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Effects of spatial and temporal noise on a cubic-autocatalytic reaction-diffusion model
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We characterize the influence that external noise, with both spatial and temporal correlations, has on the scale
dependence of the reaction parameters of a cubic autocatalytic reaction diffusion (CARD) system. Interpreting the
CARD model as a primitive reaction scheme for a living system, the results indicate that power-law correlations in
environmental fluctuations can either decrease or increase the rates of nutrient decay and the rate of autocatalysis
(replication) on small spatial and temporal scales.
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I. INTRODUCTION

Any realistic chemical or biological system is in contact and
interacts with an environment that can affect its evolution in
important ways. The environment can be either deterministic
(e.g., periodic forcing) or stochastic (e.g., fluctuations in
temperature or concentration). In this general context, two
types of questions are worth contemplating. First, is it possible
to compute or measure the effect of the environment on the
behavior and evolution of a chemical or biological system?
Studying that question might have applications in various
domains, such as noisy gene expression in cells (see, for
example, Ref. [1]) and origins of life research [2,3]. Second,
is it possible to probe or control a chemical or biological
system by manipulating its environment? Possible applications
of research along those lines include probing underlying
mechanisms in chemical reactions using various perturbations
(deterministic environment) [4], noise-controlled transitions in
chemical systems [5–8], and control of artificial self-organized
systems in bioengineering [9].

Reaction-diffusion equations can be used to model vari-
ous phenomena ranging from (biological) pattern formation
[10–13], ecological invasions [14], tumor growth [15], and
oscillating chemical reactions [12,16]. Of particular interest
is the cubic autocatalytic reaction-diffusion (CARD) model
[7,17], based on a two-species autocatalytic chemical reaction
[18–23]. Numerical simulations of the deterministic [17] and
stochastic [7] CARD model show the appearance of self-
replicating domains that are analogous to simple cells. This
makes the CARD model a very interesting nontrivial simplified
model for carrying out both analytic and numerical studies of
primitive analogs of living organisms. In the following, we
focus on studying the effects of a stochastic environment on
the behavior of the CARD model. This type of environment
can be modeled by adding a noise term to the CARD evolution
equations.

In order to get a quantitative handle on these phenomena,
application of the renormalization group is ideally suited. One
then obtains flow equations which indicate how certain model
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parameters can change with the scale of the observation (or the
scale of the probe employed to such end) due to fluctuations.
Our aim is to get a better understanding of how correlations
in external noise modify the parameters appearing in simple
chemical reaction models. This way it is possible to either
study the effect of the environment on analog living systems
or get clues about underlying chemical mechanisms using
external noise.

In previous works [24,25], we investigated the small-scale
properties of the stochastic CARD model due to the pres-
ence of environmental fluctuations using field-theoretical and
renormalization techniques. Some technical aspects, having
to do with regularization procedures, made this analysis more
intricate than would have been naively expected, so we focused
our investigation on noise with only power-law correlations in
space. In this paper, we extend our analysis to noise with both
spatial and temporal power-law correlations.

The remainder of this paper is organized as follows. In
Sec. II we briefly present the CARD model and some of
its properties. We then discuss one-loop corrections to the
parameters of the model and the corresponding β function
in Sec. III. We consider the effect of fluctuations on the
parameters in Sec. IV. We finally conclude in Sec. V. Feynman
rules and technical details related to the computation of
one-loop corrections are relegated to the Appendices.

II. THE STOCHASTIC CARD MODEL

The CARD model [7,17] is based on the following chemical
reactions [18–23]:

U + 2V
λ→ 3V,

V
rv→ P,

U
ru→ Q,

f→ U. (1)

A substrate U (viewed as the “food” in the living system
interpretation of the CARD model) is fed into the system
at a constant rate f . The species V (viewed as the “organ-
ism”) consumes the substrate U and turns it into V via an
autocatalytic reaction with rate constant λ. This autocatalytic
reaction embodies a crude form of metabolism. In numerical
simulations, the species V forms cell-like domains over the
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substrate U in a certain parameter range. Both species V
and U decay into inert products P and Q with decay rates rv

and ru.
The space-time evolution of the chemical concentrations

U (x,t) and V (x,t) in the general case where diffusion and
noise are present is governed by the following equations:

∂V

∂t
= Dv∇2V − rvV + λUV 2 + ηv(x), (2)

∂U

∂t
= Du∇2U − ruU − λUV 2 + ηu(x) + f, (3)

where we use the shortcut notation x = (x,t), U = U (x,t),
V = V (x,t), and Du and Dv are the diffusion constants of
the chemical species U and V, respectively. The terms ηu(x)
and ηv(x) are additive space-time-dependent noises discussed
in more detail below. Note that the use of concentrations is
a reasonable approach when the number of molecules per
unit volume varies smoothly (differentiably) from one spatial
point to another and from one time to another. Concentrations
result from averaging the number of molecules over spatial and
temporal domains. We implicitly assume we are in chemical
or physical situations where this averaging procedure can be
applied meaningfully (i.e., we do not consider either extremely
dilute systems nor systems having very small numbers of
molecules). We come back to this point in Sec. IV.

For simplicity, we work in an approximation where U �
2f/ru. In such a case, the feeding term f in Eq. (3) can be
neglected [24]. This approximation is generally valid when the
initial amount of food in the system U0 is large compared to
the equilibrium value Ueq = f/ru, in which case the effects of
feeding are negligible. This can be seen as follows. The amount
of substrate U present in the system decreases via decay into
inert products or via conversion into V. When U0 � Ueq, there
is a sufficient quantity of substrate U in the reaction domain
that the system evolves without need for external feeding (f ).
Since interactions are generally small, the main source of loss
of U is via exponential decay. When the initial amount of U at
time t is comparable to the equilibrium value, U0e

−rut ≈ Ueq,
then this approximation breaks down. This happens on a time
scale t > r−1

u ln(U0/Ueq). Up to this time scale, the system
can be regarded as being out of equilibrium, and so the living
system interpretation of the CARD model should still be valid.
In practice, neglecting f amounts to neglecting one tadpole
diagram at one-loop.

The effect of the environment on the CARD dynamics
is modeled by adding space-time-dependent noise terms as
indicated in Eqs. (2) and (3). In general, noise terms can be
either additive or multiplicative, depending on which external
parameter is fluctuating. For example, if the autocatalytic
reaction in the CARD model is light sensitive and the system
driven by a fluctuating light source, then λUV 2 → λ[η]UV 2

and the noise is multiplicative. On the other hand, if the
amount of food present in the environment fluctuates, then
f → f + η and the noise enters additively into the U equation.
We are aware that if the CARD model is viewed as a very
primitive analog of a living system, then from a “biological”
point of view it is harder to justify additive noise for the V

equation. But although we use the CARD model because of
its rich phenomenology and its potential use as a living system

analog, this is only one class of applications of the methods
presented in this paper. As explained in the Introduction, in
applications where the environment is used to probe or control
a chemical system, the choice of noise to be included depends
on experimental constraints and on how the experiment is
designed. In such applications, it is easier to justify additive
noise.

Noise correlations in the environment may have various
effects on chemical and biological systems. It thus makes sense
to pick a form for the noise that is chemically or biologically
relevant (although experiments designed to probe or control
a specific chemical or biological system are free to choose
any type of noise). Completely uncorrelated (i.e., Gaussian
white) noise is often used in applications for its mathematical
simplicity, although there exist examples of correlated noise
in chemistry and biology. For instance, anomalous diffusion
of macroscopic molecules in some living systems [26,27] may
imply that the “chemical food” available to a cell fluctuates in
a power-law fashion. Similarly, the authors of Ref. [28] review
the evidence that active transport through cell membranes is
noisy with power-law correlations in space and time, which
again may imply that the inflow of chemicals inside the cell
fluctuates. Power-law noise (which includes white noise as
a special case) thus seems a biologically relevant stochastic
environment. From a practical point of view, power laws can
also be used as a basis for Taylor expanding more complex
noise functions.

In the following, we use a three-parameter (an amplitude
plus two power-law exponents) Gaussian noise with both
spatial and temporal power-law correlations [29] to describe
the stochastic component in Eqs. (2) and (3). Its statistical
properties are given by:

〈ηv(k)〉 = 〈ηu(k)〉 = 0, (4)

〈ηv(k)ηv(p)〉 = 2Av|k|−yvω−2θv (2π )ds+1δ(ds+1)(k + p), (5)

〈ηu(k)ηu(p)〉 = 2Au|k|−yuω−2θu (2π )ds+1δ(ds+1)(k + p), (6)

〈ηv(k)ηu(p)〉 = 〈ηu(k)ηv(p)〉 = 0, (7)

where we use the shortcut notation k = (k,ω) and we have ex-
pressed the correlations in Fourier space for later convenience.
All higher-order moments are zero (Gaussian noise) and ds is
the dimension of space. The noise amplitudes Au,Av > 0 are
free parameters of the model and give the overall strength of the
fluctuations. The spatial noise exponents yu,yv and temporal
noise exponents θu,θv are also free parameters of the model that
give the strength of correlations as a function of wave number
and frequency. The case of pure spatial correlations (θu = 0,
θv = 0) is treated in Ref. [24]. In this paper, we study the more
general case where both spatial and temporal correlations can
be present and acting together.

Note that the additive noise terms in Eqs. (2) and (3) are
examples of extrinsic noise, i.e., noise caused by the applica-
tion of a random force external to the system [30]. Intrinsic
noise is another generic type of noise that is present even for
systems in complete isolation. It is generally attributed to the
fact that chemical systems are made of discrete particles and
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FIG. 1. One-loop diagrams contributing to ru (top) and λ (bot-
tom), in the approximation U � 2f/ru.

quantum mechanical randomness [30]. On physical grounds,
we expect intrinsic noise to be negligible in macroscopic
systems at relevant experimental temperatures, in the same way
that quantum fluctuations are negligible compared to thermal
fluctuations in high-temperature condensed matter systems. In
situations where discretization effects are not negligible, both
types of noise must be taken into account. This can be done
using a master equation approach (e.g., Refs. [30–32]), which
lies beyond the scope of this paper.

III. UV RENORMALIZATION OF THE STOCHASTIC
CARD MODEL

We are interested in the effects of spatially and temporally
correlated noise on the small-scale properties of the CARD
model’s dynamics. To do that, we use the renormalization
group and run it from large to small scales, or from the infrared
(IR) to the ultraviolet (UV). The change in model parameters
induced by fluctuations is encoded in β functions, thus our goal
is to compute those β functions at one-loop in perturbation
theory. Since this type of computation has been carried out in
detail for spatially correlated noise in Ref. [24], we focus here
on the modifications and differences when including explicit
temporal correlations.

A. One-loop corrections to the parameters

β Functions are computed from the UV divergence structure
of Feynman diagrams. The Feynman rules corresponding to
the CARD equations (2) and (3) are discussed in Refs. [24,29]
and summarized in Appendix A. At one-loop order, the only
nontrivial corrections to the model parameters are shown in
Fig. 1 [24].

To illustrate the differences between the cases with and
without temporally correlated noise, consider the one-loop
correction to the decay rate ru. In ds spatial dimensions, the

correction is given by:


ru
(0) = −2λAv

∫
dds p

(2π )ds

∫
dω

(2π )
ω−2θv |p|−yv

×
(

1

Dv|p|2 − iω + rv

)(
1

Dv|p|2 + iω + rv

)
,

= −2λAv

∫
dds p

(2π )ds

∫
dω

(2π )
ω−2θv |p|−yv

×
[

1

ω2 + (Dv|p|2 + rv)2

]
, (8)

where we have taken all external momenta and frequencies
to be zero (this is sufficient for β-function computations).
Contrary to quantum field theory, there is no Lorentz invariance
in the CARD model, and thus the integrals over the frequency
and wave number in Eq. (8) must be carried out separately.
Depending on the dimension of space ds and on the parameters
of the model yv and θv , the momentum, the frequency, or even
both integrals may diverge. We use dimensional continuation
as our regulator (see Ref. [24] for a discussion on the use
of dimensional regularization in the presence of power-law
noise). Analytically continuing the space dimension to d and
the time dimension to z, we obtain:


ru
(0) = −2λ(d)A(d,z)

v

∫
ddp

(2π )d

∫
dzω

(2π )z
|ω|−2θv |p|−yv

×
[

1

|ω|2 + (Dv|p|2 + rv)2

]
, (9)

where λ(d) and A(d,z)
v are the rate constant and noise amplitude

in d spatial and z time dimensions, respectively. Simple power
counting shows that the one-loop correction behaves as:


ru
∼ �d−yv+2z−4θv−4, (10)

where � is a large momentum scale cutoff. For convenience,
we define the following parametrization:

d

2
− yv

2
= m − ε

2
m = 1,2,3, . . . (11)

z

2
− θv = (n + 1)

2
− δ

2
n = 0,1,2,3, . . . (12)

with 0 < ε < 2 and 0 < δ < 1, giving:


ru
∼ �2m+2n−2−(ε+2δ). (13)

The integers m and n define the order of the divergence
(logarithmic, quadratic) and ε and δ the (fractional) distance
from some critical dimension [33]. Note that we are interested
in the small-scale properties of the CARD model and thus
in UV divergences, hence the restrictions on m and n (non-
negative values) in Eqs. (11) and (12). Note also that the
divergence structure of 
ru

depends on m and n, implying
that it can be controlled externally via the noise exponents yv

and θv .
The correction 
ru

is logarithmically divergent for (m =
1,n = 0). This case corresponds to purely spatial power-law
noise and is treated in Ref. [24]. Note that it is not possible
to get a logarithmically divergent correction to ru from purely
temporal power-law noise (i.e., m = 0, n = 1), since m = 0
corresponds to IR divergences [24] that are not the focus of
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the present study. There are two ways to obtain a quadratically
divergent correction to ru. The first way is by setting (m = 2,
n = 0), corresponding to purely spatial power-law noise and
treated in Ref. [24]. The second way is by setting (m = 1, n =
1), and is the first nontrivial case involving a mixture of spatial
and temporal power-law noise. Higher-order divergences are
obtained when m + n > 2; however, their treatment is more
subtle and requires the introduction of higher-order terms
in Eqs. (2) and (3), as discussed in Refs. [24,25]. In the
following, we focus on the (m = 1, n = 1) case and leave the
consideration of higher-order divergences for a future work.

Integrating Eq. (9) over frequency using the method of
dimensional regularization in the presence of noise [24], we
obtain:


ru
(0) = −λ(d)A(d,z)

v Kz 


(
− z

2
+ θv + 1

)



(
z

2
− θv

)

×
∫

ddp

(2π )d
|p|−yv

1

(Dv|p|2 + rv)−z+2θv+2
, (14)

where Kz ≡ 2/[(4π )
z
2 
( z

2 )]. We see from Eq. (14) that the
frequency and momentum integrals mix in a nontrivial way
due to the presence of θv in the exponent of (Dv|p|2 + rv). The
momentum integral is performed in a similar fashion, giving:


ru
(0) = − λ(d)A(d,z)

v

2D
−z+2θv+2
v

KdKz 


(
− z

2
+ θv + 1

)



(
z

2
− θv

)

× 

(− d

2 + yv

2 − z + 2θv + 2
)


(

d
2 − yv

2

)

(−z + 2θv + 2)

×
(

rv

Dv

) d
2 − yv

2 +z−2θv−2

. (15)

We have explicitly checked the commutativity of the two
integrals in Eq. (9). Substituting the definitions (11) and (12)
(with m = 1 and n = 1) into Eq. (15) and expanding around
the critical dimension dλ

c = yv + 2 we obtain:


ru
(0) = 2λ(dλ

c )A
(dλ

c ,1)
v rv

Dv

Kdλ
c
K1

(
1

ε + 2δ

)
. (16)

We of course set z = 1, corresponding to one temporal dimen-
sion. The unusual 1/(ε + 2δ) pole in Eq. (16) is a direct result
of the mixing between the frequency and momentum integrals,
a feature that does not appear in the purely spatial power-law
noise case. It implies that the independent parameters ε and δ

do not have to be both zero to produce a divergence, only
the specific combination ε + 2δ must vanish. This differs
considerably from the purely spatial power-law noise case.
A similar one-loop correction can be obtained for the rate
constant λ (see the bottom diagram in Fig. 1):


λ(0) = −8λ2
(dλ

c )A
(dλ

c ,1)
v

Du

D2
v − D2

u

ln

(
Dv

Du

)
Kdλ

c
K1

(
1

ε

)
.

(17)

Details of the computation are presented in Appendix B.
Note that the interplay between 
 functions in Eq. (15) may
produce unexpected cancellations of poles in the final result.
For instance, it is possible to show that 
ru

(0) has no pole and is
thus finite for even n and arbitrary m. This unexpected behavior

is absent from the purely spatially correlated power-law noise
case.

B. β-function computations

In the (m = 1, n = 1) case, the one-loop correction to the
decay rate 
ru

is divergent when ds � yv and the correction
to the rate constant 
λ is divergent for ds � yv + 2 (when
ε = δ = 0). For β-function computation purposes, there are
thus three different regimes to distinguish.

1. Regime 1

For ds < yv , both ru and λ are finite and do not require
renormalization. The β functions are trivial in this regime.

2. Regime 2

For yv � ds < yv + 2, ru is logarithmically divergent and
λ is finite. Thus only ru requires renormalization and has a
nontrivial β function. To study such a regime, we expand
around the critical dimension dλ

c such that d = dλ
c − (ε + 2δ)

(with ε + 2δ > 0). Following standard procedures, we write
down the Z factor for ru:

Zru
= 1 + 
ru

(0)

ru

, (18)

= 1 + 2g(dλ
c ,1)KdK1

(
1

ε + 2δ

)
, (19)

where the effective coupling g(d,z) is defined as:

g(d,z) = λ(d)A(d,z)
v rv

Dvru

. (20)

Note that g(d,z) is dimensionless when d → dλ
c and z → 1, as

it should be. The β function for g(dλ
c ,1) can be obtained from

Eq. (20):

βg ≡ T
dg

dT
= 1

2
|ε + 2δ|g + g2KdK1, (21)

where T is an arbitrary sliding scale and we dropped the
(dλ

c ,1) superscript to avoid cluttering of indices. To interpret
physically, we revert back to the original parameters with a
change of variable in Eq. (21), giving:

βru
= −

(
1

2
|ε + 2δ|ru + λAvrv

Dv

KdK1

)
. (22)

Note that perturbation theory limits the validity of the above
result to the region where g = λAvrv/Dvru < 1. Indeed, the
β function (22) is obtained by perturbing around the free
response functions (A1) and (A2) (corresponding to diffusive
solutions). Corrections to the free response functions are due
to nonlinearities in the CARD equations and are represented
by loop diagrams. For our perturbative solution to be valid,
the expansion parameter g must satisfy g < 1. In the case
where g > 1, corrections are larger than the free solutions
because nonlinearities are too strong [the same discussion
applies to the expansion parameter h, see Eq. (25)]. The CARD
model displays a rich phenomenology (stripes, self-replicating
domains, etc.), and each type of pattern appears within a
certain parameter range. Some types of patterns result from
strong nonlinearities, meaning that there is a good chance
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that g > 1, h > 1, and thus perturbation theory is not valid
when those patterns are present. The perturbative tools and
renormalization techniques used in the present paper are thus
limited to a certain parameter range dictated by the criteria
g < 1 and h < 1. Blue regions in Figs. 2–4 are regions in
parameter space where perturbation theory is not valid.

3. Regime 3

For ds � yv + 2, both ru and λ and require renormalization.
Both have a nontrivial β function. To study this regime we
expand around dλ

c such that d = dλ
c − (ε + 2δ) (with ε + 2δ <

0). Since both ru and λ run simultaneously, there is an extra Z

factor in addition to Eq. (18):

Zλ = 1 + 
λ(0)

λ
, (23)

= 1 − 8h(dλ
c ,1) ln

(
Dv

Du

)
Kdλ

c
K1

(
1

ε

)
, (24)

where the effective coupling h(d,z) is defined as:

h(d,z) = λ(d)A(d,z)
v Du(

D2
v − D2

u

) . (25)

Using Eqs. (20) and (25), the β functions for the effective
couplings g(dλ

c ,1) and h(dλ
c ,1) can be obtained:

βg ≡ T
dg

dT
=

(ε

2
+ δ

)
g + g2KdK1

+ 8gh ln

(
Dv

Du

)
KdK1

(
1

2
+ δ

ε

)
, (26)

βh ≡ T
dh

dT
=

(ε

2
+ δ

)
h

+ 8h2 ln

(
Dv

Du

)
KdK1

(
1

2
+ δ

ε

)
. (27)

Changing variables, we finally get the β functions for the
decay rate and rate constant in regime 3 in terms of the original
parameters:

βru
= −λAvrv

Dv

KdK1, (28)

βλ =
(ε

2
+ δ

)
λ + 8λ2 AvDu(

D2
v − D2

u

)
× ln

(
Dv

Du

)
KdK1

(
1

2
+ δ

ε

)
, (29)

with ε + 2δ < 0. Perturbation theory limits the validity of
the above results to the region where g = λAvrv/Dvru < 1
and h = λAvDu/(D2

v − D2
u) < 1. Note that there seems to be

a potential divergence in βλ when δ 
= 0 and ε → 0. This
is problematic and might signal a missing contribution in
the perturbative expansion. Fortunately, this divergence is
only apparent and can be understood in the following way.
The corrections (16) and (17) diverge when ε + 2δ → 0 and
ε → 0, respectively. Both corrections diverge in regime 3,
implying that ε and δ must tend to zero simultaneously in this
regime. Consequently, the situation δ 
= 0 and ε → 0 does not
correspond to regime 3 and thus cannot be included in the
analysis of Eq. (29).

IV. RESULTS AND DISCUSSION

In this section we integrate the β functions obtained in
Sec. III in order to study the behavior of parameters at
smaller scales. We also compare the running solutions to the
purely spatial power-law noise case and point out qualitative
differences in behavior. The β functions in regime 1 are trivial,
and thus we only consider regimes 2 and 3 in the following.

A. Running of parameters in regime 2

The running of the decay rate in regime 2 is obtained by
integrating the β function (22). The result is as follows:

ru(T ) =
(

ru(T ∗) + 2λAvrv

|ε + 2δ|Dv

KdK1

)(
T

T ∗

)− |ε+2δ|
2

− 2λAvrv

|ε + 2δ|Dv

KdK1, (30)

where T ∗ is some time scale at which ru(T ∗) is known and can
be measured. The result (30) can be compared to the purely
spatial power-law noise case found in Ref. [24] (denoted by a
GHP superscript in what follows, which stands for the initials
of the authors of Ref. [24]):

r (GHP)
u (T ) =

[
ru(T ∗) + λA(GHP)

v rvKd

|ε|D2
v

](
T

T ∗

)−|ε|/2

− λA(GHP)
v rvKd

|ε|D2
v

. (31)

We note that Eqs. (30) and (31) are very similar but differ in
some aspects. First, there are extra numerical factors appearing
in Eq. (30) due to the nontrivial integral over frequency. There
is also a factor of Dv absent from Eq. (30) due to the fact
that the engineering dimensions of the noise amplitudes Av

and A(GHP)
v differ in both cases. Those changes are quantitative

FIG. 2. Running of ru for regime 2 for different values of δ

after effecting the rescaling in Eq. (32). The red line corresponds
to the purely spatial correlation case [cf. Eq. (31)]. We used ε = 0.2,
Dv = 0.3, rv = 0.4, A(GHP)

v = 0.1, λ = 0.05, Kd = 0.05, ru(T ∗) =
0.2 for the plotting. The shaded region indicates the breakdown of
perturbation theory.
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in nature and do not produce any qualitative changes in the
running of the decay rate. They can be eliminated by a simple
rescaling of the noise amplitude in the temporally correlated
case. Substituting the noise amplitude Av in Eq. (30) with

Av → A(GHP)
v

2K1Dv

, (32)

where A(GHP)
v is the noise amplitude in the purely spatial power-

law noise case, we obtain:

ru(T ) =
[
ru(T ∗) + λA(GHP)

v rv

|ε + 2δ|D2
v

Kd

](
T

T ∗

)− |ε+δ|
2

− λA(GHP)
v rv

|ε + 2δ|D2
v

Kd. (33)

At the pole (i.e., when δ = 0), there is an exact mapping
between the purely spatial case (31) and the one with a mixture
of spatial and temporal noise correlations (33). Away from the
pole (i.e., when δ 
= 0), the behaviors differ, as shown in Fig. 2.

In the living system interpretation of the CARD model, a
change in decay rate ru due to fluctuations implies a change at
which nutrient U is removed from the system. Since the growth

of an organism (i.e., ∂V/∂t) is proportional to the amount of
food present (i.e., λUV 2), a larger decay rate implies smaller
growth of structures (and vice versa). From Fig. 2, the value
of the decay rate is greater or smaller (with respect to the
purely spatial case) at shorter scales, depending on the value
of δ. This means that temporal correlations can either increase
or decrease the running of ru and thus enhance or suppress
the growth of structures at small temporal scales. Note that
the running toward small temporal T (or spatial L) scales is
in principle limited. At very small scales, the number of U
and V molecules in the observed sample is small and does
not vary smoothly, implying a breakdown of the description
via reaction-diffusion equations. For a mole of molecules, this
happens around T/T ∗ ∼ (L/L∗)2 ∼ 10−16.

B. Running of parameters in regime 3

The running solutions for the decay rate and rate constant
in regime 3 are obtained by integrating the β functions (28)
and (29), giving:

ru(T ) = ru(T ∗) − ε

|ε + 2δ|
rv

(
D2

v − D2
u

)
4DvDu ln

(
Dv

Du

) ln

{
1 −

8AvDu ln
(

Dv

Du

)
KdK1λ(T ∗)

ε
(
D2

v − D2
u

)
[(

T

T ∗

)− |ε+2δ|
2

− 1

]}
, (34)

λ(T ) = − ε
(
D2

v − D2
u

)
8AvDu ln

(
Dv

Du

)
KdK1

⎡
⎢⎢⎣ 1

1 −
[

1 + ε(D2
v−D2

u)

8AvDu ln
(

Dv
Du

)
KdK1λ(T ∗)

](
T
T ∗

) |ε+2δ|
2

⎤
⎥⎥⎦, (35)

with the condition ε + 2δ < 0. Here again T ∗ is some time scale at which ru(T ∗) and λ(T ∗) are known. The above running
solutions (34) and (35) can be compared to the purely spatial power-law noise results of Ref. [24]:

r (GHP)
u (T ) = ru(T ∗) + rv(Du + Dv)

4Dv

ln

{
1 + 4A(GHP)

v Kdλ(T ∗)

|ε|Dv(Du + Dv)

[(
T

T ∗

)− |ε|
2

− 1

]}
, (36)

λ(GHP)(T ) = |ε|Dv(Du + Dv)

4A
(GHP)
v Kd

⎧⎪⎨
⎪⎩

1

1 −
[
1 − |ε|Dv(Du+Dv )

4A
(GHP)
v Kdλ(T ∗)

](
T
T ∗

) |ε|
2

⎫⎪⎬
⎪⎭. (37)

Just as for regime 2, the two sets of running solutions are very similar but differ in some crucial places. Many of those numerical
and dimensional factor differences can be eliminated using the following rescaling of the noise amplitude in Eqs. (34) and (35):

Av → A(GHP)
v (Dv − Du)

2K1DvDu ln
(

Dv

Du

) . (38)

Doing the above substitution, we get:

ru(T ) = ru(T ∗) − ε

|ε + 2δ|
rv(Dv + Du)

4Dv

[
(Dv − Du)

Du ln
(

Dv

Du

)
]

ln

{
1 − 4A(GHP)

v Kdλ(T ∗)

εDv(Dv + Du)

[(
T

T ∗

)− |ε+2δ|
2

− 1

]}
, (39)

λ(T ) = −εDv(Dv + Du)

4A
(GHP)
v Kd

⎧⎪⎨
⎪⎩

1

1 −
[
1 + εDv(Dv+Du)

4A
(GHP)
v Kdλ(T ∗)

](
T
T ∗

) |ε+2δ|
2

⎫⎪⎬
⎪⎭. (40)

When δ = 0 (and taking into account the condition ε + 2δ <

0), we see that Eq. (37) is identical to Eq. (40), showing an
exact mapping between the purely spatial and spatial+temporal
mixture cases for the rate constant. No such mapping exists
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FIG. 3. Top: Running of ru for regime 3 for different values of
δ after doing the rescaling in Eq. (38). The red line corresponds to
the purely spatial correlation case [cf. Eq. (36)]. We used ε = −0.2,
Dv = 0.3, Du = 0.2, rv = 0.4, A(GHP)

v = 0.1, Kd = 0.05, ru(T ∗) =
0.2, λ(T ∗) = 0.1 for the plotting. The shaded region indicates the
breakdown of perturbation theory. Bottom: Zoom of the top figure.

for the decay rate because of the presence of extra diffusion
constant factors that cannot be rescaled away [compare
Eqs. (36) and (39)].

Effects of a nonzero δ on the running of the decay rate
are small, since the power-law term (T/T ∗)−

|ε+2δ|
2 is inside a

logarithm. This can be seen in Fig. 3. The region where
deviations are the largest are in the shaded area where
perturbation theory cannot be trusted. Thus we conclude that
power-law temporal correlations have a negligible effect on
the decay rate in regime 3.

The effect of a nonzero δ on the catalysis rate constant is
more pronounced than for the U -decay rate. This can be seen
on Fig. 4. In the living system interpretation of the CARD
model, a change in constant rate due to fluctuations implies
a change in the rate at which new “body parts” are created.
Since the growth of an organism (i.e., ∂V/∂t) is proportional

FIG. 4. Running of λ for regime 3 for different values of δ after
doing the rescaling in Eq. (38). The red line corresponds to the purely
spatial correlation case [cf. Eq. (37)]. We used ε = −0.2, Dv = 0.3,
Du = 0.2, A(GHP)

v = 0.1, Kd = 0.05, λ(T ∗) = 0.1 for the plotting.
The shaded region indicates the breakdown of perturbation theory.

to λUV 2, an increase in λ leads to a larger growth of structures
(and vice versa). From Fig. 4, we see that the value of the rate
constant is larger or smaller at shorter scales with respect to
the purely spatial case, depending on the distance from the
pole δ. Thus nontrivial temporal correlations can enhance or
suppress the growth of structures at small scales.

V. CONCLUSION

In general, large- and small-scale environmental fluctua-
tions can have nontrivial effects on the small-scale, kinetic,
and collective properties of chemical systems. In this paper, we
have analyzed the effect of noise with both spatial and temporal
power-law correlations on the kinetics and phenomenology
of a specific cubic autocatalytic reaction-diffusion chemical
system. The noise is additive, in that its presence is incor-
porated as an additive term affecting the individual reaction
rates. In particular, using renormalization group techniques,
we show analytically how parameters such as chemical decay
rates and catalytic rate constants depend on the statistical
properties of the noise. The noise causes the model parameters
to renormalize, that is, to change due to the simultaneous
presence of fluctuations and nonlinearities. These noise-
induced changes manifest themselves as an inherited and
explicit scale dependence of the parameters so affected.
Some of these renormalization effects have been studied
previously for the case of purely spatial noise in Ref. [24].
Here we found that those effects can be greatly enhanced or
suppressed with the presence of temporally correlated noise.
We also discuss how, under certain conditions, the effects
of spatial and temporal noises can be mapped onto each
other.

These results raise important questions regarding the role
of external noise in both chemical and biological self-
organization and in the environmental selection of reproduc-

032106-7
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tion (catalysis) as well as other dynamical mechanisms. We
learn that when describing an open chemical system, not
only must we estimate the relevant parameters but also the
magnitude of the stochastic influences, the spatial and temporal
scales, and the correlations of the latter. The interdependence
between an open chemical system and its environment can
therefore have important consequences. In the case of nonlin-
ear systems, of which chemical reactions provide immediate
examples, the role of noise can be nontrivial by forcing and
driving the system to explore new situations which, although
not present in the purely deterministic situation, might be
favored by external natural selection or enhancement processes
and their subsequent pressures. For an adaptive system this can
have a direct impact on how the system evolves.

Understanding the effect of external noise on chemical
systems can have many applications. One class of applications
considers the noise as environmental. Since the reaction-
diffusion model studied in this paper can be viewed as a
(very simple) generic prototype model for a living system,
the techniques developed in the present paper could be used
to study its viability [34] under time-dependent environmental
pressures. Another class of applications considers the noise
as an experimental tool or probe to uncover underlying
mechanisms and pathways in chemical systems [25]. The
work presented in this paper extends the range of possible
noise correlations that can be used to study chemical systems
experimentally. The application of the present results to the
above problems is a topic of our current research and study.
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APPENDIX A: FEYNMAN RULES

A discussion of Feynman rules for stochastic partial differ-
ential equations can be found in Refs. [35,36]. In the present
case, they are obtained by iterating the Fourier-transformed
stochastic CARD equations (2) and (3) and identifying each
component with a picture. Free response functions are given

Gv0 =

Gu0 =

Nv0 =

Nu0 =

Γv0 =

Γu0 =

FIG. 5. Feynman rules for the stochastic CARD model corre-
sponding to Eqs. (2) and (3).

by (see Fig. 5):

Gv0(k) = 1

Dv|k|2 − iω + rv

, (A1)

Gu0(k) = 1

Du|k|2 − iω + ru

, (A2)

with arrows following the sign of the frequency. Tree-level
interactions are given by (see Fig. 5):


v0 = −
u0 = λ. (A3)

The effect of fluctuations is represented by loop diagrams in
field theory. Loop diagrams are obtained from noise averaging
[cf. Eqs. (5) and (6)]:

Nv0(k) = 2Av|k|−yvω−2θv , (A4)

Nu0(k) = 2Au|k|−yuω−2θu . (A5)

The components shown in Fig. 5, supplemented with con-
servation of momentum at each vertex and integration over
undetermined momenta, form the basis of perturbation theory.
With the appropriate combinatoric factor, they can be used to
write down any Feynman diagram for the stochastic CARD
model.

APPENDIX B: COMPUTATION OF THE ONE-LOOP CORRECTION TO THE RATE CONSTANT λ

The expression for the one-loop correction to the rate constant is


λ(0) = −8λ2Av

∫
dds p

(2π )ds

∫
dω

(2π )
ω−2θv |p|−yv

(
1

Du|p|2 + iω + ru

)(
1

Dv|p|2 − iω + rv

)(
1

Dv|p|2 + iω + rv

)
,

= −8λ2Av

∫
dds p

(2π )ds

∫
dω

(2π )
|ω|−2θv |p|−yv

[
1

|ω|2 + (Dv|p|2 + rv)2

][
Du|p|2 + ru

|ω|2 + (Du|p|2 + ru)2

]
. (B1)

Depending on the parameters ds , yv , and θv , the above one-loop correction may diverge. We regulate the expression by analytically
continuing the space dimension to d and the time dimension to z, giving:


λ(0) = −8λ2
(d)A

(d,z)
v

∫
ddp

(2π )d

∫
dzω

(2π )z
|ω|−2θv |p|−yv

[
1

|ω|2 + (Dv|p|2 + rv)2

][
Du|p|2 + ru

|ω|2 + (Du|p|2 + ru)2

]
. (B2)
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Simple power counting shows that the one-loop correction to the rate constant behaves as


λ ∼ �d−yv+2z−4θv−6 ∼ �2m+2n−4−ε−2δ. (B3)

From Eq. (B3), we infer that 
λ is logarithmically UV divergent for (m = 2, n = 0) and (m = 1, n = 1). The first case corresponds
to purely spatial noise and is treated in Ref. [24]. The second case is a mixture of spatial and temporal noise. We focus on the
latter in the following.

We start by doing the integral over frequency first. Introducing a Feynman parameter in Eq. (B2), we obtain:


λ(0) = −8λ2
(d)A

(d,z)
v

∫
ddp

(2π )d
|p|−yv (Du|p|2 + ru)

∫ 1

0
dx

∫
dzω

(2π )z
|ω|−2θv

[
1

|ω|2 + 
(x)

]2

, (B4)

where


(x) = x(Dv|p|2 + rv)2 + (1 − x)(Du|p|2 + ru)2. (B5)

Integrating Eq. (B4) using the method of dimensional regularization in the presence of noise [24], we obtain:


λ(0) = −4λ2
(d)A

(d,z)
v Kz


(
− z

2
+ θv + 2

)


( z

2
− θv

) ∫
ddp

(2π )d
|p|−yv (Du|p|2 + ru)

∫ 1

0
dx

[
(x)]
z
2 −θv+2

2
. (B6)

The integral over the Feynman parameter can be done explicitly. The result is


λ(0) = 4λ2
(d)A

(d,z)
v Kz

π

sin π
(

z
2 − θv

) ∫
ddp

(2π )d
|p|−yv

(Du|p|2 + ru)[(Dv|p|2 + rv)z−2θv−2 − (Du|p|2 + ru)z−2θv−2]

[(Dv|p|2 + rv)2 − (Du|p|2 + ru)2]
. (B7)

To do the integration over momentum, another Feynman parameter must be introduced. Before proceeding, we point out an
important subtlety not present in usual quantum field theory computations. The temporal noise correlation exponent θv is a
parameter and is not specified in Eq. (B7). This implies that the number of factors in the denominator in the integrand and their
power depend on θv . In practice, the Feynman trick is used to regroup factors in the denominator only. Since θv is left unspecified,
the number of Feynman parameters needed to regroup the factors in the denominator is ambiguous. This problem is not present
in usual quantum field theory computation, since the number of factors is fixed.

To make progress, it is necessary to specify θv . As explained in Sec. III A, the first nontrivial case of spatial and temporal
noise mixing is (m = 1, n = 1), implying z − 2θv = 2 − δ. Plugging this into Eq. (B7) and expanding for small δ, we obtain:


λ(0) = −8λ2
(d)A

(d,z)
v

Du

D2
v − D2

u

KzKd

∫ ∞

0
d|p| |p|d−yv−1

(|p|2 + ru

Du

){
ln

[
Dv

Du

] + ln
[ (|p|2+d1)

(|p|2+d2)

]}
(|p|2 + d3)(|p|2 + d4)

, (B8)

where d1 = rv

Dv
, d2 = ru

Du
, d3 = rv+ru

Dv+Du
, and d4 = rv−ru

Dv−Du
. There are four contributions to the integrand. Using a cutoff, a tedious

calculation shows that only the contribution proportional to |p|2 ln [ Dv

Du
] leads to a logarithmic divergence, with all the other terms

finite in the UV. Discarding the finite terms, we introduce a Feynman parameter in the remaining term:


λ(0) = −8λ2
(d)A

(d,z)
v

Du

D2
v − D2

u

ln

(
Dv

Du

)
KzKd

∫ 1

0
dx

∫ ∞

0
d|p| |p|d−yv+1

[
1

|p|2 + ζ (x)

]2

, (B9)

where

ζ (x) = xd3 + (1 − x)d4. (B10)

Integrating Eq. (B9) using the method of dimensional regularization in the presence of noise [24] and expanding around the
critical dimension dλ

c = yv + 2, we finally obtain the one-loop correction to the rate constant λ shown in Eq. (17).
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