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Thermal transport in the Fermi-Pasta-Ulam model with long-range interactions
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We study the thermal transport properties of the one-dimensional Fermi-Pasta-Ulam model (β type) with
long-range interactions. The strength of the long-range interaction decreases with the (shortest) distance between
the lattice sites as distance−δ , where δ � 0. Two Langevin heat baths at unequal temperatures are connected to
the ends of the one-dimensional lattice via short-range harmonic interactions that drive the system away from
thermal equilibrium. In the nonequilibrium steady state the heat current, thermal conductivity, and temperature
profiles are computed by solving the equations of motion numerically. It is found that the conductivity κ has an
interesting nonmonotonic dependence with δ with a maximum at δ = 2.0 for this model. Moreover, at δ = 2.0, κ

diverges almost linearly with system size N and the temperature profile has a negligible slope, as one expects in
ballistic transport for an integrable system. We demonstrate that the nonmonotonic behavior of the conductivity
and the nearly ballistic thermal transport at δ = 2.0 obtained under nonequilibrium conditions can be explained
consistently by studying the variation of largest Lyapunov exponent λmax with δ, and excess energy diffusion in
the equilibrium microcanonical system.
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I. INTRODUCTION

Long-range interactions are ubiquitous in nature, the most
common examples being gravitation and Coulomb interaction.
Over the last several decades long-ranged systems have been
extensively studied and it is now known that such systems have
a very rich, and often intriguing, thermostatistical behavior
(for reviews on long-range interacting systems, see [1–3]).
These systems exhibit breakdown of ergodicity, suppression
of chaos, inequivalence of ensembles, long-lived non-Gaussian
quasistationary states, phase transitions in one dimension, neg-
ative specific heat, to name a few, and therefore often possess
properties that deviate fantastically from “well behaved” short-
ranged equilibrium systems. Needless to say, even after a lot
of effort an in-depth understanding of long-range interacting
systems seems to be lacking.

In nonequilibrium statistical physics, a profusely investi-
gated topic is thermal transport, particularly in low dimen-
sional microscopic models [4,5]. A flurry of research started
after it was discovered that many simple one-dimensional
(1D) models violate the celebrated Fourier’s law of heat
conduction J = −κ∇T , where κ ∼ N0 is the constant of
thermal conductivity (N being the system size), and the heat
current J is proportional to the temperature gradient ∇T which
is assumed to be small. Subsequently a large number of works
demonstrated that κ is actually not a constant independent of N

but often diverges as κ ∼ Nα, 0 < α < 1 [4]. These models
are frequently momentum-conserving systems, i.e., without
external pinning potentials (a notable exception is the coupled
rotor model [6]). One such model is the celebrated Fermi-
Pasta-Ulam (FPU) model that has been studied extensively
in the last 50 years in statistical mechanics, chaos theory,
nonlinear dynamics, and several other contexts [7–10].

In this paper we wish to study thermal transport properties
of the FPU model in 1D which has been appropriately
modified to include long-range interactions. Transport studies
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of long-ranged systems are few (see [11–14] for some recent
works) but are extremely important. For example, studies of
thermal rectification [15] in short-ranged systems show that
rectification generally ceases to exist as one approaches the
thermodynamic limit [16]. This raises a question on their
applicability in the fabrication of real thermal diodes which
are thought to be one of the crucial components of phonon-
ics [17]. In [11,12], the authors studied thermal rectification
properties of a long-ranged nonlinear lattice model and made
an important discovery that rectification is enhanced and also
possibly survives even in the thermodynamic limit in the
presence of long-range interactions. Thus, besides the purely
theoretical interest of understanding the physics of long-ranged
interacting systems and low-dimensional thermal transport,
these studies also are technologically important. This is more
so since presently it is possible to fabricate actual materials
with long-range interactions, such as the Coulomb crystal [18],
the Ising pyrochlore magnets Dy2Ti2O7 and Ho2Ti2O7 [19,20],
and Permalloy nanomagnets [21] with long-range magnetic
interactions.

The remainder of the paper is organized as follows. In Sec. II
we describe the Fermi-Pasta-Ulam model with long-range
interactions and the numerical scheme that has been employed
to study its transport properties. We describe the numerical
computation of our quantities of interest such as the heat
current, conductivity, and temperature profiles. In Sec. III, we
present the result of our nonequilibrium molecular dynamics
simulation. Next, in Sec. IV, the equilibrium (microcanonical)
version of the model is studied and by computing the largest
Lyapunov exponent and spatiotemporal excess energy corre-
lation function we explain the thermal transport features of the
model under nonequilibrium conditions. We finally summarize
our main results in Sec. V and conclude with a discussion.

II. THE LONG-RANGED FPU MODEL
WITH HEAT BATHS

We consider a one-dimensional lattice of N anharmonic
oscillators, each with mass m, displacement xi , and momentum
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FIG. 1. Schematic diagram of the model under nonequilibrium
conditions. The oscillators in the shaded (green) part of the lattice in-
teract via the long-range interactions obeying Eq. (1). The oscillators
at the lead sites x−1,x0 on the left and xN+1,xN+2 on the right interact
with short-range harmonic potential V (x) = x2/2 and connect the
long-range part of the lattice to the Langevin heat baths at the two
ends with temperatures TL and TR . The heat current that enters (exits)
the system through the left (right) end is denoted by JL (JR) (see
text).

pi (1 � i � N ) which interact with each other by long-range
interaction. The Hamiltonian of our long-ranged Fermi-Pasta-
Ulam (LR-FPU) model is [22,23]

H =
∑

i

p2
i

2m
+ 1

2

∑

i

(xi+1 − xi)
2 + 1

4Ñ

∑

i,j �=i

(xj − xi)4

|i − j |δ .

(1)

Thus the interaction potential has two parts: the second term
on the right in Eq. (1) is the nearest-neighbor (harmonic)
interaction, whereas the third term corresponds to the long-
ranged anharmonic interactions. The strength of the long-range
interaction decays as a power law |i − j |−δ (δ � 0) with the
(shortest) distance between the lattice sites i and j . Thus δ sets
the range of the interaction; for δ = 0 we have a mean-field
scenario where every oscillator interacts with all others with
equal strength, whereas for δ → ∞ the third term reduces
to nearest-neighbor anharmonic interactions. Note that the
prefactor 1/Ñ makes the Hamiltonian equation (1) extensive
for all values of δ and is given as

Ñ = 1

N

∑

i

∑

j �=i

|i − j |−δ. (2)

For the mean-field (δ = 0) scenario Ñ = N , which is the so-
called Kac scaling factor. Thus, inside the shaded (green) box
in Fig. 1, every oscillator interacts with all others obeying
Eq. (1) with interaction strengths depending on the value of δ.

In order to study thermal transport in this kind of model
we do the following alterations, as in Ref. [12]. We attach n

additional oscillators (we set n = 2, as shown in Fig. 1) to
both sides of the one-dimensional chain and connect Langevin
heat baths [4] at the two ends. We refer to these oscillator
sites, having displacements denoted by x−1,x0 at the left
and xN+1,xN+2 at the right in Fig. 1, as the lead sites (or
simply leads) that connect the main long-ranged system under
investigation to the heat baths. The leads interact with each
other and the LR-FPU system harmonically, i.e., V (x) = x2/2
(spring constant set to unity). The two heat baths are set to
unequal temperatures TL and TR (we set TL > TR always)
which will drive a heat current though the long-ranged system.

The advantage of attaching the lead sites at the two ends is
the ease with which one can measure the heat current J . Since
the interactions H in the main long-ranged system is quite
complicated, computing the current in the bulk of the system

can be cumbersome. However, exploiting the fact that when
the system (including the oscillators at the lead sites) attains a
nonequilibrium steady state (NESS), the current Ji at the ith
site on the lattice is constant and independent of the lattice
site index i, i.e., Ji = J = constant. Thus, one can measure
the steady-state current J at the lead sites to compute the heat
current propagating through the main system. Since the lead
site oscillators interact with a simple potential V (x) = x2/2,
the current at these sites has a simple expression

Ji = −〈
1
2 (ẋi+i + ẋi)(xi+1 − xi)

〉
, (3)

where i is the site index of one of the leads. The steady-
state local temperature profile can be computed using the
equipartition theorem (with Boltzmann constant kB = 1)

Ti = 〈
mẋ2

i

〉
(4)

and assuming that the long-ranged system achieves local ther-
mal equilibrium at temperature Ti . The finite size conductivity
κ for a system of size N is computed using the Fourier’s law

κ = JN

TL − TR

. (5)

To numerically integrate the equations of motion, we
employ the second-order velocity-Verlet algorithm with small
time step ∼10−2. For long-ranged systems, a naive force
calculation is extremely expensive computationally because of
the O(N2) operations that have to be performed at each time
step. This part can be accelerated by a technique which exploits
the convolution theorem and using efficient fast Fourier
transformations (see [24] for implementation algorithms in
periodic and open spin systems with dipolar interactions). This
drastically reduces the computation time with only O(N logN )
operations to perform at each iteration.

Starting for random initial conditions (xi’s are chosen from
a uniform distribution and pi’s from a Gaussian distribution,
both centered at zero) we evolve the system by integrating
the equations of motion until a NESS is attained. Thereafter,
we compute the heat current J , local temperature Ti profiles,
and conductivity κ using Eqs. (3), (4), and (5), respectively.
We present our results obtained from the nonequilibrium
simulation in the next section.

III. RESULTS FROM NONEQUILIBRIUM
MOLECULAR DYNAMICS

We choose the Langevin heat baths to have temperatures
TL = T0 + �T /2 and TR = T0 − �T /2 with small tempera-
ture difference �T between the two ends; thus the average
temperature of the system is 1

2 (TL + TR) = T0. Unless men-
tioned otherwise, we set T0 = 1.0 and �T = 0.2 (TL = 1.1
and TR = 0.9) for our simulations. We employ free boundary
conditions for the oscillators at the ends, although we expect
our results to remain practically unchanged even with fixed
boundary conditions.

We evolve the system for a large number of iterations
(∼106) and monitor the heat currents entering the system
through the left JL and leaving the system from the right JR

(as in Fig. 1). When a NESS is achieved one should obtain
JL = JR in magnitude; JL,JR are obtained using Eq. (3). As
an additional check for stationarity, we also computed the
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FIG. 2. Conductivity κ (scaled by a constant �T = 0.2) as a
function of δ for different system sizes N = 1024,2048,4096,8192.
The inset shows the current J = κ�T/N with δ for average
temperature T0 = 1.0. The broken lines are a guide to the eye.

velocity distribution of the individual oscillators and obtained
a distribution that remains practically unaltered at large times
and, as anticipated, fits to a Gaussian distribution. We there-
after compute the heat current as J = 1

2 (JL + JR), temperature
profile Ti using Eq. (4) (with m = 1), and conductivity κ using
Eq. (5), typically for ∼108–109 time iterations depending
on the value of N chosen. In Fig. 2, we show the thermal
conductivity κ (�T = 0.2 is a constant) of the LR-FPU model
as a function of δ for system sizes N = 1024,2048,4096,8192.
It is found that the conductivity κ exhibits an interesting
nonmonotonic behavior with δ. For small values of δ < 2, κ

increases monotonically, attains a maximum value at δ = 2.0,
and thereafter decreases monotonically. Thus very long-ranged
(δ → 0) as well as nearest-neighbor (δ → ∞) systems have
a low thermal conductivity and maximum conductivity is
obtained for an optimal δ = 2.0. Thus, by tuning the long-
range parameter δ, one can manipulate the conductivity of the
system over a wide range (roughly two orders of magnitude
for N = 8192 in Fig. 2). In the inset of Fig. 2 the heat current
J = κ�T/N is shown as a function of δ. This is, in some
sense, counterintuitive since the range (or strength) of the
long-range interaction decreases smoothly with increasing δ

and thus naively one would expect the heat current to decrease
monotonically with δ. A nonmonotonicity at δ = 1 would
also have been easy to understand, since for δ equal to the
embedding dimension, these models go from being a true

long-ranged system to a short (finite) -ranged system [1,3].
This in many cases, such as in the LR-FPU [22],1 quartic
LR-FPU [23], and LR-XY (coupled planar rotors) [25,26]
models, is marked by a “transition” from weak chaos to strong

1The numerical result of [22] in the “weak chaos” regime at large N

exhibits an unexplained saturation effect [see Fig. 1(a) in [22], which
was also later pointed out in Fig. 5(b) of [23]]. This makes the result
in [22] less reliable for large N and small δ. Also, here we perform
our simulations for very different parameter values than what are used
in [22].
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FIG. 3. (a) Log-log plot of the size dependence of conductivity
κ for different values of δ. For each δ the conductivity diverges as
κ ∼ Nα . The exponent α for each value of δ is shown besides each
curve. (b) Log-log plot of size variation of κ for δ = 2.0 and two
different average temperatures T0 = 0.5,2.0 (same �T = 0.2). The
straight line with slope unity is shown for comparison. The curves in
both (a) and (b) have been rescaled along the y direction for better
visualization.

chaos at δ = 1 (for 1D microcanonical systems). Instead, in
the present case, it is quite intriguing that δ = 2.0 appears to
be a special value having maximum conductivity κ .

Next, in Fig. 3(a) we present the conductivity κ as a function
of the system size N for different values of δ. We find that for all
values of δ (computed up to very large values of N = 16 384)
the conductivity κ shows a power-law divergence κ ∼ Nα

at large N , as it should for momentum-conserving models.
However, α changes quite drastically (and nonmonotonically)
with δ, as can be clearly seen in Fig. 3(a). Surprisingly enough,
corresponding to δ = 2.0, the conductivity diverges almost
linearly (α ≈ 0.98) with the system size N akin to ballistic
heat transport in integrable models, e.g., the coupled harmonic
oscillators [27].

For δ = 2.0, we have checked the N divergence of κ

with two other average temperatures T0 = 0.5,2.0 (and same
�T = 0.2) and found that the exponent remains practically
unaltered as shown in Fig. 3(b). We should mention that the
size dependence of κ for the LR-FPU model seems to be
very different from the results for the LR-XY model studied
recently [14]. As an example, they obtain a thermal insulator,
i.e., κ(N ) → 0 as N → ∞ for δ = 0 (Fig. 2 in [14]), unlike
what we obtain here.
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FIG. 4. Dependence of the exponent α on δ. The parameters here
are the same as in Fig. 3. The dotted line is a guide to the eye. The
three regions (from left to right) correspond to strong long-range
(0 < δ < 1), weak long-range (1 < δ < 2), and short(finite) range
(δ > 2) interactions.

In Fig. 4, α is shown as a function of δ and an interesting
picture emerges. We find that the α-δ plane in Fig. 4 can be
split into the following regions:

(i) A region of strong long-range interaction for 0 < δ < 1.
This region probably can be further split into two subregimes,
namely, 0 � δ < 1/2 where α ≈ 0.66 and 1/2 < δ < 1 for
which α shows a decreasing behavior. A similar suggestion
has been put forward in some works [26,28] since these two
subregimes often exhibit different properties.

(ii) An intermediate region of weak long-range interaction
for 1 < δ < 2 for which the α varies quite drastically from
0.3 � α � 1.

(iii) A region of short-range (or finite range but not nearest
neighbor) interactions for δ > 2 where α monotonically
decreases from α ≈ 1 to α ≈ 0.4; the value α ≈ 0.4 for large
δ ≈ 5.0 lies well in the range 0.3 < α < 0.5 and has been
obtained for the nearest-neighbor FPU model [29] in the past.

Actually, such a picture has been proposed for both clas-
sical [30] and quantum [31] long-ranged interacting models
(also see [2]). However, one needs more detailed simulation in
each region to ascertain this accurately.

Next, the local temperature profile Ti is shown for different
values of δ and N = 2048 in Fig. 5. For δ = 0.0, the
temperature profile is highly nonlinear and becomes less
nonlinear as δ is increased, except for δ = 2.0, for which
the temperature profile is nearly flat (in fact, it has a small
slope in the wrong sense for reasons unclear to us). The curve
marked “equilibrium” in Fig. 5 corresponds to �T = 0 and
δ = 2.0. This is to demonstrate that the long-range interacting
system equilibrates properly (Ti = T0 = 1.0) in absence of
external thermal drive at δ = 2.0. Evidently, the local slope
(say, around i = N/2) of the temperature profile also changes
nonmonotonically as δ is varied with a nearly flat profile for
δ = 2.0, again similar to the coupled harmonic oscillators.

To summarize the results presented in this section, we
find that δ = 2.0 has a very special behavior which leads to
a nonmonotonic variation of various quantities such as the
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FIG. 5. Temperature profiles for N = 2048 and different values
of δ; T0 = 1.0 and �T = 0.2. For the curve marked “equilibrium”
�T = 0 and δ = 2.0.

conductivity, the slope of the temperature profiles in the bulk
of the system, and the divergence exponent α. For δ = 2.0,
our long-range interacting nonlinear system exhibits transport
properties similar to an integrable model. In the next section,
we provide additional numerical evidence to demonstrate that
the results obtained here are physical and not an artifact of the
nonequilibrium setup, e.g., the model of heat baths, boundary
conditions, interaction potential of the leads, etc.

IV. RESULTS FROM EQUILIBRIUM
MOLECULAR DYNAMICS

In order to understand the results obtained in the previous
section, we next study the equilibrium (microcanonical)
version of the LR-FPU model using equilibrium molecular
dynamics simulation. We remove the baths (along with the
leads) and close the 1D chain to obtain a periodic lattice
where each oscillator interacts with all the others according
to Eq. (1). The total energy of the system is a conserved
quantity now, which is achieved by rescaling the momenta
pi appropriately after they are assigned randomly at t = 0.
We choose the energy density u ≡ 〈H〉/N = 1.0, which is
roughly the same as the average energy of each oscillator at
T0 = 1.0 (the average temperature for which we performed the
nonequilibrium simulations).

First, we compute the largest Lyapunov exponent λmax as
a function of the parameter δ. The numerical computation of
λmax here has been performed using the algorithm by Benettin
et al. [32]. Note that, the larger the value of λmax the greater the
chaoticity of the model and vice versa. For integrable systems,
such as the harmonic oscillators, λmax = 0.

We show the largest Lyapunov exponent λmax as a function
of the parameter δ in Fig. 6. As can be clearly seen, there is
a nonmonotonicity in the behavior of λmax exactly at δ = 2.0
for which we have obtained nonmonotonic behavior for κ

from nonequilibrium simulations (Fig. 2). For fixed N, λmax

has a minimum at δ = 2.0, implying a suppression of chaos.
We speculate that this lack of chaoticity pushes the nonlinear
long-ranged system towards an integrable limit which, in
turn, is responsible for the nearly ballistic transport features
(κ ∼ N and negligible temperature gradient) at δ = 2.0 under
nonequilibrium conditions. Since in ballistic transport the heat
carriers propagate with minimum scattering (least resistance),
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FIG. 6. Variation of the largest Lyapunov exponent λmax with δ

for different system size N . The energy density is set to unity.

the thermal conductivity is a maximum at δ = 2.0, as was
obtained in the previous section.

Let us extend the connection between λmax and κ further.
In Fig. 7, we have shown λ−1

max (obtained from Fig. 6) and κ

(from Fig. 2) by shifting and rescaling these two quantities
as (λ−1

max − θ1) and θ2(κ�T − θ3); θ ’s are real numbers. It
can be seen that in both the regions 0 � δ < 2 and δ > 2,
the two quantities follow each other approximately. Thus
using the equilibrium results (λmax vs δ) one can understand
the nonequilibrium results (κ vs δ) qualitatively and, to an
appreciable extent, quantitatively.

Another set of numerical experiments can be performed
by exploiting the connection between thermal transport and
energy diffusion since both essentially describe the same
microscopic process. It is well established that for normal
and ballistic heat transport the corresponding energy diffusion
should also be normal and ballistic, respectively. In recent
times a lot of effort has been dedicated to extend such
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FIG. 8. Evolution of the excess energy correlation function
ρE(r,t) for different values of δ. The three curves (from top to
bottom in each box) for each value of δ correspond to times
t = 1000,1200,1400. Here N = 2048 and energy density u = 1.0.

a connection to the regime of anomalous heat transport
(see [33,34], and references therein). In the following, we study
energy diffusion in our equilibrium model by computing the
spatiotemporal excess energy correlation function using the
relation (for a microcanonical system) [35,36]

ρE(r,t) = 〈�Ej (t)�Ei(0)〉
〈�Ei(0)�Ei(0)〉 + 1

Nb − 1
, (6)

where we coarse grain the lattice as Nb = N/b, r = (i − j )b
and b is the number of sites (oscillators) in each bin and
�Ek = Ek − 〈Ek〉 is the excess energy of the kth bin (1 �
k � Nb) [36].

For an equilibrated system, we calculate ρ
E
(r,t) as a

function of δ for a fixed N = 2048 (we set b = 4) for different
values of time after the system has attained equilibrium. The
evolution of ρE(r,t) at times t = 1000,1200,1400 for different
values of δ is shown in Fig. 8. Note that, quite surprisingly,
the speed of propagation is slower for δ = 0.0 [ρ

E
(r,t) is

quite localized around x = 0] than for, say, δ = 5.0 (for
which the long-range model approaches the nearest-neighbor
FPU model). The spatiotemporal distributions ρ

E
(r,t) for

different times t can be collapsed by rescaling the curves as
tγ ρ

E
(rt−γ ,t) where γ < 1/2, γ = 1/2, γ > 1/2, and γ = 1

imply subdiffusion, normal diffusion, superdiffusion, and
ballistic spreading, respectively. The exponent γ is related to
the exponent β, governing the temporal variation of the mean
square deviation (MSD) 〈�r2(t)〉

E
∼ tβ , as β = 2γ . Thus

when heat transport is ballistic β = 2.
From Fig. 9(a) we find that for γ = 1.0 one obtains an

excellent collapse of the rescaled functions ρ
E
(r,t) shown in

the inset for different times t = 800,1000,1200,1400. Thus
β = 2γ = 2.0 and therefore one should expect a ballistic
spread of energy. In Fig. 9(b) we exhibit the function ρE(r =
0,t) that demonstrate that such a scaling (with γ = 1) persists
up to the largest times t = 2000 that we have simulated. We
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FIG. 9. (a) Collapse of excess energy correlation functions
ρE(r,t) for δ = 2.0 for different times t = 800,1000,1200,1400
collapse when rescaled as tγ ρE(rt−γ ,t) with γ = 1.0. The inset shows
the same curves without the rescaling. Variation of (b) ρE(0,t) and
(c) MSD 〈�r2(t)〉E with time t . As before, N = 2048 and u = 1.0.

also compute the MSD of the excess energy distribution [34]

〈�r2(t)〉E =
N/2∑

r=−N/2

r2ρE(r,t). (7)

The variation of MSD with time t is particularly useful to
quantify the speed and identify the nature of energy diffusion.
This is shown in Fig. 9(c) for the LR-FPU model at δ = 2.0. As
can be seen, we obtain 〈�r2(t)〉E ∼ tβ with β = 2.0 indicating
ballistic propagation. All these results strongly suggest that
the ballisticlike heat transport (marked by the nearly linear
divergence of the conductivity with system size N ) as was
seen in Fig. 3 for δ = 2.0 is a physical property of our model.
For other values of δ depicted in Fig. 8, we estimate that γ

is in the range 3/5 < γ < 3/4, thus implying superdiffusion
and therefore violation of Fourier’s law in nonequilibrium,
as we expect from Fig. 3(a). One can also compute the
exponents β and relate it to the α using the so-called connection
relations [37,38] to verify if they hold. A recent study, however,
argued that such a connection between thermal transport and
energy diffusion may not exist in general for anomalous
transport [39].

V. CONCLUSION

In summary, we have studied thermal transport properties
of the Fermi-Past-Ulam model in the presence of long-ranged
interactions that decay with (shortest) distance between the lat-
tice sites as a power law |i − j |−δ . By attaching two Langevin
heat baths at the two ends of the open chain we compute
the heat current, conductivity, and the temperature profiles
of the long-ranged FPU system for different values of the
exponent δ � 0 using large-scale nonequilibrium molecular
dynamics simulations. We find that κ exhibits an interesting
nonmonotonic δ dependence with a maximum at δ = 2.0.
From the system size dependence of κ , we obtain a power-law
divergence κ ∼ Nα , where 1/3 � α � 1, for all values of δ

(violation of Fourier’s law); for δ = 2.0 we obtain α ≈ 1 and
the temperature profile has a negligible (wrong) slope.

In order to explain these results, we next look into the
equilibrium dynamics of the long-ranged model (by removing
the heat baths). We compute the largest Lyapunov exponent
λmax as a function of δ and obtain a nonmonotonic dependence
that enabled us to understand the δ variation of the conductivity
κ , both qualitatively and, to some extent, quantitatively. The
near ballistic divergence of κ at δ = 2.0 is explained by the
suppression of chaos for the same δ value in the equilibrium
simulations. Thus, although the range of interaction changes
monotonically with the long-range parameter δ, it is intriguing
to see nonmonotonicity in all the quantities we have computed,
namely, κ, α, and λmax.

From the computation of the spatiotemporal excess en-
ergy correlation function, we confirmed the almost linear
divergence of κ for δ = 2.0, which corresponds to a ballistic
energy diffusion in the equilibrium model. Thus for δ = 2.0,
from both the nonequilibrium and equilibrium simulations,
we find that the nonlinear long-ranged interacting FPU model
behaves similar to a nearly integrable system [40]. This is
quite exciting, since integrable nonlinear long-ranged models
are not encountered very frequently (one such example is the
many-body Calogero-Moser system [41] which is nonlinear,
long-ranged, and exactly integrable) and therefore this needs
to be explored further. At this point, it is also quite tempting
to recall the connection between the Fermi-Pasta-Ulam model
and the nonlinear yet integrable Toda model [42], both with
nearest-neighbor interactions.

Note that we cannot completely rule out finite size effects
in the results presented here which therefore may change as
N is increased further (for larger N > 16 384, performing
numerical calculations become computationally impractical).
Finite size effects have plagued several works even for the
short-ranged FPU model in the past and in recent times [43].
Nevertheless, we believe that the results reported here, besides
their academic interest, will also be important from the
experimental perspective where one deals with finite sized
systems at finite temperatures.

There are a number of possible open questions that we
believe are important for this model (or similar models) but
have not been addressed in this paper. This includes analyzing
the temperature dependences of conductivity, the generality of
these results by studying other classes of interaction potentials,
the presence of disorder and on-site potentials, the existence
of discrete breathers that often affect heat transport [44],
extension to higher dimensions, etc. We plan to address these
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issues in the future. Of course any analytical result along these
lines will be extremely desirable to obtain. We hope that the
results presented here will encourage further investigations of
the heat transport properties of long-range interacting systems
in the future.
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