exp(−t/t0) is a proportion of test particles in the locked state.
Then the total MV and VV are given by 〈v〉 = a(t)〈v〉l +
[1 − a(t)]〈v〉r and 〈�v2〉 = a(t)〈�v2〉l + [1 − a(t)]〈�v2〉r +
a(t)[1 − a(t)][〈v〉r − 〈v〉l]2. Here �v = v − 〈v〉, 〈· · · 〉l and

FIG. 4. The VV of 5 × 103 test particles simulated (solid line) and
theoretical (dashed line) results for comparison. Theoretical mean exit
time t0 is taken from Fig. 3, and the parameters used are the same as
Fig. 3.

〈· · · 〉r denote statistical averages of test particles in the
locked and running states, respectively. The particle velocity
distribution in the locked state is a Gaussian function, and
its stationary form reads pl(v) = exp[−v2/(2σ 2

l )]/(
√

2πσl).
It has zero mean and variance 〈�v2〉l = σ 2

l ≈ kBT /m. In the
running state, the particle velocity distribution pr (v) has been
determined by Eq. (6) for simplicity, where the MV is given by

〈v〉r =
∫ vt

0
vp(v) dv = v0 exp(−iπδ)γ [δ,−(vt/v0)1/(δ−1)]

× exp[−(vt/v0)1/(δ−1)]

1 − exp[−(vt/v0)1/(δ−1)]
, (8)

and the mean square velocity emerges as

〈v2〉r =
∫ vt

0
vpr (v) dv

= −v2
0 exp(−2iπδ)γ [2δ − 1,−(vt/v0)1/(δ−1)]

× exp[−(vt/v0)1/(δ−1)]

1 − exp[−(vt/v0)1/(δ−1)]
, (9)

where γ [·,·] is the incomplete gamma function. Notice that
〈�v2〉r = kBT /m + 〈v2〉r − 〈v〉2

r , which comes simply from
the sum of thermal fluctuation and dispersion effect. In this
way, we obtain the total VV, reading

〈�v2(t)〉 = kBT

m
− F 2t2δ−2

0 sin πδ
2

m2γ 2
δ 	2(δ)

e−2iπδ

× [γ 2(δ,−t/t0)e− 2t
t0 + γ (2δ − 1, − t/t0)e− t

t0 ],

(10)

which will be used to analyze the hyperdiffusion.
In Fig. 4 we depict the theoretical VV for various parameters

and compare with numerical results. It is seen that our
analytical results are in good agreement with the simulations.
At the beginning, the total VV approaches σ 2

l . When the
test particles enter the hyperdiffusive regime, Eq. (10) can be
locally expanded as 〈�v2(t)〉 ∝ tλ. This result shows evidence
that the CV of the particle emerges as 〈�x2(t)〉 ∝ t2+λ, and
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the hyperdiffusion appears. At enough long times, all test
particles enter into the running state, and the particle velocity
distribution due to dispersion will gradually collapse to a
δ-peaked distribution. Finally, the VV returns to the thermal
equilibrium value limt→∞〈�v2(t)〉 ≈ kBT /m. Based on the
above facts, we conclude that although superdiffusion has
a complicated intermediate transient process, the effect of
dispersion by the periodic potential vanishes at long times.

IV. REFORMATION OF BALLISTIC DIFFUSIVE SYSTEM

The ballistic diffusion of a force-free particle is indeed the
limitation of thermal diffusion described by GLE. Differing
from superdiffusion in terms of the non-Ohmic damping
model with 1 < δ < 2, the memory to the initial velocity
preparation does not vanish, and consequently the velocity
variable is a nonergodic one because of vanishing Markovian
low-frequency friction [23], which is regarded as a marginal
case of our model. A simple but physically reasonable
model for the memory damping function is chosen to be
γ (t) = γ [2δ(t) − νe−νt ] [26,42], which corresponds to the
spectral density of the heat bath given by J (ω) is cubic when
ω � ν. The non-Markovian GLE of this kind can allow for a
three-dimensional Markovian LE embedding [26,42]:

ẋ(t) = v(t),

mv̇(t) = −V ′(x) − u(t) − mγv(t) +
√

2mkBT γ ζ (t), (11)

u̇(t) = −mνγ v(t) − νu(t) + ν
√

2mkBT γ ζ (t),

where ζ (t) is a zero-mean Gaussian white noise and
〈ζ (t)ζ (t ′)〉 = δ(t − t ′). The initial value of the auxiliary
variable u(0) obeys the Gaussian distribution with zero mean
and variance 〈u2(0)〉 = mkBT νγ .

Similar to analysis in the above section, we yield all
the test particles with the velocity v ≈ Fνt/[m(γ + ν)] at
long times after they escape from the initial velocity trap.
The distribution of the first exit time from the well is
still p(te) = t−1

0 exp(−te/t0), and it can be transformed into
the normalized velocity distribution: pr (v) = v−1

0 exp[(v −
vt )/v0]/[1 − exp(−vt/v0)] (0 � v � vt ) for the test particles
in the running state. The particle velocity distribution in the
locked state still remains a Gaussian form, and we get the total
VV given by

〈�v2(t)〉 = kBT

m
+ F 2ν2t2

0

m2(γ + ν)2

×
[

1 − exp

(
− t

t0

)
− 2 exp

(
− t

t0

)
t

t0

]
. (12)

In Fig. 5(a) we compare the simulation result with the
theoretical one with the parameters used in Ref. [26], i.e.,
γ = 1.0, ν = 0.25, V0 = 1.0, and �t = 10−4. Likewise, the
mean exit time t0 is also extracted by numerical statistics.
The results are t0 = 615.13 (F = 0.75,T = 0.5), t0 = 33.48
(F = 1.5,T = 0.5), and t0 = 348.64 (F = 1.5,T = 0.25).
The mean square velocity rises gradually to the stationary
value, and no collapsed process exists in comparison with the
superdiffusion for 1 < δ < 2.

The “kinetic temperature” notion Tkin was used to char-
acterize the width of a nonequilibrium velocity distribution

FIG. 5. The VV of 104 test particles simulated (solid line) [26]
and theoretical Eq. (12) (dashed line) for different values of F and T .

[26]. Here the average kinetic energy of the particle can
be decomposed as K = Km + KT , where Km represents the
kinetic energy of the particle under a constant force and KT

characterizes multiple scattering on the barriers of periodic
potential. Our theoretical result is associated with the effective
kinetic temperature by Km = kBT /2 and KT = kBTkin/2 =
F 2ν2t2

0 [1 − exp(−t/t0) − 2t exp(−t/t0)/t0]/[2m(γ + ν)2]. If
all the particles escape from the initial velocity trap, they arrive
at the maximal kinetic temperature Tmax. In our analyses, the
mean exit time t0 of the particle from the velocity trap deter-
mines the crossover time from the locked state to the running
state, and the VV depends primarily on it. It is an important
parameter and depends more strongly than exponential form
on both the temperature and the biased force, similar to the
kinetic temperature. The long-time limitation of Eq. (12) yields
limt→∞〈�v2(t)〉 ≈ kBT /m + F 2ν2t2

0 /[m(γ + ν)]2. This re-
sult is composed of thermal fluctuation and multiple scattering
on the barriers of periodic potential, and it differs markedly
with that of the usual superdiffusion because the latter contains
only the thermal fluctuation. This implies that the dispersion
effect will not collapse for a ballistic diffusion system, so there
is no collapsed regime. Therefore, the CV of the particle will
turn to that of the ballistic diffusion from the hyperdiffusion
situation.

V. SUMMARY

We have researched within the GLE formalism diffusive
dynamics of a non-Ohmic damping particle in a titled
periodic potential. The emerging nonequilibrium features are
manifested by the model parameters and process-dependent
diffusive scaling law. It has found that the diffusion of
the super-Ohmic damping particle might undergo four time
regimes: thermalization, hyperdiffusion, collapse, and asymp-
totical restoration. In order to understand rich properties of
hyperdiffusion, we propose a velocity trap where the motion is
composed of two parts: (1) the locked state, where the particle
in captured in a potential well, and (2) the running state, where
the particle gains enough energy to escape the potential well.
In particular, the latter seems as if the particle is driven by a
time-dependent force. We have demonstrated that the escaping
time of the particle from the locked state follows an exponential
distribution law. This leads to the dispersion behavior and
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induces the hyperdiffusion. Moreover, the ballistic diffusion
found in previous works is also considered a marginal case of
our model, where the velocity variance of the particle contains
only the thermal fluctuation and no dispersion. It has shown
that the dispersion effect will not collapse, so there is no the
collapsed regime.

The present study may be related to self-propelled motion
or active Brownian motion. This is one of the key features
of life appearing on levels ranging from flocks of animals to
single-cell motility and intracellular transport by molecular

motors [43–46]. We are also confident that our results for
the biased periodic potential induced hyperdiffusion will
serviceably impact other properties of the washboard-potential
device and quantum diffusion. Thus this field is open for future
research that in turn may reveal surprising findings.
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