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Minimum memory for generating rare events
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We classify the rare events of structured, memoryful stochastic processes and use this to analyze sequential
and parallel generators for these events. Given a stochastic process, we introduce a method to construct a process
whose typical realizations are a given process’ rare events. This leads to an expression for the minimum memory
required to generate rare events. We then show that the recently discovered classical-quantum ambiguity of
simplicity also occurs when comparing the structure of process fluctuations.
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I. INTRODUCTION

One of the most critical computations today is identifying
the statistically extreme events exhibited by large-scale com-
plex systems. Whether in the domains of geology, finance, or
climate or whether in natural or designed systems (earthquakes
and hurricanes versus market crashes and internet route
flapping), one can argue that this class of problem is rapidly
coming to define our present scientific and technological era
[1]. Success in understanding the origins and occurrence of ex-
treme events will have a major impact on social infrastructure
and its sustainability.

Large deviation theory [2–7] is a relatively new and
key tool for analyzing a process’ full range of statistical
fluctuations. Presaged by Shannon-McMillan-Breiman-type
theory in communication theory [8,9], the mathematical
development of large deviations was first pursued by Donsker
and Varadhan [10]. In essence, it can be seen as a refinement
of the central limit theorem [11] or as a generalization of
Einstein’s fluctuation theory [12,13]. Today, large deviation
theory enters into physics in many different circumstances [7].
One can also formulate statistical mechanics in the language
of large deviation theory [7,14,15]. It appears in abstract
dynamical systems under the rubric of the thermodynamic
formalism [16].

The following analyzes the memory resources required to
generate, and so study, extreme events in structured temporal
stochastic processes. It extends large deviation theory in a con-
structive way that leads to exact calculations of the spectrum
of fluctuations for processes generated by finite-state hidden
Markov models. Fortunately, in this setting the generation and
fluctuation problems can be simply stated. So, we first give
a suitably informal introduction to process generators and
fluctuation theory, leaving technical results for later.

II. MARKOV PROCESSES AND THEIR GENERATORS

A discrete-time, discrete-value stochastic process [17,18]
is the probability space P = {A∞,�,P(·)}. Here, P(·) is
the probability measure over the bi-infinite chain X−∞:∞ =
· · ·X−2X−1X0X1X2 · · · , where random variables Xi take
values in a finite discrete alphabetA and � is the σ algebra gen-
erated by the cylinder sets inA∞. The following considers only
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ergodic stationary processes; that is,P(·) is invariant under time
translation—P(Xi1Xi2 · · ·Xim ) = P(Xi1+nXi2+n · · ·Xim+n) for
all n and m—and over successive realizations. A familiar
important property of stochastic processes is Markov order
[19]. This is the minimum history length R required by any
generator to correctly generate the process. Specifically, R is
the smallest integer such that

P(Xt | . . . ,Xt−2,Xt−1) = P(Xt |Xt−R, . . . ,Xt−2,Xt−1).

To keep matters uncomplicated, consider a process con-
sisting of time series . . . 10010011 . . . of binary symbols.
Having raw sequences in hand does represent the process’
behaviors, but in and of themselves the sequences are not that
useful. For example, how can we predict future symbols? What
mechanisms drive the process’ behaviors? Much more helpful
in answering such questions is an algorithm that can produce
the process’ sequences. A good one can be used to simulate
the process—generating example sequences, perhaps not even
in the original data, but statistically similar—that allows one to
predict future sequences, gain insight into the process’ internal
mechanisms, and estimate statistical properties.

Note that in most cases representing a process by specifying
the probability measure P(·) is impossible due to the infinite
number of possible sequences. So, how should we represent
processes? Is there a more compact way than specifying in
full the probability measure on the sequence σ algebra? In a
rather direct sense, Markov chains and hidden Markov models
provide constructive answers. The quality of those answers
depends, of course, on how useful these representations are.
We now fill in their technical details, so that we can work with
them.

Markov chains (MCs) [19,20] and hidden Markov models
(HMMs) [18,21,22] are widely used algorithms for generating
stochastic processes. Both consist of a set S of states and
a set of state-transition probabilities. Formally, both MCs and
HMMs are specified by a tuple {S,A,{T (x),x ∈ A}}. In this, S
is a finite set of states, A is a finite alphabet, and {T (x),x ∈ A}
is a set of |S| × |S| substochastic symbol-labeled transition
matrices whose sum T = ∑

x∈A T (x) is an stochastic matrix.
In MCs states are past words, whereas in HMMs states and
words are distinct. Hence, their states are hidden, not directly
observed.

Consider an example HMM where S = {A,B}, A = {0,1},
T (0) = [

p 0
0 0

]
, and T (1) = [

0 1 − p
1 0

]
. An HMM such as this is

graphically depicted via its state-transition diagram, a directed
graph with labeled edges. S is the set of graph nodes and
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FIG. 1. State-transition diagram for the hidden Markov generator
of the even process, which consists of random binary sequences with
an even number of 1’s separated by arbitrary-length blocks of 0’s.

the edge from node i to j is labeled by p|x corresponding
to the HMM transition with probability p = T

(x)
ij that goes

from state i to j and generates symbol x. Figure 1 shows the
state-transition diagram for a two-state HMM that generates a
process called the binary-symbol even process [23].

The even process highlights why HMMs are such useful
algorithms. Since MC states are constrained to be individual
past words, HMMs can be arbitrarily more compact than MCs
for the same process. In this case, the even process is an infinite
Markov order process since its current state can depend on
arbitrarily long histories. (If only 1’s have been observed, it
can be in either state A or state B.) Said in terms of algorithmic
complexity, the MC representing the even process requires
an infinite number of Markov states, each associated with a
history 1k0, k = 0,1,2, . . .. In contrast, as the figure makes
plain, the even process’ HMM takes only two states. This is
why HMMs are preferred algorithms compared to MCs when
it comes to generating processes.

When using HMMs as process generators we can restrict
attention to those that are unifilar: The current state and next
symbol uniquely determine the next state. Unifilar HMMs are
important since they are perfect predictors of their process.
(The same is not generally true of a process’ nonunifilar
HMM generators. We return to the important, but subtle
distinction between prediction and generation using HMMs
at the end.) For any given process there is an infinite number
of unifilar HMM generators; so the restriction imposes no
loss of representational generality. Given all of the alternative
HMMs, though, which do we choose?

III. OPTIMAL SERIAL AND PARALLEL GENERATORS

Let us say Alice wants to generate the even process. The
previous remarks indicate that she should not use an MC
algorithm since it has infinite states and, as a result, needs
an infinite amount of memory to generate the process. So,
she uses an HMM algorithm, which is finite. To do this, she
writes a computer program. If the current state is A, with
probability p the program emits symbol 0 and stays at state A

and with probability 1 − p it emits symbol 1 and goes to state
B. However, if the current state is B, it generates symbol 1
and goes to the state A. The program continues in this fashion,
again and again, and in the long run generates a realization of
the even process. Moreover, if Alice chooses to start in A or B

using the asymptotic state probability distribution π , then the
resulting realization is stationary.

Imagine that a long time has passed and the HMM is in state
A. Alice decides to stop the program for now and return to-
morrow to continue generating the same realization. She must
make a decision, does she use the realization generated today

or start all over again tomorrow? Not wanting to waste the
effort already invested, she decides to use today’s realization
tomorrow and simply concatenate newly generated symbols.

The next day, though, can she randomly pick a state and
continue generating? The answer is no. If she randomly picks
state B, then there is a chance that after concatenating the old
and new realizations together, the sequence has an odd number
of 1’s between two 0’s. However, she knows that the even
process never generates such subsequences. Thus, if she wants
to use today’s realization tomorrow, then she must record the
HMM’s current state and continue generating from that state
tomorrow.1

Information theory [8] tells us that to record the current
state Alice needs log2 |S| bits of memory. This is the cost of
sequential generation. It gives a quantitative way to compare
algorithms across the infinite number of alternatives. If Alice
wants to use less memory, she selects the HMM with the mini-
mum number |S| of states. Which representation achieves this?

Before answering, let us contrast another scenario, that for
simultaneous generation. Now, Alice wants to generate N � 1
realizations for a given process simultaneously, but insists
that the individual sequences be statistically independent.
The latter means that she cannot simply generate a single
realization and copy it N times. At first blush, it seems
that she needs N log2 |S| bits of memory. According to
Shannon’s source coding theorem [8,24], though, she can
compress the sequence information and, for large N , she
needs only N H[S] � N log2 |S| bits of memory, where
H[S] = −∑

σ∈S π (σ ) log2 π (σ ) is the Shannon entropy of
the stationary probability distribution π (.) over the HMM’s
states. That is, on average, Alice needs H[S] bits of memory
to generate each realization. So, if Alice wants to use less
memory, she selects the process HMM with the minimum
H[S] in the set of unifilar HMMs. Again, which representation
achieves this?

Crutchfield and Young [25] showed that over all unifilar
HMMs that generate a given process, there is a unique HMM
with the minimum number of states. Surprisingly, this same
HMM is also the one with the minimum entropy over its
states. It is now known as the ε-machine [26,27] and its state
entropy is the process’ statistical complexity Cμ [25,26]. The
consequence is that, for a given stochastic process, the mini-
mum memory required for any unifilar HMM to sequentially
generate it is log2 |Sε | bits, where Sε is the set of states in the
process’ ε-machine. For simultaneous generation the average
minimum required memory for each realization is Cμ.

Today, Cμ is often used as a measure of structural
complexity for stochastic processes, from stochastic resonance
[28] to hydrodynamic flows [29], atmospheric turbulence [30],
geomagnetic volatility [31], and single-molecule dynamics
[32–34]. In short, we use ε-machines and Cμ to measure the
memory inherent in a stochastic process. By the preceding

1The time period over which Alice pauses generation can be set to
any duration: an hour, a minute, or a second. In particular, the period
can be that required to generate a single symbol. In this case, after
every symbol emitted Alice must know in what state the generator is.
In short, Alice needs to remember the current state during generation.
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argument we now know how they determine the memory
required for sequential and parallel generation.

IV. TYPICAL AND ATYPICAL BEHAVIORS

So far, the discussion implicitly assumed that models
captured a process’ typically observed behaviors. However,
most stochastic processes exhibit statistical fluctuations and so
occasionally generate atypical, statistically extreme behaviors.
Now, we turn to define what we mean by typical and atypical
behaviors. Once done, we finally state our problem: How much
memory is needed to generate a process’ atypical behaviors.

So, what does it mean that a process exhibits statistical
fluctuations? Let us say Alice has a biased coin, meaning that
when she flips it, the probability p of seeing heads is greater
than one half. Alice now flips the coin n � 1 times and sees
k heads. The strong law of large numbers [35] guarantees that
for large n, the ratio k/n almost surely converges to p:

P

(
lim

n→∞
k

n
= p

)
= 1.

Informally, for large n the typical sequence has close to p

percent heads. This does not mean that Alice never sees long
runs of all heads or all tails, for example. It simply means that
the latter are rare events.

We now show that a process’ typically observed realizations
are those sequences in its so-called typical set. Consider a given
process and let An denote the set of length-n sequences. Then,
for an arbitrary ε > 0 the process’ typical set [8,36,37] is

An
ε ={w : 2−n(hμ+ε) � P(w) � 2−n(hμ−ε),w ∈ An}, (1)

where hμ is the process’ metric entropy (Shannon entropy rate)
[38]:

hμ(P) = − lim
n→∞

1

n

∑
w∈An

P(w) log2 P(w).

According to the Shannon-McMillan-Breiman theorem
[24,39,40], for a given ε � 1 and sufficiently large n:

P
(
w /∈ An

ε ,w ∈ An
)

� ε. (2)

There are two important lessons here. First, coming from
Eq. (1), all sequences in the typical set have approximately
the same probability. Second, coming from Eq. (2), for large
n the probability of sequences falling outside the typical set is
close to zero; they are rare.

Typical
Set

Atyptical
Sets

Forbidden
Set

A∞

FIG. 2. For a given process, the space A∞ of its realizations is
partitioned into forbidden sequences, sequences in the typical set, and
sequences in atypical sets.

FIG. 3. A∞ partitioned into �U s—isoenergy or equal
probability-decay-rate bubbles—in which all sequences in the same
�U have the same energy U . The typical set is one such bubble with
energy equal to metric entropy: U = hμ. Another important partition
is that of the forbidden sequences, in which all sequences have zero
probability. The forbidden set can also be interpreted as the subset of
sequences with infinite energy.

One consequence is that sequences generated by a sta-
tionary ergodic process fall into one of three partitions; see
Fig. 2. The first contains those that are never generated by
a process: sequences with zero probability. (For example,
the even process cannot generate realizations containing
a subsequence in {012k+10}, k = 0,1,2, . . ., those with an
odd number of 1’s between 0’s.) These are the forbidden
sequences. The second partition consists of those in the typical
set—the set with probability close to one, as in Eq. (1). The last
contains sequences in a family of atypical sets, realizations that
are rare to different degrees. We now refine this classification.

Mirroring the familiar Boltzmann weight in statistical
physics [41], in the n → ∞ limit, we define the subsets
�P

U ⊂ A∞ for a process P as:

�P
U,n =

{
w : − log2 P(w)

n
= U, w ∈ An

}
,

�P
U = lim

n→∞ �P
U,n. (3)

In effect, this partitions A∞ into subsets �P
U in which all

w ∈ �P
U have the same probability decay rate U . Physics

vernacular would speak of the sequences having the same
energy density U .2 Figure 3 depicts these subsets as “bubbles”
of equal energy. (Though, to be clear about their “shape”,
these subsets are isomorphic to Cantor sets.) The definition
guarantees that any bi-infinite sequence P generated belongs
to one of these sets. Equation (1) says the typical set is that
bubble with energy equal to the process’ entropy rate: U = hμ.
All the other bubbles contain rare events.

When Alice uses a process’ HMM to generate realizations,
what she does is generate sequences in the typical set with
probability close to one and, rarely, atypical sequences.
Imagine, though, that Alice is interested in a particular class
of rare sequences, those in a different isoenergy bubble; say,
those with energy U in the set �P

U . How can Alice efficiently
generate these rare sequences? We now show that she can find
a new process PU whose typical set is �P

U .

2U , considered as a random variable, is sometimes called a self-
process [5].
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V. GENERATING RARE EVENTS

To do this, we return to considering HMMs for a given
process. With suitable HMMs and a precise definition of a
process’ atypical sequences, we can now ask, How much
memory is required to generate them? How does this compare
to the memory required to generate typical behaviors?

Given a process P and its ε-machine M(P), How do we
construct an ε-machine M(PU ) that generates P’s atypical
sequences at some energy U �= hμ? Here, we answer this
question by constructing a map Bβ : P → Pβ from the
original P to a new process Pβ . The latter is parametrized
by β ∈ R/{0}, which indexes the atypical set of interest.
Both processes P = {A∞,�,P(·)} and Pβ = {A∞,�,Pβ(·)}
are defined on the same measurable sequence space. The
measures differ, but their supports (allowed sequences) are
the same. We refer to Bβ as the β map.

Assume we are given M(P) = {S,A,{T (x),x ∈ A}}. We
will now show that for every probability decay rate or
energy U , there exists a particular β such that M(Pβ)
typically generates the words in �P

U,n for large n. The β map
which establishes this is calculated by a construction that
relates M(P) to M(Pβ) = {S,A,{S(x)

β ,x ∈ A}}, the HMM that
generates Pβ :

(1) for each x ∈ A, construct a new matrix T(x)
β for which

(T(x)
β )ij = (T(x))βij ;

(2) construct a new matrix Tβ = ∑
x∈A T

(x)
β ;

(3) calculate Tβ’s maximum eigenvalue λ̂β and corre-
sponding right eigenvector r̂β ;

(4) for each x ∈ A, construct new matrices S(x)
β for which

(
S(x)

β

)
ij

=
(
T(x)

β

)
ij

(̂rβ)j

λ̂β (̂rβ)i
. (4)

Theorem 1. For the new process Pβ in the limit n →
∞ the probability of the set �P

U,n converges to one:
limn→∞ Pβ(�P

U,n) = 1, where

U = β−1[hμ(Pβ) − log2 λ̂β]. (5)

Also, in the same limit the process Pβ assigns equal energies
over all the members of the set �P

U,n.
Proof. See the Appendix.
As a result, for large n the process Pβ typically generates

the set �P
U,n, where U = β−1[hμ(Pβ) − log2 λ̂β]. So, there is

a one-to-one relationship between β and U and we can denote
the process Pβ by PU . More formally, every word in �P

U with
probability measure one is in the typical set of process Pβ .

This says that changing β controls which class of rare
events we focus on. Informally, the β map acts like a magnifier
(Fig. 3) by enhancing particular isoenergy bubbles. That is,
changing β moves the magnifier from one bubble to another.
The β-map construction guarantees that the HMMs M(P)
and M(Pβ) have the same states and transition topology:
(T(x)

β )ij �= 0 ⇐⇒ (S(x)
β )ij �= 0. The only difference is in their

transition probabilities. Thus, M(Pβ) is also a unifilar HMM,
but not necessarily an ε-machine, since the latter requires a
minimal set of states. Minimality is not guaranteed by the
β map. Typically, though, M(Pβ) is an ε-machine, and there

is only a finite number of βs for which it is not. (More detailed
development along these lines will appear in a sequel.)

Historically, a similar map was found for the first time in
1961 by Miller [42], but only for Markov order-one processes.
In the setting of continuous-time first-order Markov evolution
a similar map was introduced by Refs. [43,44] (s ensemble),
Ref. [45] (biased ensemble), and Ref. [46,47] (exponential
tilting). In these settings Pβ is sometimes called an auxiliary
process [45].

The β map for unifilar HMMs and, consequently, for finite-
or infinite-order discrete-time discrete-value Markov pro-
cesses, was introduced in 1993 [4]. A proof was not provided,
which we remedy here, explaining why this β map works so
generally. There Pβ was called the twisted distribution.

VI. MEMORY SPECTRA

For an arbitrary stochastic process P , using its ε-machine
the last section presented a method to construct a (unifilar)
generator whose typical set is the process PU —the rare events
of the original P . Now, we determine the minimum memory
required to generatePU . Recalling the earlier coding-theoretic
arguments, this is rather straightforward to answer. The
minimum memory to generate PU is determined by the size
of its ε-machine. (As noted, this is the size of M(PU ) except
for finite number of U .)

So, except for a finite number of rare-event classes, to
sequentially generate sequences in a given rare class, one
requires the same memory—the number |S| of states—as that
to generate the original process. This is our first result on the
minimum Markov memory for a process’ rare events.

The story differs markedly, however, for simultaneous
generation. The minimum required memory for simultaneous
generation of PU is Cμ(PU ), putting the earlier coding
argument together with last section’s calculations. More to the
point, this is generally not equal to Cμ(P). To better appreciate
this result, let us examine three examples.

First, consider the two-biased-coins (TBC) process with
p = 1/3, whose ε-machine is shown in Fig. 4(a). To generate
its realizations, one flips a biased coin repeatedly. At first, label
heads a 0 and tails a 1. After flipping, switch the labels and call
a head 1 and a tails 0. A TBC-process sequence comes from
repeating these steps endlessly. As Fig. 4(a) makes clear, there
is a symmetry in the process. In the stationary distribution
π , state A has probability half, as does state B, and this is
independent of p. This gives Cμ(P) = 1 bit. Recalling the
β-map construction, we see that changing β does not change
the ε-machine topology. All that changes is p. This means,
in turn, that the symmetry in states remains and Cμ(PU ) = 1
is constant over allowed Us (or βs); Cμ(U ) versus U is the
horizontal line shown in Fig. 4(c).

What energies are allowed? The TBC process has a finite
energy range: U ∈ [≈ 0.586, ≈ 1.584]. From Eq. (3) we
see that the maximum Umax corresponds to the bubble with
the rarest sequences that can be generated. Conversely, Umin

corresponds to the bubble consisting of sequences with the
most probability. The energy extremes delimit the domain of
the Cμ(PU ) curves in Fig. 4(c). In addition, the U associated
with P’s typical set is marked in the figure with a dashed
(green) vertical line near U ≈ 0.9183.
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FIG. 4. (a) Two-biased coins (TBC) process ε-machine gener-
ator. (b) Intermittent periodic process (IPP) ε-machine generator.
(c) Statistical complexity Cμ versus energy U (or fluctuation class)
for each, along with the energies U ∗ at which their typical sets are
found (vertical dashed lines).

The difference between the typical set and that with Umin

is important to appreciate. The typical set is that set of
sequences with probability close to one and with energy
U = hμ. The latter is generally different from Umin. That
is, typical sequences are not necessarily the most probable
sequences, considered individually, but rather they belong to
the most probable subset: the typical set.

As a result of this analysis for this example, 1 bit of memory
is uniformly required for generating the TBC process’ events,
rare or not and independent of which class of rare events we
examine.

Second, this is not the general case, since Cμ(PU ) can
be a nonconstant function of U , as we now show. Consider
the intermittent periodic process (IPP) with p = 0.35; its ε-
machine is given in Fig. 4(b) (top right). It gets its name since
when p = 0, it periodically emits the subsequence 101 and
when p > 0, it randomly inserts 1’s. Using the β map and
Theorem 1 we can find the processes PU and calculate their
Cμ. Figure 4(c) shows how Cμ(PU ) depends on U . The IPP
is similar to the TBC process in that it also has a finite energy
range; IPP energies U ∈ [≈0.207, ≈ 1.515]. It turns out that
for any process with a finite ε-machine the allowed energy
range is also finite. In addition, the U associated with P’s
typical set is marked in the figure with a dashed (red) vertical
line near U ≈ 0.406.

Thus, IPP’s Cμ(PU ) is a nontrivial function of U . Practi-
cally, this means that generating various rare-sequence classes
requires less memory than for other classes. For example,

FIG. 5. (a) Process ε-machine generator. (b) Statistical complex-
ity Cμ versus energy U for the ε-machine generator. Insets (bottom)
display ε-machines for the processes generating the fluctuation
extremes at β → ∞ and β → −∞.

for events with Umax—p = 1 and β → −∞—ones needs no
memory, since the class of maximum energy has only one
sequence—the all-1s sequence. This can be generated by an
independent, identically distributed (IID) process that emits
only 1’s. Generally, due to its IID character, we do not need to
remember or store the process’ current state. In other words,
the ε-machine M(PU ) that generates this class only has one
state and so Cμ = 0 bits there. For Umin, occurring at p = 0 and
β → ∞, there are three “ground-state” sequences: the three
shifts of . . . 101101 . . . and three equally probable states. Thus,
Cμ(Umin) = log2 3 ≈ 1.585 bits are necessary for generation.

Third and finally, for a more complex example consider the
process generated by the ε-machine with p = 1/3 given in
Fig. 5(a). Using the β map and Theorem 1, we again find the
processes PU and calculate their Cμ, as shown in Fig. 5(b).
The difference between this process and IPP is that at no
inverse temperature β do we have an IID process Pβ . As a
consequence, Cμ(PU ) is nonzero for all allowed U .

The insets in Fig. 5(b) highlight the details of the process’
ε-machines for two limits of β. In the limit β → ∞ the
probability of B’s self-transition vanishes, and the probability
of transiting from state B to A goes to one. Similarly, the
probability of A’s self-transition vanishes and the A-to-C
transition probability goes to one. As a consequence, as shown
in Fig. 5(b), the extreme process generates 0 then 1, then flips
a coin to decide the outcome and then repeats the same steps
again and again. The physical interpretation is that this limit
captures the process’ ground states and they have positive
entropy density and memory.
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In the complementary limit β → −∞, an interesting
property emerges. The process breaks into two distinct subpro-
cesses that link to each other only arbitrarily weakly. The first
process consists of state B with a deterministic self-transition
that generates 1’s. The second subprocess consists of state A

with a deterministic self-transition that generates 0’s. In other
words, the process has two phases that rarely switch between
themselves. As a result, over moderate durations the process
exhibits nonergodic behavior. We note that this has profound
effects on predictability: Substantial resources are required for
predicting nonergodic processes [48], despite their requiring
finite resources for generation.

VII. CONCLUDING REMARKS

To generate the rare behaviors of a stochastic process, one
can wait, if one wants, for exponentially long times for them
to occur. Here, we introduced an alternative to rare-event
generation from large deviation theory and its predecessors.
Given a process, we first classified its events into those that are
forbidden, typical, and atypical. Then we refined the atypical
class. For any chosen rare class we introduced an algorithm that
constructs a new process, and its unifilar HMM, that typically
generates those rare events. Appealing to the optimality of
computational mechanics’ ε-machines then allowed us to
analyze the minimal memory costs of implementing rare-event
generators. Depending on the goal—producing a single correct
sample (sequential generation) or a large number of correct
of samples (simultaneous generation) from the rare class of
interest—memory cost differs. We studied both costs. Taken
together the three examples analyzed give a complete survey
of applying the method and how memory costs vary across
classes of rare events.

There are two main types of algorithms for generating
stochastic processes: Monte Carlo versus finite-state machine
algorithms. Monte Carlo algorithms are appropriate if the
process can be written as a probability distribution generated
by a Hamiltonian system and if what we are interested in are
macroscopic statistics. For a given process, finding a compact
Hamiltonian generator can be challenging. In addition, to
generate long realizations using Monte Carlo algorithms, one
needs correspondingly long initial data. These data, which
change during the algorithm, must be stored by the algorithm.
So, this approach can be memory intensive. These limitations
do not exist for finite-state machine algorithms.

The Introduction emphasized that we focused only on
unifilar HMMs as process generators, and then we constructed
the minimal unifilar generator for a given class of rare events.
The unifilar condition is necessary when using a process’ past
behavior to optimally predict its future [49]. However, one
may not be interested in prediction, only generation for which
unifilarity is not required. While removing unifilarity expands
the space of HMMs, it greatly complicates finding minimal
generators. For one, nonunifilar HMMs can be more memory
efficient than unifilar HMMs for a given process [18,50,51].
For another, constructing a minimal nonunifilar HMM for a
general process is still an open and hard question [52–54].

The required memory Cμ(P) for (unifilarly) generating
realizations of a given process P has been used as a measure
of structural complexity for over two decades. It places a

total order over stochastic-process space, ranking processes
by the difficulty to generate them. The theorem introduced
here extends the measure Cμ(P) to the full memory spectrum
Cμ(PU ) to generate fluctuations.

As one consequence, this structural accounting introduces
the new phenomenon of the ambiguity of simplicity [55] to the
domain of fluctuation theory. Say that process A is simpler
than process B, since it requires less memory to generate:
Cμ(A) < Cμ(B). However, if instead we are interested in
the rarest events at U , we showed that it is possible that
A is more complex than process B since it requires more
memory for that event class: Cμ(AU ) > Cμ(BU ). As Ref.
[55] notes, this fundamental ambiguity flies in the face of
appeals to simplicity via Occam’s razor and practically impacts
employing statistical model selection as it relies on a total order
of model complexity.

The same fluctuation theory has recently been used to
identify fluctuations in macroscopic thermodynamic function-
ing in Maxwellian demons [56]. Moreover, the method can
be applied to many stochastic systems to explore their rare
behaviors, from natural processes observed in fluid turbu-
lence [57,58], physiology [59,60], surface science [61,62],
meteorological processes [63], cosmic microwave background
radiation [64], and seismic time series [65] to designed systems
found in finance [66–69], renewable energy [70,71], and traffic
[72,73]. It gives a full description of a process, from its typical
to its rare behaviors. It also determines how difficult it is to
simulate a process’ rare events.

Finally, there is another potentially important application
domain. The rapid progress in quantum computation and
information suggest that, perhaps soon even, one will be
able to generate processes, both classical and quantum, using
programmable quantum systems. The equivalent memory Cq

for the simultaneous quantum simulation of processes also
has already been introduced [49,74–77]. So, a sequel will
analyze quantum memory fluctuation spectra Cq(U ) and how
they differ from the classical spectra introduced here.
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APPENDIX: PROOF OF THE THEOREM

This Appendix establishes the main theorem via a single
lemma relying on a process’ cryptic order.

Cryptic order is a recently introduced topological property
of stochastic processes [78] that is bounded by, but is rather
different in motivation from, the more familiar Markov order
[79]. Formally, given a process’ ε-machine, its cryptic order
is K = inf {l : H[Sl|X0X1 · · · ] = 0, l ∈ Z}. Informally, this
means that if we observe an infinite-length realization, we can
be certain about in which state the ε-machine is in after the
Kth symbol [80].

Lemma 1. For any given process with finite states and
cryptic order, for every U and β ∈ R/0 we have

�P
U = �

Pβ

βU−log2 λ̂β
.
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Proof. Consider an arbitrary word w = x0x1 · · · xn−1 ∈ An

generated by process P , where n � 1. Since the ε-machine
is unifilar, immediately after choosing the initial state, all the
successor states are uniquely determined. Using this, we can
decompose w to two parts: The first part wK is the first K

symbols, and the second part is w’s remainder. Knowing w,
the state σK and all successor states following σK+1,σK+2, . . .

are uniquely determined. As a consequence, the probability of
process P generating w can be written as

P(w) = P(wK )
n−1∏
i=K

(T(xi ))σiσi+1 .

We can adapt the energy definition in Eq. (3) to finite-length
sequences. Then, w’s energy is

U(w) = − log2 P(w)

n

= − log2 P(wK )

n
− log2

[∏n−1
i=K (T(xi ))σiσi+1

]
n

.

Now, consider the same word, but this time generated by the
ε-machine M(Pβ). Then, the probability of generating w is

Pβ(w) = Pβ(wK )
n−1∏
i=K

(
S(xi )

β

)
σiσi+1

= Pβ(wK )
n−1∏
i=K

(
T(xi )

β

)
σiσi+1

(̂rβ)σi+1

λ̂β (̂rβ)σi

= Pβ(wK )
(̂rβ)σn

(̂rβ)σK

(̂λβ)n−K

n−1∏
i=K

(
T(xi )

β

)
σiσi+1

= Pβ(wK )
(̂rβ)σn

(̂rβ)σK

(̂λβ)n−K

[
n−1∏
i=K

(T(xi ))σiσi+1

]β

.

The new energy for the same word is

Uβ(w) = − log2 P(w)

n

= −
log2

[
Pβ(wK ) (̂rβ )σn

(̂rβ )σK

]
n

− n − K

n
log2 λ̂β

−β
log2

[ ∏n−1
i=K (T(xi ))σiσi+1

]
n

.

FIG. 6. The β map acts like a magnifier: In the parlance of large
deviation theory, it “twists” or “tilts” the sequence distribution in a
way that focuses on the probability of a chosen rare-event class. Fixing
β, the β map changes the energy U of a class to Uβ = βU − log2 λ̂β .
In particular, a subset with energy U ∗ maps to the typical set of a new
process that has energy hμ(Pβ ). The set FW of forbidden sequences
is invariant under the β map.

In the limit of large n the first terms in U(w) and Uβ(w)
vanish, and we have Uβ(w) = βU(w) − log2 λ̂β . Thus, for
any two long sequences w1,w2 ∈ An, if U(w1) = U(w2),
then Uβ(w1) = Uβ(w2). The partitions induced by Eq. (3) are
invariant under the β map. In other words, the energy of an
arbitrary bubble after β mapping changes from U to Uβ , where

Uβ = βU − log2 λ̂β .

This completes the lemma’s proof. �
This demonstrates how the β map changes bubble energy:

U → βU − log2 λ̂β . So, now we ask for the bubble (and its
energy) that maps to the typical set of the new processPβ . That
is, we use the β map to find the class �P

U of rare sequences
typically generated by M(Pβ).

This sets up the theorem’s proof. Using the fact that the
process’ metric entropy is the typical set’s energy, the energy
of Pβ’s typical set is hμ(Pβ). (Refer to Fig. 6.) The lemma
tells us how the β map changes energy. Using this, we can
identify the bubble with energy U ∗ that is typically generated
by M(Pβ); it has

hμ(Pβ) = βU ∗ − log2 λ̂β .

This completes the theorem’s proof.
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Wächter, P. Milan, E. Lorenz, and J. Peinke, Euro. Phys. J.
Spec. Top. 223, 2637 (2014).

[71] M. Anvari, G. Lohmann, M. Wächter, P. Milan, E. Lorenz, D.
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