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Compressible cell gas models for asymmetric fluid criticality
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We thoroughly describe a class of models recently presented by Fisher and coworkers [Phys. Rev. Lett. 116,
040601 (2016)]. The crucial feature of such models, termed compressible cell gases (CCGs), is that the individual
cell volumes of a lattice gas are allowed to fluctuate. They are studied via the seldom-used (μ, p, T ) ensemble,
which leads to their exact mapping onto the Ising model. Remarkably, CCGs obey complete scaling, a formulation
for the thermodynamic behavior of fluids near the gas-liquid critical point that accommodates features inherent to
the asymmetric nature of this phase transition like the Yang-Yang (YY) and singular coexistence-curve diameter
anomalies. The CCG0 models generated when volumes vary freely reveal local free volume fluctuations as the
origin of these phenomena. Local energy-volume coupling is found to be another relevant microscopic factor.
Furthermore, the CCG class is greatly extended by using the decoration transformation, with an interesting
example being the Sastry-Debenedetti-Sciortino-Stanley model for hydrogen bonding in low-temperature water.
The magnitude of anomalies is characterized by a single parameter, the YY ratio, which for the models so far
considered here ranges from −∞ to 1

2 .
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I. INTRODUCTION

Basic features of critical phenomena [1] are most frequently
illustrated for the ferromagnetic-paramagnetic phase transi-
tion. Then, by exploiting well-known analogies, results are
straightforwardly translated to gas-liquid criticality in pure
fluids. Among other manifestations, this means that critical
exponents characterizing power-law singularities of physical
properties are the same for, e.g., the Curie point of nickel or
the gas-liquid critical point of argon. They are indeed those
for the three-dimensional Ising model of ferromagnetism, this
being the reason why these two phase transitions are said to
belong to the three-dimensional-Ising universality class.

There are, however, nontrivial differences between them.
Notably, experiment has established that the obvious symmetry
of the spontaneous magnetization curve upon magnetic field
reversal is absent in its fluid analog, the gas-liquid coexistence
curve. That was already expressed in the nineteenth century
by what has been termed the Law of the Rectilinear Diameter,
namely, that the midpoints of the phase boundary in the
density-temperature (ρ-T ) plane fit to a straight line with,
in general, a nonvanishing slope Ā1:

ρd ≡ 1
2 (ρgas + ρ liq) ∼ ρc + Ā1(T − Tc), (1.1)

where superscripts refer to gas and liquid coexisting phases
and the subscript “c” denotes criticality. This is regarded as a
“classical” law in that such behavior is predicted by van der
Waals mean-field theory.

A major breakthrough in the topic of asymmetry in gas-
liquid phase transitions originates in work fifty years ago by
Yang and Yang [2], who focused their attention on an exact
relation for the isochoric heat capacity, CV , which in the two-
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phase region can be expressed as

ρ

ρc

CV = C̃p + ρ

ρc

C̃μ, (1.2)

where v = 1/ρ = V/N is the volume per particle while C̃p ≡
vcT d2pσ/dT 2 and C̃μ ≡ −T d2μσ/dT 2, with pσ and μσ the
pressure and chemical potential at coexistence. At the critical
isochore, ρ = ρc, one has asymptotically close to Tc

CV ∼ A−|t |−α, (1.3)

with t ≡ (T − Tc)/Tc, A− a nonuniversal, system-dependent
amplitude, and α � 0.109. Then, Yang and Yang stated that
for real fluids it is more reasonable to expect that both C̃p and
C̃μ contribute to the CV divergence:

C̃p ∼ Ã−
p |t |−α and C̃μ ∼ Ã−

μ |t |−α. (1.4)

In the early formulations of the thermodynamic behavior
near the gas-liquid critical point [3,4] only C̃p diverges, with
the chemical potential remaining nonsingular (or analytic),
that is, Ã−

μ = 0 so that A− = Ã−
p . Hence, the question was

whether or not C̃μ diverges. A definite answer came from
experiment since, according to (1.2), in the two-phase region
ρCV is a linear function of ρ along an isotherm, with C̃μ and
ρcC̃p being, respectively, the slope and the intercept (see also
Fig. 1). Explicitly, careful analysis of two-phase CV (ρ,T ) data
for CO2 and propane in 2000 provided [5,6] evidence that both
C̃p and C̃μ diverge, implying the existence of the so-called
Yang-Yang (YY) anomaly. This led to complete scaling [5,7],
the thermodynamic formulation that accommodates the YY
anomaly, but also recently [8] to statistical mechanical models
that illuminate the microscopic basis of this phenomenology.

More specifically, to quantify the magnitude of this effect,
a Yang-Yang ratio Rμ was defined as

Rμ ≡ lim
T →Tc−

C̃μ(T )

C̃p(T ) + C̃μ(T )
= Ã−

μ

Ã−
p + Ã−

μ

. (1.5)
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FIG. 1. Left: Two-phase isochoric heat capacity CV as a function
of volume v = 1/ρ along isotherms (straight lines); the vertical
dashed line corresponds to the critical isochore, along which CV di-
verges, and the remaining dashed lines represent the phase boundaries
(gas and liquid). Right: Coexistence curve in the temperature-density
plane: the (real) diameter of the curve (dash) bends as the critical
point is approached and so departs from a hypothetical rectilinear
diameter (dot-dash). Both plots are obviously schematic.

One may realize (see Fig. 1 and Ref. [9]) that Rμ �= 0 whenever
Aliq �= Agas, with these amplitudes characterizing the critical
behavior of the heat capacity of gas and liquid coexisting
phases: Cgas

V ∼ Agas|t |−α and C
liq
V ∼ Aliq|t |−α . Thus, the Yang-

Yang anomaly has to do with the asymmetry between gas and
liquid.

In this context, it is natural to expect that such an asymmetry
manifests also in the density. In this connection, it was noted
long ago that the diameter of the coexistence curve exhibits
a |t |1−α singularity [4] and thereby departs from linearity
close to criticality (see Fig. 1 for illustration). But this is
only a part of the overall situation. Indeed, complete scaling
predicts the existence of a |t |2β term (with β � 0.326) which
asymptotically close to criticality dominates the previously
anticipated |t |1−α one since 2β < 1 − α [10]. More generally,
complete scaling contemplates a comprehensive set of critical
anomalies associated with asymmetry [7]. Certainly, it is the
scaling formulation of asymmetric fluid criticality.

While complete scaling was conceived from the analysis
of two-phase CV data of CO2 and propane [5,6], it has
received further support from similar studies for other fluids
(see Ref. [9] for a recent account). Moreover, it has been
shown that experiments [11–13] and simulations [11,14–16]
on the asymptotic behavior of the coexistence-curve diameter
demand a |t |2β singularity. The values estimated for Rμ from
all these studies fall within the ranges imposed by the second
law of thermodynamics [8]:

− ∞ < Rμ < 1. (1.6)

In light of this background it is natural to ask what are
the microscopic roots of YY features. One expects explicit
responses to this question from statistical mechanical models.
Nevertheless, in the standard lattice gas (SLG), on which
much of our understanding of fluid criticality is based [17,18],
Rμ ≡ 0, this being also the situation for early models of
asymmetric critical behavior of fluids [19,20].

Indeed, progress on this topic has been published only
recently [8]. In doing so, Fisher and the present authors have
introduced a new class of lattice-gas-like models, termed

compressible cell gases (CCGs), that exhibit Yang-Yang
anomalies, |t |2β singularities in the coexistence-curve diame-
ter, and related phenomena. A lattice gas can be interpreted
as a continuum model in which space is divided in a regular
arrangement of “cells” that can be empty or occupied, most
commonly, by just one particle. The volume of such cells is
constant for the SLG and usual variants. Conversely, the indi-
vidual cell volumes are allowed to fluctuate in CCGs, this being
their crucial feature. Working in the great grand canonical
(GGC) or (μ, p, T ) ensemble [21,22], such models are mapped
onto the Ising model, and thereby they are regarded exactly
soluble.

Attention in Ref. [8] was focused on CCG0 models charac-
terized by cell volumes that fluctuate freely. These constitute an
important subclass and identify local free volume fluctuations,
inherent to the disordered nature of real fluids while absent in
lattice gases with cells of constant volume, as a microscopic
source of YY and related anomalies. More elaborated versions
generated using the decoration transformation [23,24] were
explored. An interesting example is the Sastry-Debenedetti-
Sciortino-Stanley (SDSS or S3D) compressible cell gas for
hydrogen bonding in low-temperature water [25]. Such a
model revealed the coupling of local volumes and interaction
energies as relevant to Rμ.

Following up on Ref. [8], we analyze here the implications
of CCGs for asymmetric fluid criticality. Before entering into
detail, we summarize in Sec. II the specific predictions of
complete scaling for C̃p, C̃μ, and ρd as well as the special
properties of the GGC ensemble. A general analysis of CCG0

models is presented in Sec. III. We first formulate them and
show their exact mapping into the Ising model. Then we focus
on the origin, sign, and magnitude of Rμ. A number of features
of geometrical nature associated with local free volume
fluctuations are highlighted. In addition, an enhanced CCG+

0
model that incorporates energy-volume coupling is presented
and the most basic aspects of calculations outlined. Decorated
models are analyzed in Sec. IV. Besides a description of the
decoration transformation in the GGC ensemble, a “simplest”
decorated CCG and the S3D are studied. We summarize in
Sec. V all findings in a historical context. Appendices complete
the details of the calculations.

II. ESSENTIAL BACKGROUND

A. Complete scaling

The distinction between “fields” and “densities” is essential
for describing the thermodynamics of a system at near-
criticality [26]. The field variables of a fluid are p, T , and μ but,
because of asymmetry, one must employ redefined variables,
termed scaling fields, that are algebraic combinations of them.
There are three “relevant” scaling fields, p̃, t̃ , and h̃, and
a set of “irrelevant” scaling fields, from which one can de-
fine corresponding scaling variables, y = Uh̃/|t̃ |2−α−β , yk =
Uk|t̃ |θk , with U > 0 and Uk nonuniversal, system-dependent
amplitudes. These variables are the arguments of the scaling
function W±, where subscripts + and − apply to t̃ > 0 and
t̃ < 0. The thermodynamics is then expressed as

p̃ = Q|t̃ |2−αW±(y,y4,y5, . . .), (2.1)

032105-2



COMPRESSIBLE CELL GAS MODELS FOR ASYMMETRIC . . . PHYSICAL REVIEW E 95, 032105 (2017)

with Q > 0 another nonuniversal amplitude. The “relevant”
scaling variable y serves to describe the leading singularities
in the thermodynamic properties as well as those contributions
arising from the asymmetric nature of the gas-liquid phase
transition. On the other hand, y4, y5, etc., account for the
leading correction-to-scaling terms. Here only y4 = U4|t̃ |θ ,
with θ � 0.52, will be considered since odd arguments like y5

are not present for the Ising-like models we will be dealing
with. In doing so, we will approximate the amplitude U4 by its
critical value, U4c.

The relevant scaling variable is small for the two paths of
approach to the critical point to be explored, namely, critical
isochore and coexistence. Thus, for t̃ > 0 the following small-
y expansion applies:

W+ = W 0
+0 + W 0

+2y
2 + · · · + U4cW

(4)
+0 |t̃ |θ + · · · , (2.2)

while for t̃ < 0 we have

W− = W 0
−0 + W 0

−1|y| + W 0
−2y

2 + · · · + U4cW
(4)
−0 |t̃ |θ + · · · .

(2.3)

As explained in Ref. [27], we can take W 0
+0 = W 0

+2 = 1,
W 0

−0 � 1.9, W 0
−1 � 2.4, W 0

−2 � 0.20.
The crucial feature of complete scaling is that it expresses

the scaling fields p̃, t̃ , and h̃ as combinations of all physical
fields p, T , and μ. On defining p̌ ≡ (p − pc)/ρckBTc and
μ̌ ≡ (μ − μc)/kBTc, one has to second order [7]

p̃ = p̌ − k0t − l0μ̌ − r0t
2 − q0μ̌

2 − v0tμ̌

−m0p̌
2 − n0p̌t − n3p̌μ̌ + · · · , (2.4)

t̃ = t − l1μ̌ − j1p̌ − r1t
2 − q1μ̌

2 − v1tμ̌

−m1p̌
2 − n1p̌t − n4p̌μ̌ + · · · , (2.5)

h̃ = μ̌ − k1t − j2p̌ − r2t
2 − q2μ̌

2 − v2tμ̌

−m2p̌
2 − n2p̌t − n5p̌μ̌ + · · · , (2.6)

where ki , li , etc. are nonuniversal “mixing coefficients.”
As reported originally [7], l0 = 1 and k0 = Sc/ρckB , with

S the entropy per unit volume. To describe the significance of
the remaining mixing coefficients in (2.4) to (2.6)—especially
those of the linear terms—let us focus on the predictions of
complete scaling for the coexisting densities as well as the
phase boundaries in the p - T and μ - T planes:

ρgas,liq = ρc[1 + A2β |t |2β + A1−α|t |1−α + A1|t | + · · ·
±B|t |β(1 + bθ |t |θ + b2β |t |2β + · · · )], (2.7)

p̌σ (T ) = p̌σ,1t + p̌σ,2t
2 + Ǎ−

p |t |2−α[1 + ǎ−
p |t |θ + · · · ],

(2.8)

μ̌σ (T ) = μ̌σ,1t + μ̌σ,2t
2 + Ǎ−

μ |t |2−α[1 + ǎ−
μ |t |θ + · · · ],

(2.9)

where A1, p̌σ,1, p̌σ,2, μ̌σ,1, and μ̌σ,2 depend exclusively on
the mixing coefficients, bθ , ǎ−

p , and ǎ−
μ are amplitudes that

characterize correction-to-scaling terms, and + and − in the

second row of (2.7) refer to liquid and gas, respectively, while

B = (1 − j2)QUW 0
−1|τ |β, (2.10)

A2β = −j2B
2/(1 − j2), b2β = j 2

2 B2/(1 − j2)2, (2.11)

A1−α = (2 − α)(l1 + j1)QW 0
−0|τ |1−α, (2.12)

A1 = v0 + n3 + (2q0 + n0)μ̌σ,1 + (n0 + 2m0)p̌σ,1, (2.13)

Ǎ−
p = QW−0

1 − j2
|τ |2−α, Ǎ−

μ = j2Ǎp, (2.14)

with

τ = 1 − k1l1 − p̌σ,1(j1 + j2l1). (2.15)

Equation (2.14) leads to the critical amplitudes of C̃p and C̃μ

in (1.4):

Ã−
p = (2 − α)(1 − α)kBǍp and Ã−

μ = −j2Ã
−
p . (2.16)

As already discussed in the original formulation of scaling
[3], k1 �= 0 in (2.6) suffices to account for (dμσ /dT )c �= 0.
On the other hand, the |t |2β and |t |1−α singularities in (2.7)
contribute to the diameter in (1.1). While the discovery of the
latter led to the incorporation of μ mixing into the “thermal
field” t̃ [4], pressure mixing into t̃ also generates a |t |1−α

singularity, as (2.12) reflects. Remarkably, Eq. (2.11) indicates
that pressure mixing into the “ordering field” h̃, i.e., j2 �= 0,
implies A2β �= 0. Also, from the combination of (1.5), (2.10),
(2.11), and (2.16) one encounters

Rμ = −j2/(1 − j2) and A2β = RμB2. (2.17)

Thus, it is clear that pressure mixing into h̃ is crucial in that
it generates a nonvanishing YY ratio and the |t |2β singularity
in ρd .

From the above information one finds

− ∞ < j2 < 1 and Ã−
p > 0. (2.18)

This means, from (1.4), that C̃p always diverges to +∞.
Then (2.16) implies that C̃μ → +∞ when j2 < 0 (or Rμ > 0)
whereas C̃μ → −∞ when j2 > 0 (or Rμ < 0). These two
contrasting situations, observed experimentally [5,6,9], are
illustrated in Figs. 2 and 3, which show numerical results
for models presented in Sec. III [28]. There is more to be said
about the details of complete scaling; the reader can consult
Ref. [7].

B. Great grand canonical ensemble

According to Guggenheim [21], who introduced it, this is
the statistical ensemble for a system with given temperature,
pressure, and chemical potential, this being the reason why it is
also known as the (μ, p, T ) ensemble. While it was discussed
in detail long ago [22], it merits some attention summarizing
its special properties.

We start by noting that, according to Gibbs-Duhem equa-
tion,

0 = N dμ − V dp + S dT , (2.19)
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T/Tc T/Tc

C̃(T )

kB

Δρd

Rμ = −0.35
Rμ = −1.23

FIG. 2. Isochoric heat capacity CV (T ) (bold solid) with its contri-
butions C̃p(T ) (dashed) and C̃μ(T ) (solid) and reduced coexistence-
curve diameter �ρd (T ) ≡ (ρ liq + ρvap)/2ρc − 1 (solid) with its |t |2β

singularity (dashed) along the critical isochore for simple-cubic-
lattice CCG0 models (described in Sec. III) with point particles
(w = 0) and three available cell volumes: (a) v2 = 5v1, v3 = v1; (b)
v2 = 50v1, v3 = v1. Results for CV (T ), C̃p(T ), and C̃μ(T ) contain
background contributions as well as leading, asymmetry-related, and
correction-to-scaling terms computed as described in Sec. III B.

it comes out that only two of μ, p, and T are independent
in the thermodynamic limit, that is, V → ∞, N → ∞, and
S → ∞, with ρ = N/V and S = S/V finite.

This differential relation implies the existence of a function
L(μ,p,T ), which specifies the thermodynamics. Such func-
tion takes a constant value which one may arbitrarily choose
to be 0, while, in addition, one has the freedom to consider
that

(
∂L

∂μ

)
T ,p

= ρ,

(
∂L

∂p

)
T ,μ

= −1,

(
∂L

∂T

)
p,μ

= S. (2.20)

Let us now focus on the grand canonical ensemble, in which
the energy and number of particles are allowed to fluctuate.
The partition function is


(μ,V,T ) =
∞∑

N=0

eβ̄μNZ(N,V,T ), (2.21)

where β̄ ≡ 1/kBT and Z is the canonical partition function,
which embodies a sum over energy levels with Boltzmann
factors e−β̄E . In the thermodynamic limit

1

β̄V
ln 
 = p(μ,T ),

(
∂p

∂μ

)
T

= ρ,

(
∂p

∂T

)
μ

= S. (2.22)

C̃(T )

kB

Δρd

T/Tc T/Tc

Rμ = 0.22

Rμ = 0.46

FIG. 3. Isochoric heat capacity CV (T ) (bold solid) with its contri-
butions C̃p(T ) (dashed) and C̃μ(T ) (solid) and reduced coexistence-
curve diameter �ρd (T ) ≡ (ρ liq + ρvap)/2ρc − 1 (solid) with its |t |2β

singularity (dashed) along the critical isochore for simple-cubic-
lattice CCG0 models (described in Sec. III) with highly compressible
particles and two available cell volumes: (a) v2 = v1/5, v̇2 = 5v̇1;
(b) v2 = v1/50, v̇2 = 50v̇1. Results for CV (T ), C̃p(T ), and C̃μ(T )
contain background contributions as well as leading, asymmetry-
related, and correction-to-scaling terms computed as described
in Sec. III B.

To generate the great grand canonical (GGC) partition
function �, we sum over volumes

� =
∫ ∞

0
e−p̄V 
(μ,V,μ)

dV

V0
, (2.23)

where V0 is a reference volume and p̄ = p/kBT . As explained
previously [22], the GGC partition function diverges so that,
on defining

ϒ(μ,p,T ) ≡ − 1

β̄V0�(μ,p,T )
= p(μ,T ) − p = 0 (2.24)

and using (2.22), one finds

(
∂ϒ

∂μ

)
T ,p

= ρ,

(
∂ϒ

∂p

)
T ,μ

= −1,

(
∂ϒ

∂T

)
p,μ

= S.

(2.25)

Comparison between (2.20) and (2.25) yields ϒ = L. Thus,
knowledge of �(μ,p,T ) together with the condition that this
function diverges leads to the thermodynamics of the system
[29].

For the models considered in this work one may compute
� from the partition function of a system of N lattice sites (or
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cells):

� =
∞∑

N=0

�N , (2.26)

with

�N = 1 (2.27)

for values ofN that are sufficiently large (that is, macroscopic).
This property of the GGC partition function, noted by
Guggenheim [21], will be used in the next sections.

III. BASIC MODEL

A. Compressible cell gas

Consider the three-dimensional space divided into cells of
constant volume v0 whose centers are located at the N sites of
a lattice of coordination number c. To characterize repulsive
or excluded volume effects, let us assume that each cell can be
empty or accommodate a classical particle. Associated with
any occupied cell is the “free volume” v̇0 � v0 the center of
its particle explores. Attractive interactions are considered,
but, instead of being characterized by a normal pair potential,
ϕ(ri − rj), they are of fixed magnitude: the interaction energy
is −ε0 < 0 for particles in nearest-neighbor cells and 0
otherwise. Such a model is known as the nearest-neighbor
standard lattice gas referred to in the Introduction. The grand
canonical partition function is


SLG(μ,V,T ) =
∑
{ni }

exp

⎡
⎣β̄ε0

∑
〈ij〉

ninj+μ̄

N∑
i=1

ni

⎤
⎦, (3.1)

where V = N v0, ni = 0,1 is the occupancy number of
cell i, 〈ij 〉 indicates that the corresponding sum restricts
to nearest-neighbor cells, and μ̄ = β̄μ − ln[�3

T (T )/v0]. The
definition of μ̄ absorbs, in the thermal de Broglie wavelength
�T = h̄

√
2π/mkBT and the v0 factor, the results of integrals

over phase space for a system of classical particles of mass
m. (Implicit is that point particles have been considered so
that integrations over the volume accessible to the center of a
particle in its cell yield a “local free volume” v̇0 = v0 for each
occupied cell.)

As a model for the gas-liquid phase transition, the SLG has
played an important role in the development of the Modern
Theory of Phase Transitions and Critical Phenomena. This is
in large part because 
SLG and ZIsing, the canonical partition
function of the Ising model, have the same mathematical
structure [17]. Specifically

ZIsing(H,N ,T ) =
∑
{si }

exp

⎡
⎣K

∑
〈ij〉

sisj + h

N∑
i=1

si

⎤
⎦, (3.2)

where si = −1,1 is the Ising variable characterizing the state
(up or down) of spin i in the lattice, K ≡ J/kBT , h ≡ H/kBT

(with J > 0 and H the coupling constant and magnetic field,
respectively), while the partition function is related to the free
energy F via f̄ ≡ −F/N kBT = N−1 ln ZIsing. Comparison
between (3.1) and (3.2) yields the well-known SLG-Ising

model mapping:

f̄ = p̄v0 − c

8
β̄ε0 − 1

2
μ̄, K = 1

4
β̄ε0, h = 1

2
μ̄ + c

4
β̄ε0.

(3.3)

Suppose now that the individual cell volumes of a SLG are
allowed to take n discrete values, 0 < vk � v0 (k = 1,2, . . . ,n)
with corresponding free volumes v̇k > 0. One then has a
compressible cell gas (CCG). The variants in which cell
volumes fluctuate independently are termed CCG0 models.
One may anticipate that it is the condition that cell volumes
fluctuate freely which allows the exact mapping of CCG0s into
the Ising model.

To describe such a mapping, it is useful to introduce the
isobaric volume-fluctuation sums

Slm(p̄) = n−1
n∑

k=1

vl
kv̇

m
k e−p̄vk , (3.4)

which contain the available volumes vk and free volumes v̇k

defined above [30]. Thus, each cell needs a S00(p̄) factor if
vacant and a eμ̄S01(p̄) factor if occupied. As a result,

�
CCG0
N = S00(p̄)N

∑
{ni }

exp

⎛
⎝β̄ε0

∑
〈ij〉

ninj

+
{
μ̄ + ln

[
S01(p̄)

v0S00(p̄)

]}∑N
i=1 ni

⎞
⎠. (3.5)

On using the first equation in (2.22) and (2.27), it becomes clear
that the mathematical structure of Eqs. (3.1) and (3.5) is the
same so that, with the aid of (3.3), the following CCG0-Ising
model mapping is found:

f̄ = −1

2
ln

[
S01(p̄)S00(p̄)

v0

]
− c

8
β̄ε0 − 1

2
μ̄, (3.6)

K = 1

4
β̄ε0, h = 1

2
μ̄ + c

4
β̄ε0 + 1

2
ln

[
S01(p̄)

v0S00(p̄)

]
. (3.7)

To extract conclusions from (3.6) and (3.7) in connection to
the “mixing scheme” embodied by (2.4) to (2.6), we anticipate
some results of the next subsection (supplemented by the
appendices). Thus, as a rule, the appearance of p̄, β̄, and
μ̄ in the Ising scaling fields, f̄ , K , and h, is equivalent to
that of p, T , and μ in p̃, t̃ , and h̃, the field variables in terms
of which complete scaling is formulated. Specifically, that p̄

enters explicitly into h in (3.7) means that p enters into the
“ordering field” h̃ in (2.6). This implies that j2 �= 0 and, by
(2.17), that Rμ and A2β are also nonvanishing. Since p̄ appears
in the S01/S00 factor, it is concluded that pressure mixing into
h̃ and the associated Yang-Yang and related anomalies emerge
in lattice-gas-like models when the individual cell volumes are
allowed to fluctuate [31,32].

On the other hand, the absence of p̄ and μ̄ in K implies
that of p and μ in the “thermal field” t̃ and so l1 = j1 =
0. As a result, the CCG0 shows no |t |1−α singularity in the
coexistence-curve diameter [recall (2.12)].
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B. Outline of the calculations

Let us describe the procedure for obtaining information from a mapping like that of (3.6) and (3.7). On defining Ǩ ≡ K/Kc,
�β̄ ≡ β̄ − β̄c, etc., and f̄β ≡ ∂f̄ /∂β̄, etc., it comes out that (3.6) and (3.7) can be expanded to get

f̄ = g1(β̄c,μ̄c,p̄c) + f̄β�β̄ + f̄μ�μ̄ + f̄p�p̄ + 1
2 f̄ββ�β̄2

+ 1
2 f̄μμ�μ̄2 + 1

2 f̄pp�p̄2 + f̄βμ�β̄�μ̄ + f̄βp�β̄�p̄ + f̄μp�μ̄�p̄ + · · · , (3.8)

Ǩ = g2(β̄c,μ̄c,p̄c) + Ǩβ�β̄ + Ǩμ�μ̄ + Ǩp�p̄ + 1
2 Ǩββ�β̄2 + 1

2 Ǩμμ�μ̄2

+ 1
2 Ǩpp�p̄2 + Ǩβμ�β̄�μ̄ + Ǩβp�β̄�p̄ + Ǩμp�μ̄�p̄ + · · · , (3.9)

h = g3(β̄c,μ̄c,p̄c) + hβ�β̄ + hμ�μ̄ + hp�p̄ + 1
2hββ�β̄2

+ 1
2hμμ�μ̄2 + 1

2hpp�p̄2 + hβμ�β̄�μ̄ + hβp�β̄�p̄ + hμp�μ̄�p̄ + · · · , (3.10)

where f̄β̄ , etc. are evaluated at criticality.
The results for the underlying Ising model form the

background information in these equations. In particular, one
needs the critical coordinates, f̄c and Kc, and the expressions
for the heat capacity and the magnetization at h = 0. We have
taken that information from Liu and Fisher [33], who reported
reliable values for the simple cubic, face-centered cubic, and
body-centered cubic regular assemblies. The expressions for
the heat capacity, magnetization, and some related properties
are listed in Appendix A. Furthermore, Appendices B and C
show general expressions that relate critical amplitudes Q,
U , etc. and mixing coefficients to the critical values of the
derivatives in (3.8) and (3.10) and the critical coordinates and
critical amplitudes of the Ising lattice. Obviously, μ̄c, p̄c, and
β̄c are needed.

With this preamble, we are ready to illustrate how the
information plotted in Figs. 2 and 3 is obtained. Hence we
consider a CCG model characterized by a concrete set of
parameters (distribution of cell volumes, etc.). By specifying
the values of such parameters, one first solves the following
equations for μ̄c, p̄c, and β̄c:

g1(β̄c,μ̄c,p̄c) = f̄c, g2(β̄c,μ̄c,p̄c) = 1, g3(β̄c,μ̄c,p̄c) = 0,

(3.11)

where implicit is that Ǩc = 1 and hc = 0. Second, algebraic
expressions for the derivatives in (3.8) to (3.10) must be
obtained. (Results for all models under consideration are
displayed in Appendices D and E.) According to Appendices B
and C, these derivatives lead to j2, Q, etc., which, in turn,
allow the obtainment of numerical values for CV (T ), C̃p(T ),
C̃μ(T ), and ρd (T ) defined in Secs. I and II A. Since such data
have been calculated on approaching the critical point along
the critical isochore, ρ = ρc, only Ising results at h = 0 are
needed [28,34].

C. Local free volume fluctuations

Let us now focus on the origin, sign, and magnitude of
the crucial mixing coefficient j2 and the closely related YY
ratio Rμ for CCG0 models. To that purpose, Eqs. (B26), (B8),
(B29), and (2.17) are used to obtain an algebraic expression.
By introducing the following averages taken over microstates

accessible to an individual cell

〈vlv̇m〉 = Slm(p̄c)

S00(p̄c)
, (3.12)

one gets

Rμ = −1

2

〈vv̇〉 − 〈v〉〈v̇〉
〈v〉〈v̇〉 . (3.13)

Inspection of this equation leads to −∞ < Rμ < 1
2 (or −1 <

j2 < 1) as, in principle, the allowed range for the YY ratio
for CCG0 models, with Rμ → −∞ when 〈vv̇〉 numerically
dominates the numerator of (3.13) and Rμ → 1

2 when 〈v〉 〈v̇〉
does. On the other hand, for constant free volumes, that is,
v̇k = v̇0 for all k, one gets Rμ ≡ 0. Therefore, as an important
result, one finds that a nonvanishing YY ratio in the CCC0 is
a consequence of local free volume fluctuations.

To see how the above ranges are covered, let us start with
the case of point particles, for which 〈v̇〉 = 〈v〉. From (3.13)
one finds

Rμ = −1

2

〈(�v)2〉
〈v〉2

, (3.14)

where �v ≡ v − 〈v〉. Clearly, this yields only negative values
for Rμ. For the simple cubic lattice and two cell volumes,
v1 and v2 = ϑv1 (with ϑ > 1) one finds −0.63 < Rμ < 0 (or
0 < j2 < 0.38). Broad enough cell-volume distributions yield
|Rμ| unbounded since one has the freedom of choosing the
second moment indefinitely large relative to the mean.

Figure 2 illustrates the overall picture. As indicated at the
end of Sec. II A, Rμ < 0 (or j2 > 0) implies that C̃μ → −∞.
Since A1−α ∝ (l1 + j1) = 0 for this model and A2β < 0 [see
(2.11) the coexistence-curve diameter curves towards higher
densities near Tc. This is contrary to many experimental
observations and simulations which evidence that ρd curves
towards lower densities as the critical point is approached
[11–16].

A natural extension is to consider that, more realistically,
particles have a fixed size so that v̇k = vk − w, with w > 0.
For such “hard-core” particles one obtains from (3.13)

Rμ = −1

2

〈(�v)2〉
〈v〉(〈v〉 − w)

. (3.15)
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Again, only negative Rμ values are found, while numerical
work indicates that, for the same cell volume distribution, the
YY ratio is increased with respect to the case of point particles.

Now suppose that cell volumes and free volumes are
allowed to vary independently. To explore this situation it is
very informative to work out the case of just two cell volumes,
i.e., n = 2. From (3.13) one finds

Rμ = −1

2

(v1 − v2)(v̇1 − v̇2)π1π2

v1v̇1π
2
1 + v2v̇2π

2
2 + (v1v̇2 + v̇1v2)π1π2

, (3.16)

where

π1 = e−p̄cv1

e−p̄cv1 + e−p̄cv2
, π2 = e−p̄cv2

e−p̄cv1 + e−p̄cv2
(3.17)

are the statistical weights. The denominator in (3.16) is
positive, hence it comes out that Rμ is negative when cell
volumes and free volumes are correlated (v1 > v2 ⇔ v̇1 >

v̇2) and positive when they are anticorrelated (v1 > v2 ⇔
v̇1 < v̇2).

The YY ratio is negative for point particles and hard-core
particles since cell volumes and free volumes are correlated
(while they do not vary independently). Anticorrelation can
be featured by considering that particles are “highly com-
pressible” in that their effective volume varies so rapidly that
they explore a larger volume in smaller cells. For instance, if
v2 = ϑv1 and v̇2 = ϑ−1v̇1 (with ϑ < 1), we find from (3.16)

Rμ = 1

2

(ϑ + ϑ−1 − 2)π1π2

(ϑ + ϑ−1 − 2)π1π2 + 1
, (3.18)

which gives 0 < Rμ < 1
2 (or −1 < j2 < 0), with Rμ =

1
2 + O(ϑ) when ϑ → 0. Figure 3 shows how these features
manifest in the Yang-Yang anomaly and the coexistence-curve
diameter: as can be seen, now ρd bends towards lower densities
as T → Tc.

While not explicitly stated, we have so far assumed that
cells are of fixed shape. Alternatively, one may think of hard-
core particles in cells of varying shape. As an example, let us
consider the case of cubic particles with edge a and two cell
shapes: (1) cubic with edge bL (L > 1) and (2) parallelepiped
with two edges of length b and a third one of length b[cos ψ]−1

(see Fig. 4). By noting that v1 = b3L3 and v2 = b3, Eq. (3.16)
can be written as

Rμ = −1

2

(L3 − 1)(v̇1 − v̇2)π1π2

v̇2π
2
2 + v̇1π1π2 + L3

(
v̇1π

2
1 + v̇2π1π2

) , (3.19)

bL

bL

b

b

ψ

a

FIG. 4. Cross sections of cubic and parallelepiped cells with cubic
particles of fixed volume and size in (see Sec. III C for a more detailed
description). The shaded portions delimitated by dashed lines are the
“free volumes” particles explore.

where v̇1 = (bL − 2a)3 and v̇2 = (b − 2a)2[b − 2a(1 +
tan ψ)]. Since v̇2 decreases as ψ is increased up to a limiting
value ψmax = arctan(b/2a − 1) for which v̇2 = 0, we have
that v̇1 > v̇2. And numerical work indicates that, for the
simple cubic lattice, −0.63 < Rμ < 0 for any fixed value of
ψ < ψmax. Since we are dealing with two cell volumes that are
correlated with two free volumes, it is not surprising to find
exactly the same numerical result quoted before.

While maintaining the geometry, let us now consider v1 =
b3 and v2 = b3L3, with L > 1. This gives

Rμ = 1

2

(L3 − 1)(v̇1 − v̇2)π1π2

v̇1π
2
1 + v̇2π1π2 + L3

(
v̇2π

2
2 + v̇1π1π2

) , (3.20)

where, now, v̇1 = (b − 2a)3 and v̇2 = (bL − 2a)2[bL −
2a(1 + tan ψ)]. When ψ = 0, free volumes and cell volumes
are correlated since v̇1 < v̇2. But v̇2 can be made arbitrarily
small by increasing ψ up to its limiting value ψmax =
arctan(bL/2a − 1), so there is an angle ψ0 for which v̇1 = v̇2.
Thus, free volumes are anticorrelated with cell volumes when
ψ0 < ψ < ψmax. For this range of ψ values, (3.20) yields
0 < Rμ < 1

2 , with Rμ → 1
2 as L → ∞.

Therefore, hard-core particles in cells of varying shape
(and volume) can mimic either correlation or anticorrelation
of cell volumes and free volumes. Although not discussed
here, changes in particle shape could also be considered, thus
giving rise to augmented models in which both volume and
shape varies for cells but also for particles.

D. Energy-volume coupling

As an extension of the CCG0, let us consider that a
particle in a cell acquires a potential energy which depends
on cell volume. The state of a cell in this CCG+

0 model is,
as for the CCG0, characterized by its volume vk when empty
and, additionally, by its free volume v̇k when occupied. But,
furthermore, an energy εk is coupled to vk and v̇k for occupied
cells. Because of this extra energy, we need to introduce

S+
lmo(p̄,β̄) = n−1

n∑
k=1

vl
kv̇

m
k εo

ke
−β̄εk−p̄vk (3.21)

and

〈vlv̇mεo〉+ = S+
lmo(p̄c,β̄c)

S+
000(p̄c,β̄c)

, (3.22)

so that (3.6) and (3.7) remain basically the same with S+
010

substituting S01 and

Rμ = −1

2

〈vv̇〉+ − 〈v〉−〈v̇〉+
〈v〉−〈v̇〉+ , (3.23)

where mean values when an individual cell is occupied (+) or
empty (−) are now distinct.

Nothing new regarding l1, j1, and the range of Rμ is found.
It is interesting, however, to discuss the case of constant free
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volumes. When v̇k = v̇0 for all k, Eq. (3.23) reduces to Rμ =
1
2 (〈v〉− − 〈v〉+)/〈v〉−. Thus, owing to the extra energies εk ,
Rμ is nonzero even for constant free volumes. One may note
that the isobaric-isothermal volume-energy-fluctuation sums
in (3.21) contain e−β̄εk−p̄vk factors. It follows, then, that Rμ >

0 emerges when lower vk in (+) cells are statistically favored,
that is, when the vk and εk are correlated; conversely, Rμ < 0
for anticorrelation. We conclude that, in addition to local free
volume fluctuations, the coupling between cell volume and
particle energy is a source of nonvanishing YY ratios.

IV. DECORATED VERSIONS

A. General formulation

It was noted long ago that the Ising model can be greatly
extended by introducing extra spins at the midpoints of the
c
2N bonds joining adjacent lattice sites [23,24]. Such models
can be mapped into the basic, “undecorated” Ising model.
The whole scheme is known as the decoration transformation.
Transformed, decorated lattice gases have been studied in the
past to study asymmetric fluid criticality [4,19,20,35,36].

A CCG0 model with added cells may be called a decorated
CCG0 if extra cells contain up to one particle while their
volume fluctuates freely (see Fig. 5 for a schematic illustration
of a vertex-bond cell assembly). But instead of this most
intuitive choice for the decorating system, it is more general
and useful to consider an arbitrary system. This is the essence
of the generalized decoration transformation [23].

Since the summations over the states of the decorating
system can be performed individually and before the sum-
mations over the cells located at the vertex sites of the

Ψ++ = S00(p̄) + S01(p̄) e2β̄ε0+μ̄/v0

Ψ+− = S00(p̄) + S01(p̄) eβ̄ε0+μ̄/v0

Ψ−− = S00(p̄) + S01(p̄) eμ̄/v0

FIG. 5. Vertex-bond cell assembly in (− − −), (− + −), (+ −
−), (+ + −), (+ − +), and (+ + +) possible configurations for the
“simplest” decorated CCG described in Sec. IV B. Decorating factors
entering in (4.7) to (4.9) are also shown.

lattice, a decorated CCG model can be reduced algebraically
to an undecorated CCG0 model with transformed variables
μ̄′, p̄′, and β̄ ′. That entails the introduction of the so-called
decorating factors, �++, �−−, and �+−, which result from
the summations for the decorating system over states in which
“outer” cells are both occupied (++), both empty (−−), and
only one occupied (+−) [37]. Specifically, we may write for
a vertex-bond cell assembly

eβ̄ε0 [eμ̄S01(p̄)]2/c
�++ = eβ̄ ′ε0 [eμ̄′

S01(p̄′)]
2/c

, (4.1)

[eμ̄S01(p̄)]1/c
S00(p̄)1/c�+− = [eμ̄′

S01(p̄′)]
1/c

S00(p̄′)1/c,

(4.2)

S00(p̄)2/c�−− = S00(p̄′)2/c, (4.3)

where 2/c and 1/c have been introduced to avoid overcounting
when extending the calculation to the whole system.

On combining (4.1) to (4.3) one gets

β̄ ′ε0 = β̄ε0 + ln

(
�++�−−

�2+−

)
, (4.4)

μ̄′ + ln

(
S ′

01

v0S
′
00

)
= μ̄ + ln

(
S01

v0S00

)
+ c ln

(
�+−
�−−

)
, (4.5)

ln(S ′
00) = ln(S00) + c

2
ln(�−−), (4.6)

so that with the aid of (3.6) and (3.7) we finally have

f̄ = −1

2
ln

[
S01(p̄)S00(p̄)

v0

]
− c

8
β̄ε0 − 1

2
μ̄

− c

8
ln(�++�−−�2

+−), (4.7)

K = 1

4
β̄ε0 + 1

4
ln

(
�++�−−

�2+−

)
, (4.8)

h = 1

2
μ̄ + c

4
β̄ε0 + 1

2
ln

[
S01(p̄)

v0S00(p̄)

]
+ c

4
ln

(
�++
�−−

)
. (4.9)

Therefore, we have the CCG0-Ising model mapping of
(3.6) and (3.7) supplemented by extra terms arising from the
decorating factors. Clearly, that �++ depends on both p̄ and
μ̄ is a sufficient condition for f̄ , K , and h to depend on all
physical fields. Following the rules described at the end of
Sec. III A, this implies that μ, p, and T enter into h̃, p̃, and t̃ ,
so that complete scaling is obeyed in all its aspects.

B. Simplest model

It is natural to think first of CCG0 models with decorating
cells whose volume varies freely and contains up to one particle
(see Fig. 5). In the simplest case, the sets of available volumes
for decorating cells and the corresponding free volumes are
the same as those for vertex cells. Accordingly, the decorating
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factors in (4.7) to (4.9) are

�−− = S00(p̄) + 1

v0
S01(p̄)eμ̄, (4.10)

�+− = S00(p̄) + 1

v0
S01(p̄)eβ̄ε0+μ̄, (4.11)

�++ = S00(p̄) + 1

v0
S01(p̄)e2β̄ε0+μ̄. (4.12)

From the inspection of (4.7) to (4.12) it comes clear that
j2, j1, and l1 are all nonvanishing. For fixed cell volumes this
reduces to Mermin decorated lattice gas [20], which, among
others, supported in the early 1970s l1 �= 0 and so a |t |1−α

singularity in the coexistence-curve diameter [4]. A nonvan-
ishing pressure mixing coefficient j1 that also contributes to the
amplitude of the |t |1−α singularity in (2.12) arises—as has been
shown to be the case of j2—from local volume fluctuations;
more specifically, j1 �= 0 when the volume of decorating cells
is allowed to fluctuate.

By defining �
p̄
++ ≡ (∂�++/∂p̄)β̄,μ̄ etc. and proceeding as

explained at the beginning of Sec. III C (see also Appendix D)
one finds

j2 = ρc

S11
S01

− S10
S00

− c
2

(�
p̄
++

�++
− �

p̄
−−

�−−

)
1 + c

2

(�
μ̄
++

�++
− �

μ̄
−−

�−−

) , (4.13)

with, recall, all quantities evaluated at criticality. As expected,
as for the (undecorated) CCG0, one gets −1 < j2 < 1 (or
−∞ < Rμ < 1

2 ). Also consistently with the undecorated
version of the model, one may verify from (4.13) that the
YY ratio vanishes for the case of constant free volumes.

Following up on this simplest decorated CCG0 model, more
elaborated versions can be devised by supposing, e.g., that
bond-cell volumes and bond-cell free volumes are distinct
from those of outer cells, or that bond cells can accommodate
an arbitrary number of particles that interact themselves and
with particles in outer cells in a variety of ways, or that there
exist alternative ways in which energy, number of particles, and
volumes are coupled, etc. Evidently, decorated compressible
cell gases constitute a flexible subclass of models.

C. Sastry-Debenedetti-Sciortino-Stanley model

This is a compressible cell gas, termed S3D model,
originally devised [25] to account for the anomalous ther-
modynamics of liquid water at low temperatures [38]. As has
been shown [8], it can be formulated as a decorated CCG.

One considers a lattice with vertex cells that, as in the
SLG, are of fixed volume and can accommodate a particle that
interacts with particles in nearest-neighbor cells via an energy
−ε0. To implement the orientational selectivity characteristic
of hydrogen bonding, one supposes that there are q microstates
for a particle, with only q of the q2 joint configurations for
particles in nearest-neighbor cells leading to the formation
of a hydrogen bond which lowers the energy by δε > 0.
Furthermore, hydrogen bonding in low-temperature water,
characterized by low-density, ice-like structures, requires
an optimal interparticle separation. This is implemented by
simply assuming that an assembly of two nearest-neighbor
cells gains a volume v+ > 0 in such states. As illustrated in

Ψ+− = qΨ−− = 1

−ε0 −(ε0 + δε), v+

Ψ++ = q (q − 1) + q eβ̄δε−p̄v+

FIG. 6. Vertex-bond cell assembly for the S3D decorated model
described in Sec. IV C. Decorating factors entering in (4.7) to (4.9)
are also shown.

Fig. 6, these features can be implemented using a decorating
system. Accordingly,

�++ = q(q − 1) + qeβ̄δε−p̄v+ , (4.14)

�+− = q and �−− = 1, (4.15)

where implicit is that the free volume explored by individual
particles remains the same for all states.

Introduction of these decorating factors in (4.7) to (4.9)
leads to the conclusion that l1 = 0 while appropriate calcu-
lations (see Appendix E) yield j1 ∝ v+, that is, there is no
μ mixing in the thermal scaling field t̃ whereas the model
contemplates pressure mixing and thereby a nonvanishing
|t |1−α singularity. Furthermore, for the crucial pressure mixing
coefficient one finds

j2 = 1
2cρcv+ eβ̄cδε−p̄cv+/ (q − 1 + eβ̄cδε−p̄cv+ ). (4.16)

Clearly j2 > 0 or, according to (2.17), Rμ < 0, and numerical
work demonstrates that the model yields all negative values of
the YY ratio.

It is important to remark that volumes are coupled with
interaction energies in this model. Thus, as found in Sec. III D
for the CCG+

0 , energy-volume coupling results in nonvanishing
YY and related anomalies. And also in accord with the CCG+

0 ,
negative Rμ values are found when energies and volumes are
anticorrelated.

A modified version in which interaction energies and
volumes are correlated yields Rμ > 0. This is achieved by
simply considering in (4.16) that v+ < 0, meaning that the
formation of a hydrogen bond effectively reduces the volume
available to a pair of neighboring particles. This leads to the
obvious constraint |v+| < 2v0/c and, since we are supposing
that individual particles explore a constant volume v0, the
reduced volume is shared. Numerical work for a simple cubic
lattice with q = 10 reveals that 0 < Rμ < 0.26 but an upper
bound Rμ = 0.43 for q = 1.
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V. SUMMARY IN A HISTORICAL CONTEXT

The 1962 experiments for argon [39] definitely led to
the conclusion that the isochoric heat capacity CV of pure
substances diverges at the gas-liquid critical point. Only two
years later, Yang and Yang [2] derived the thermodynamic
relation (1.2) and posed the question whether both C̃p and
C̃μ diverge. Being a straightforward translation of the Ising
model [17], only C̃p diverges in the standard lattice gas,
which displays a fully symmetric coexistence curve in the
density-temperature plane.

During the 1970s it was concluded that there was no
conclusive experimental evidence for C̃μ diverging at criti-
cality. Simultaneously, statistical mechanical models [4,19,20]
revealed the existence of a |t |1−α term that results in a “hooked”
coexistence-curve diameter close to the critical point. And it
was soon claimed that experiments confirmed such a deviation
from the Law of the Rectilinear Diameter [40]. The original
scaling formulation [3] was then extended to accommodate
the |t |1−α term with C̃μ still nonsingular [4]. Such “revised”
formulation was later analyzed in the context of Field Theory
and the Renormalization Group [41].

The 2000 analysis of two-phase CV data for CO2 and
propane [5,6] demonstrated that both C̃p and C̃μ diverge and
so implied the existence of the Yang-Yang anomaly. This
required scaling theory to be repaired again. The resulting
theory, known as “complete scaling” [5,7], is the currently
accepted formulation of asymmetric fluid criticality. Under
the assumption that all physical fields, p, μ, and T , are
“equivalent,” complete scaling predicts a comprehensive set of
singularities in the thermodynamic behavior associated with
the Yang-Yang anomaly. The most remarkable of them is a new,
more dominant |t |2β term in the diameter of the coexistence
curve whose existence is consistent with experimental data
and simulations [11–16].

By introducing a class of lattice-gas-like models called
compressible cell gases, Fisher and coworkers [8] provided
further support for complete scaling while, at the same time,
insights into the microscopic roots of Yang-Yang and related
features were revealed. Indeed, such phenomena are due to the
local volumetric effects inherent to the disordered structure
of fluids. More specifically, free volume fluctuations result in
YY features, while another source of such phenomena is the
coupling between local volumes and energies (as occurs, for
instance, for hydrogen bonding in S3D water).

The magnitude of the effects under study are quantified by a
single parameter, the YY ratio Rμ, which for the models so far
considered takes values within (−∞, 1

2 ). This is in reasonable
agreement with estimates from experiments and simulations
which indicate that Rμ typically ranges from negative values of
quite small magnitude to values around 1

2 . Finding models—if
they exist—yielding 1

2 < Rμ < 1 remains an open task.
The potential applications of compressible cell gases in

problems involving anisotropic interactions [42], many-body
forces [36], hydrophobic effects [43], fluids in the presence
of quenched disorder [44], etc. remain to be assessed. Fur-
thermore, while the concept of complete scaling has been
extended to asymmetric liquid-liquid criticality in binary
mixtures [45,46] and found to properly describe a wealth
of experimental information [45–49], microscopic models for

rationalizing this phenomenology are called for. In another
direction, work in order to derive complete scaling from
Renormalization Group Theory is currently being reported
[50], but more remains to be done on this topic.
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APPENDIX A: ISING RESULTS

We make use of the Liu and Fisher [33] results for
(1) the dimensionless heat capacity per spin c ≡ C/N kB =
(∂Ū/∂T )h/N kB (with Ū is the internal energy) at h ≡
H/kBT = 0 above (+) and below (−) Tc and (2) the
spontaneous magnetization per spin m0 ≡ M0/N :

c ≈ A±
I |Ǩ − 1|−α[1 − a±

eff|Ǩ − 1|θ ] + beff, (A1)

m0 ≈ BI |Ǩ − 1|β[1 − aeff|Ǩ − 1|θ ], (A2)

which are, in fact, the expressions provided by Liu and Fisher
but expressed in terms of Ǩ ≡ K/Kc, with K ≡ J/kBT . By
integrating Eq. (A1) and using c = −K2(∂ū/∂K)h=0, with
ū ≡ Ū/NJ , as well as the differential relation

df̄ = −ū dK + m dh, (A3)

we get

ū± ≈ ūc − beff

Kc

(Ǩ − 1) ± A±
I

Kc(1 − α)
|Ǩ − 1|1−α

×
[

1 − (1 − α)a±
eff

1 + θ − α
|Ǩ − 1|θ

]
, (A4)

f̄ ± ≈ f̄c − Kcūc(Ǩ − 1) + beff

2
(Ǩ − 1)2 ± A±

I

(2 − α)(1 − α)

× |Ǩ − 1|2−α

[
1 − (2 − α)(1 − α)a±

eff

(2 + θ − α)(1 + θ − α)
|Ǩ − 1|θ

]
,

(A5)

where + and − apply to T > Tc and T < Tc, respectively. We
have adopted the originally reported [33] numerical values for
the critical exponents and critical amplitudes [51].

APPENDIX B: MIXING COEFFICIENTS

We start from

�β̄ = −β̄ct + β̄ct
2 + · · · , (B1)

�p̄ = ρcp̌ − p̄ct + p̄ct
2 − ρcp̌t + · · · , (B2)

�μ̄ = μ̌ −
(

μc

kBTc

− 3

2

)
t +

(
μc

kBTc

− 3

4

)
t2 − μ̌t + · · · .

(B3)
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Now, by splitting the free energy into its singular and
regular parts, i.e., f̄ = f̄ reg + f̄ sing, with f̄ reg(K,h) ≡ f̄c +
f̄ ˇreg(K,h), (3.8) to (3.10) can be put as

f̄ sing = f̄ ∗
β t + f̄ ∗

μμ̌ + f̄ ∗
p p̌ + f̄ ∗

ββt2 + f̄ ∗
μμμ̌2 + f̄ ∗

ppp̌2

+ f̄ ∗
βμtμ̌ + f̄ ∗

βptp̌ + f̄ ∗
μpμ̌p̌ + · · · − f̄ ˇreg, (B4)

Ǩ − 1 = Ǩ∗
βt + Ǩ∗

μμ̌ + Ǩ∗
pp̌ + Ǩ∗

ββt2 + Ǩ∗
μμμ̌2 + Ǩ∗

ppp̌2

+ Ǩ∗
βμtμ̌ + Ǩ∗

βptp̌ + Ǩ∗
μpμ̌p̌ + · · · , (B5)

h = h∗
βt + h∗

μμ̌ + h∗
pp̌ + h∗

ββt2 + h∗
μμμ̌2 + h∗

ppp̌2

+h∗
βμtμ̌ + h∗

βptp̌ + h∗
μpμ̌p̌ + · · · . (B6)

Expressions for the coefficients z∗
β , etc., where z can be f̄ , Ǩ ,

or h, are

z∗
β = −β̄czβ −

(
μc

kBTc

− 3

2

)
zμ − p̄czp, (B7)

z∗
μ = zμ, z∗

p = ρczp, (B8)

z∗
ββ = β̄czβ +

(
μc

kBTc

− 3

4

)
zμ + p̄czp + 1

2
β̄2

c zββ

+ 1

2

(
μc

kBTc

− 3

2

)2

zμμ + 1

2
p̄2

c zpp + β̄cp̄czβp

+ β̄c

(
μc

kBTc

− 3

2

)
zβμ + p̄c

(
μc

kBTc

− 3

2

)
zμp, (B9)

z∗
μμ = 1

2
zμμ, z∗

pp = ρ2
c

2
zpp, z∗

μp = ρczμp, (B10)

z∗
βμ = −zμ −

(
μc

kBTc

− 3

2

)
zμμ − β̄czβμ − p̄czμp, (B11)

z∗
βp = −ρc

[
zp + p̄czpp + β̄czβp +

(
μc

kBTc

− 3

2

)
zμp

]
.

(B12)

Now we recover from (A5) the Ising result for f̄ ˇreg at h = 0:

f̄ ˇreg = −Kcūc(Ǩ − 1) + beff

2
(Ǩ − 1)2 + · · · , (B13)

which, in view of (B5), generates extra terms in (B4) so that

f̄ sing = (f̄ ∗
β + KcūcǨ

∗
β )t + (f̄ ∗

μ + KcūcǨ
∗
μ)μ̌

+ (f̄ ∗
p + KcūcǨ

∗
p)p̌ + (

f̄ ∗
ββ + KcūcǨ

∗
ββ − 1

2beffǨ
∗2
β

)
t2

+ (
f̄ ∗

μμ + KcūcǨ
∗
μμ − 1

2beffǨ
∗2
μ

)
μ̌2

+ (
f̄ ∗

pp + KcūcǨ
∗
pp − 1

2beffǨ
∗2
p

)
p̌2

+ (f̄ ∗
βμ + KcūcǨ

∗
βμ − beffǨβǨμ)tμ̌

+ (f̄ ∗
βp + KcūcǨ

∗
βp − beffǨβǨp)t p̌

+(f̄ ∗
μp + KcūcǨ

∗
μp − beffǨμǨp)μ̌p̌ + · · · . (B14)

At this point, we are ready to establish proper connection
with Eqs. (2.4)–(2.6). Specifically, by defining

p̃ ≡ f̄ sing

f̄ ∗
p + KcūcǨ∗

p

, t̃ ≡ Ǩ − 1

Ǩ∗
β

, h̃ ≡ h

h∗
μ

, (B15)

one gets

k0 = − f̄ ∗
β + KcūcǨ

∗
β

f̄ ∗
p + KcūcǨ∗

p

, l0 = − f̄ ∗
μ + KcūcǨ

∗
μ

f̄ ∗
p + KcūcǨ∗

p

, (B16)

r0 = − f̄ ∗
ββ + KcūcǨ

∗
ββ − beffǨ

∗2
β /2

f̄ ∗
p + KcūcǨ∗

p

, (B17)

q0 = − f̄ ∗
μμ + KcūcǨ

∗
μμ − beffǨ

∗2
μ /2

f̄ ∗
p + KcūcǨ∗

p

, (B18)

v0 = − f̄ ∗
βμ + KcūcǨ

∗
βμ − beffǨ

∗
βǨ∗

μ

f̄ ∗
p + KcūcǨ∗

p

, (B19)

m0 = − f̄ ∗
pp + KcūcǨ

∗
pp − beffǨ

∗2
p /2

f̄ ∗
p + KcūcǨ∗

p

, (B20)

n0 = − f̄ ∗
βp + KcūcǨ

∗
βp − beffǨ

∗
βǨ∗

p

f̄ ∗
p + KcūcǨ∗

p

, (B21)

n3 = − f̄ ∗
μp + KcūcǨ

∗
μp − beffǨ

∗
μǨ∗

p

f̄ ∗
p + KcūcǨ∗

p

, (B22)

l1 = − Ǩ∗
μ

Ǩ∗
β

, j1 = − Ǩ∗
p

Ǩ∗
β

, r1 = − Ǩ∗
ββ

Ǩ∗
β

, (B23)

q1 = − Ǩ∗
μμ

Ǩ∗
β

, v1 = − Ǩ∗
βμ

Ǩ∗
β

, m1 = − Ǩ∗
pp

Ǩ∗
β

, (B24)

n1 = − Ǩ∗
βp

Ǩ∗
β

, n4 = − Ǩ∗
pμ

Ǩ∗
β

, k1 = −h∗
β

h∗
μ

, (B25)

j2 = −h∗
p

h∗
μ

, r2 = −h∗
ββ

h∗
μ

, q2 = −h∗
μμ

h∗
μ

, (B26)

v2 = −h∗
βμ

h∗
μ

, m2 = −h∗
pp

h∗
μ

, (B27)

n2 = −h∗
βp

h∗
μ

, n5 = −h∗
pμ

h∗
μ

. (B28)

It is important to note that (B16) provides the critical values
of the number density and entropy per particle. Specifically,
from l0 = 1 and k0 = S/ρckB , a combination of (B8) and
(B16) gives

ρc = − f̄μ + KcūcǨμ

f̄p + KcūcǨp

, Sc = kB

f̄ ∗
β + KcūcǨ

∗
β

f̄μ + KcūcǨμ

. (B29)

APPENDIX C: OTHER RELEVANT AMPLITUDES

Let us now work out the generalized density ρ̃ and
generalized entropy ρ̃, defined from the differential relation

dp̃ = ρ̃ dh̃ + s̃ d t̃ . (C1)

From (C1), (A3), and (B15) one gets

ρ̃ =
(

∂p̃

∂h̃

)
t̃

= h∗
μ

f̄ ∗
p + KcūcǨ∗

p

m, (C2)
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s̃ =
(

∂p̃

∂t̃

)
h̃

= − Ǩ∗
β

f̄ ∗
p + KcūcǨ∗

p

ū. (C3)

By using (A2) and (A4), for h = 0

ρ̃ = ± h∗
μ

f̄ ∗
p + KcūcǨ∗

p

BI |Ǩ∗
β |β |t̃ |β[1 − aeff|Ǩ∗

β |θ |t̃ |θ + · · · ],

(C4)

s̃ = ±
[
− Ǩ∗

β

f̄ ∗
p + KcūcǨ∗

p

]
A±

I

Kc(1 − α)
|Ǩ∗

β |1−α|t̃ |1−α

×
[

1 − a±
eff

1 + θ − α
|Ǩ∗

β |θ |t̃ |θ + · · ·
]
, (C5)

where + and − in (C4) apply to h → 0+ and h → 0− and
to K < Kc (or T > Tc) and K > Kc (or T < Tc) in (C5)
By comparing these expressions with those in Ref. [52] we
encounter

QUW 0
−1 = h∗

μ

f̄ ∗
p + KcūcǨ∗

p

BI |Ǩ∗
β |β, (C6)

U4cW
(4)
−1 = −aeff|Ǩ∗

β |θ , (C7)

QW 0
+0 = − Ǩ∗

β

f̄ ∗
p + KcūcǨ∗

p

A+
I

(2 − α)(1 − α)
|Ǩ∗

β |1−α, (C8)

QW 0
−0 = − Ǩ∗

β

f̄ ∗
p + KcūcǨ∗

p

A−
I

(2 − α)(1 − α)
|Ǩ∗

β |1−α, (C9)

U4cW
(4)
+0 = − (1 − α)a+

eff

(2 + θ − α)(1 + θ − α)
|Ǩ∗

β |θ , (C10)

U4cW
(4)
−0 = − (1 − α)a−

eff

(2 + θ − α)(1 + θ − α)
|Ǩ∗

β |θ . (C11)

APPENDIX D: RESULTS FOR CCG0

AND RELATED MODELS

Here we provide specific results for the basic CCG0 model,
the CCG+

0 , and the “simplest” decorated CCG0 described in
Secs. III and IV. Concretely, we show the analytic expressions
of the functions gi(β̄c,μ̄c,p̄c) (i = 1,2,3) defined in (3.11) as
well as the derivatives f̄β , etc. defined in Appendix B. While
not explicitly stated here but noted in the main body of the text,
Sij are evaluated at p̄ = p̄c and S+

ijk at p̄ = p̄c and β̄ = β̄c.
For the CCG0, presented in Sec. III A, one has

g1(β̄c,μ̄c,p̄c) = − c

8
β̄cε0 − 1

2
μ̄c − 1

2
ln

(
S01S00

v0

)
, (D1)

g2(β̄c) = 1

4Kc

β̄cε0, (D2)

g3(β̄c,μ̄c,p̄c) = 1

2
μ̄c + c

4
β̄cε0 + 1

2
ln

(
S01

v0S00

)
, (D3)

f̄β = −cε0

8
, f̄μ = −1

2
, f̄p = 1

2

(
S10

S00
+ S11

S01

)
, (D4)

Ǩβ = ε0

4Kc

, Ǩμ = 0, Ǩp = 0, (D5)

hβ = cε0

4
, hμ = 1

2
, hp = 1

2

(
S10

S00
− S11

S01

)
, (D6)

f̄pp = 1

2

[(
S11

S01

)2

+
(

S10

S00

)2

−
(

S21

S01
+ S20

S00

)]
, (D7)

hpp = 1

2

[(
S10

S00

)2

−
(

S11

S01

)2

+
(

S21

S01
− S20

S00

)]
, (D8)

f̄ββ = f̄μμ = f̄βμ = f̄βp = f̄μp = 0, (D9)

Ǩββ = Ǩμμ = Ǩpp = Ǩβμ = Ǩβp = Ǩμp = 0, (D10)

hββ = hμμ = hβμ = hβp = hμp = 0. (D11)

Here are the results for the CCG+
0 , described in Sec. III D:

g1(β̄c,μ̄c,p̄c) = − c

8
β̄cε0 − 1

2
μ̄c − 1

2
ln

(
S+

010S00

v0

)
, (D12)

g2(β̄c) = 1

4Kc

β̄cε0, (D13)

g3(β̄c,μ̄c,p̄c) = 1

2
μ̄c + c

4
β̄cε0 + 1

2
ln

(
S+

010

v0S00

)
, (D14)

f̄β = −cε0

8
+ 1

2

S+
011

S+
010

, f̄μ = −1

2
, f̄p = 1

2

(
S10

S00
+ S+

110

S+
010

)
,

(D15)

Ǩβ = ε0

4Kc

, Ǩμ = 0, Ǩp = 0, (D16)

hβ = cε0

4
− 1

2

S+
011

S+
010

, hμ = 1

2
, hp = 1

2

(
S10

S00
− S+

110

S+
010

)
,

(D17)

f̄pp = 1

2

[(
S10

S00

)2

+
(

S+
110

S+
010

)2

−
(

S+
210

S+
010

+ S20

S00

)]
, (D18)

hpp = 1

2

[(
S10

S00

)2

−
(

S+
110

S+
010

)2

+
(

S+
210

S+
010

− S20

S00

)]
, (D19)

f̄ββ = 1

2

[(
S+

011

S+
010

)2

− S+
012

S+
010

]
, (D20)

f̄βp = 1

2

[
S+

110S
+
011

(S+
010)2

− S+
111

S+
010

]
, (D21)

f̄μμ = f̄βμ = f̄μp = 0, (D22)

Ǩββ = Ǩμμ = Ǩpp = Ǩβμ = Ǩβp = Ǩμp = 0, (D23)

hββ = −f̄ββ, hβp = −f̄βp, hμμ = hβμ = hμp = 0.

(D24)
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Finally, for the “simplest” decorated CCG0 presented in Sec. IV B:

g1(β̄c,μ̄c,p̄c) = − c

8
β̄cε0 − 1

2
μ̄c − 1

2
ln

(
S01S00

v0

)
− c

8
ln

[(
S00 + 1

v0
S01e

2β̄cε0+μ̄c

)(
S00 + 1

v0
S01e

μ̄c

)(
S00 + 1

v0
S01e

β̄cε0+μ̄c

)2
]
,

(D25)

g2(β̄c) = 1

4Kc

β̄cε0 + 1

4Kc

ln

⎡
⎣(

S00 + 1
v0

S01e
2β̄cε0+μ̄c

)(
S00 + 1

v0
S01e

μ̄c
)

(
S00 + 1

v0
S01eβ̄cε0+μ̄c

)2

⎤
⎦, (D26)

g3(β̄c,μ̄c,p̄c) = 1

2
μ̄c + c

4
β̄cε0 + 1

2
ln

(
S01

v0S00

)
+ c

4
ln

(
S00 + 1

v0
S01e

2β̄cε0+μ̄c

S00 + 1
v0

S01eμ̄c

)
, (D27)

f̄β = −cε0

8
− cε0S01

4v0

(
e2β̄c+μ̄

S00 + 1
v0

S01e2β̄c+μ̄
+ eβ̄c+μ̄

S00 + 1
v0

S01eβ̄c+μ̄

)
, (D28)

f̄μ = −1

2
− c

8

(
1
v0

S01e
2β̄cε0+μ̄

S00 + 1
v0

S01e2β̄cε0+μ̄
+

1
v0

S01e
μ̄

S00 + 1
v0

S01eμ̄
+ 2

1
v0

S01e
β̄cε0+μ̄

S00 + 1
v0

S01eβ̄cε0+μ̄

)
, (D29)

f̄p = 1

2

(
S11

S01
+ S10

S00

)
+ c

8

(
S10 + 1

v0
S11e

2β̄cε0+μ̄

S00 + 1
v0

S01e2β̄cε0+μ̄
+

S10 + 1
v0

S11e
μ̄

S00 + 1
v0

S01eμ̄
+ 2

S10 + 1
v0

S11e
β̄cε0+μ̄

S00 + 1
v0

S01eβ̄cε0+μ̄

)
, (D30)

Ǩβ = ε0

4Kc

+ ε0S01

2Kcv0

(
e2β̄c+μ̄

S00 + 1
v0

S01e2β̄c+μ̄
− eβ̄c+μ̄

S00 + 1
v0

S01eβ̄c+μ̄

)
, (D31)

Ǩμ = 1

4

[
1
v0

S01e
2β̄cε0+μ̄

S00 + 1
v0

S01e2β̄cε0+μ̄
+

1
v0

S01e
μ̄

S00 + 1
v0

S01eμ̄
− 2

1
v0

S01e
β̄cε0+μ̄

S00 + 1
v0

S01(p̄c)eβ̄cε0+μ̄

]
, (D32)

Ǩp = −1

4

[
S10 + 1

v0
S11e

2β̄cε0+μ̄

S00 + 1
v0

S01e2β̄cε0+μ̄
+

S10 + 1
v0

S11e
μ̄

S00 + 1
v0

S01(p̄c)eμ̄
− 2

S10 + 1
v0

S11e
β̄cε0+μ̄

S00 + 1
v0

S01(p̄c)eβ̄cε0+μ̄

]
, (D33)

hβ = cε0

4
+ cε0S01

4v0

(
2e2β̄c+μ̄

S00 + 1
v0

S01e2β̄c+μ̄
− eβ̄c+μ̄

S00 + 1
v0

S01eβ̄c+μ̄

)
, (D34)

hμ = 1

2
+ c

4

(
1
v0

S01e
2β̄cε0+μ̄

S00 + 1
v0

S01e2β̄cε0+μ̄
−

1
v0

S01e
μ̄

S00 + 1
v0

S01eμ̄

)
, (D35)

hp = 1

2

(
S10

S00
− S11

S01

)
− c

4

(
S10 + 1

v0
S11e

2β̄cε0+μ̄

S00 + 1
v0

S01e2β̄cε0+μ̄
−

S10 + 1
v0

S11e
μ̄

S00 + 1
v0

S01eμ̄

)
. (D36)

APPENDIX E: RESULTS FOR THE
SASTRY-DEBENEDETTI-SCIORTINO-STANLEY MODEL

Information for the S3D model, described in Sec. IV C, is
the following:

g1 = − c

2
ln q − c

8
β̄cε0 − 1

2
μ̄c

+ p̄c − c

8
ln

(
1 + eβ̄cδε−p̄cv+ − 1

q

)
, (E1)

g2 = 1

4Kc

β̄cε0 + 1

4Kc

ln

(
1 + eβ̄cδε−p̄cv+ − 1

q

)
, (E2)

g3 = c

2
ln q + c

4
β̄cε0 + 1

2
μ̄c + c

4
ln

(
1 + eβ̄cδε−p̄cv+ − 1

q

)
,

(E3)

f̄β = − c

8

(
ε0 + δεeβ̄cδε−p̄cv+

q − 1 + eβ̄cδε−p̄cv+

)
, f̄μ = −1

2
, (E4)

f̄p = 1 + cv+eβ̄cδε−p̄cv+

8(q − 1 + eβ̄cδε−p̄cv+)
, (E5)

Ǩβ = 1

4Kc

(
ε0 + δεeβ̄cδε−p̄cv+

q − 1 + eβ̄cδε−p̄cv+

)
, Ǩμ = 0, (E6)

Ǩp = − v+eβ̄cδε−p̄cv+

4Kc(q − 1 + eβ̄cδε−p̄cv+)
, (E7)

hβ = c

4

(
ε0 + δεeβ̄cδε−p̄cv+

q − 1 + eβ̄cδε−p̄cv+

)
, hμ = 1

2
, (E8)
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hp = − cv+eβ̄cδε−p̄cv+

4(q − 1 + eβ̄cδε−p̄cv+ )
, (E9)

f̄ββ = − cδε2(q − 1)eβ̄cδε−p̄cv+

8(q − 1 + eβ̄cδε−p̄cv+ )2
, (E10)

f̄pp = f̄ββ

(v+
δε

)2
,̄ fβp = f̄ββ

v+
δε

, (E11)

Ǩββ = δε2(q − 1)eβ̄cδε−p̄cv+

4Kc(q − 1 + eβ̄cδε−p̄cv+ )2
, (E12)

Ǩpp = Ǩββ

(v+
δε

)2
, Ǩβp = Ǩββ

v+
δε

, (E13)

hββ = cδε2(q − 1)eβ̄cδε−p̄cv+

4(q − 1 + eβ̄cδε−p̄cv+)2
, (E14)

hpp = hββ

(v+
δε

)2
, hβp = hββ

v+
δε

, (E15)

f̄βμ = f̄μμ = f̄μp = Ǩβμ = Ǩμμ = Ǩμp0. (E16)

hβμ = hμμ = hμp = 0. (E17)
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