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Breakdown of nonlinear elasticity in stress-controlled thermal amorphous solids
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In recent work it was clarified that amorphous solids under strain control do not possess nonlinear elastic
theory in the sense that the shear modulus exists but nonlinear moduli exhibit sample-to-sample fluctuations that
grow without bound with the system size. More relevant, however, for experiments are the conditions of stress
control. In the present Rapid Communication we show that also under stress control the shear modulus exists,
but higher-order moduli show unbounded sample-to-sample fluctuation. The unavoidable consequence is that
the characterization of stress-strain curves in experiments should be done with a stress-dependent shear modulus
rather than with nonlinear expansions.
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Amorphous solids are created as a result of the glass transi-
tion, by cooling sufficiently rapidly certain pure liquids or mix-
tures of liquids so as to avoid the equilibrium phase transition to
a crystalline solid. In recent years the theoretical understanding
of amorphous solids has been advancing, showing that they
have rather peculiar mechanical properties. In particular, it
was clarified recently that generically amorphous solids do not
have a regular nonlinear elasticity theory [1–3]; describing the
stress-strain relation as a power series in the strain, for exam-
ple, is untenable. This was shown first for athermal amorphous
solids independently of the deformation protocol and later for
thermal amorphous solids under strain-controlled conditions.
For a wide range of (low) temperatures it is impossible to
define nonlinear elastic coefficients, as they do not converge
to a specific value with the increase of the system size [3]. The
physical reason for this lack of convergence is the anomalous
statistics of stress fluctuations in amorphous solids. It was also
shown that in strain control conditions, nonlinear expansion
of stress in powers of strain are not necessary, since the stress-
strain curves can be fully characterized using a theoretically
meaningful (local) γ -dependent shear modulus μ(γ ) [2].

Additional interest in this phenomenon has emerged due
to its relation to the putative Gardner transition [4], which is
believed to exist in generic glass formers [5–7]. One of the
main consequences of the Gardner transition, if it exists, is
precisely the breakdown of nonlinear elasticity in the sense
discussed above [8]. This increases the motivation to identify
the breakdown of nonlinear elasticity in experimental system.
Experiments, however, are rarely done in strain-controlled
conditions since it is much easier to control the stress on
a piece of material than its strain. It is therefore necessary
to examine the elasticity theory of amorphous solids in
stress-controlled conditions. In this Rapid Communication we
examine the nonlinear elasticity theory of stress-controlled
simulations, where the strain is the fluctuating quantity. The
central conclusion is that also in stress-controlled conditions
the nonlinear elasticity theory breaks down and should not
be used in the context of amorphous solids. Using a stress-
controlled simulation takes us one step closer to systems used
in experiments and perhaps similar results can be obtained in
future experimental measurements.

Consider the standard nonlinear elasticity theory for a solid
under simple shear strain, with γ = γxy being the only nonzero

component of the strain tensor. The stress is computed as a
Taylor expansion around zero strain [9],

σ (γ ) = B1γ + 1
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where σ = σxy is the only nonzero component of the stress
tensor and

Bn ≡ dnσ

dγ n
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Here B1 is the usual shear modulus that is usually denoted by μ,
μ ≡ B1. Inverting the power series (1) will give an equivalent
expression, in terms of the derivatives sn ≡ ∂nγ /∂σn:

γ (σ ) = γ0 + s1σ + 1
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The relations between the coefficients in Eqs. (1) and (3) are
given by [10]
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etc.
To compute the derivatives appearing in Eq. (3) in terms of

strain fluctuations we need a statistical-mechanical expression
for the mean strain. Consider a system with N particles in
positions R ≡ {r i}Ni=1 in a volume V . When the external stress
σ ext is fixed, the ensemble average is provided by (see, e.g.,
[11])

γ (σ ext) =

∫
γ e[−U (γ,R)+V σ extγ ]/T dγ dR∫
e[−U (γ,R)+V σ extγ ]/T dγ dR

, (4)
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where T is the temperature in units where the Boltzmann
constant is unity and U (γ,R) is the energy of the system. One
should note that Eq. (4) does not imply that the system is
ergodic at temperature T ; it can be trapped in a patch of phase
space and is equilibrated only within that patch.

The computation of the derivatives in Eq. (3) is now
straightforward [12], yielding

s1 = V

T

(〈γ 2〉0 − 〈γ 〉2
0
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... (5)

where the moments of the strain distribution at zero external
shear stress are defined by

〈γ n〉0 =
∫

γ ne−U (γ,R)/T dγ dR∫
e−U (γ,R)/T dγ dR

. (6)

The main question now is what statistics of strain fluctuation
determine these moments. In an amorphous solid the system
is confined to a compact set in a restricted domain of
the configuration space; accordingly, for each realization of
the amorphous solid the integral (6) is computed over this
set of configurations that are visited by the glass particles,
confined around a given amorphous structure [2,13]. This
fact is the origin of sample-to-sample fluctuations; these
fluctuations may either decrease or increase with the system
size, depending on the moment involved. This is precisely what
we need to learn using the numerical simulations described
next.

Having the expressions (5) for the coefficients sn, we will
measure them below in numerical simulations for different
realizations of the same glass. We will then use Eq. (4) to
determine the moduli Bn. Needless to say, for each realization
of the glass with N particles we will find a number for Bn.
As explained, the interesting question is the sample-to-sample
fluctuation, whether they decrease or increase with the system
size. In other words, we will measure the distributions of these
objects and the moments of sample-to-sample variances

(δBn)2 ≡ (Bn − Bn)2, (7)

where ( �) denotes the average over different realizations.
To simulate a system in which the strain is free to fluctuate

we employ the variable shape Monte Carlo technique (see
Refs. [14,15]), explained in more details in Ref. [11]. This
method starts by defining a square box of unit area where
the particles are at positions r̂ i . Next one defines a linear
transformation h, taking the particles to positions r i via r i =
h · r̂ i . The actual area of the system becomes the determinant
V = |h|. The Monte Carlo procedure employs two kinds of
moves. First one performs n standard Monte Carlo moves

r̂new
i = r̂old

i + δ r̂, 1 � i � N. (8)

In this equation the α component of the displacement vector
of a particle is given by

δr̂α = �r̂max(2ξα − 1), (9)

where �r̂max is the maximum displacement and ξα is an
independent random number uniformly distributed between 0
and 1. After these standard moves the transformation h changes
according to hnew = hold + δh, where elements of the random
symmetric matrix δh are defined by

δhij = �hmax(2ξij − 1), i � j. (10)

Here �hmax is the maximum allowed change of a matrix
element and ξij is an independent random number uniformly
distributed between 0 and 1.

In this particular case the h matrix was chosen to induce
simple shear conditions

h = L

(
1 γ

0 1

)
= L

(
1 δh

0 1

)
, (11)

where L is the length of the square simulation box and γ is
the simple shear strain, with the volume of the system V =
L2 being conserved. The value of �hmax and the maximum
displacement of particle positions �r̂max are selected to obtain
a desired acceptance rate of 30%. For each kind of move the
trial configuration is accepted with probability

Ptr = min

[
1, exp

(
− �G

T

)]
. (12)

Here �G is the enthalpy change due to the move. Since in this
case we chose volume-conserving transformations without any
external stress applied, the expression is simply

�G = U
(
γ + δγ ,rnew

i

) − U
(
γ ,rold

i

)
, (13)

where γ is the system’s strain. In the current study no external
stress is implemented and thus the energy difference is only
due to the affine deformation itself. Thus the strain γ is free to
fluctuate around some mean value. The reader should note that
for any given realization of the glass the mean value of γ is
not necessarily zero. Only when these means are averaged over
many glassy realizations in the sense of the overline average
in Eq. (7) the result should vanish.

To collect data we used the same glass former used in
Ref. [3], i.e., a two-dimensional Kob-Andersen 65:35 binary
Lennard-Jones mixture [16,17], slowly quenched from a liquid
at T = 0.4 down to T = 10−6 using molecular dynamics with
the quench rate Ṫ = 10−6. Here temperature and all other
quantities are measured in dimensionless units. The number
density is ρ = 1.162. Each sample was than relaxed in the
target temperature for i = 5 × 105 Monte Carlo (MC) steps, in
which the parameters �hmax and �r̂max were calibrated. Then
each realization was ran with zero external stress σ ext = 0
for τ = 5 × 106 MC steps, from which the moments of the
strain fluctuations 〈γ n〉 were calculated. The number of steps
τ was chosen to be sufficiently large to reach saturation of the
measured quantities and to be independent of the averaging
window. To calculate the variances across the ensembles,
for each system size N = {200,500,1000,2000} between 300
and 800 different realizations were prepared and allowed
to fluctuate independently. In order to keep the data clean,

031001-2



RAPID COMMUNICATIONS

BREAKDOWN OF NONLINEAR ELASTICITY IN STRESS- . . . PHYSICAL REVIEW E 95, 031001(R) (2017)

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

B1

P
(B

1)
N=200
N=500
N=1000
N=2000

−1000 −500 0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5x 10
−3

B2

P
(B

2)

N=200
N=500
N=1000
N=2000

−4 −2 0 2 4
x 10

5

0

2

4

6

8

10

12

x 10
−6

B3

P
(B

3)

N=200
N=500
N=1000
N=2000

FIG. 1. Distribution of values of the first three coefficients in the
expansion (1) over the realizations for different systems size. The
temperature here is T = 0.05.
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FIG. 2. System size dependence of the variances of the first three
coefficients in the expansion (1). Here the temperatures are T = 0.01,
0.05, and 0.1.
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realizations that were detected exhibiting fluctuations of the
strain around two (or more) mean values were eliminated from
the ensemble and were not considered for the calculation of
the sample-to-sample variances.

In Fig. 1 we show the distributions of B1, B2, and B3 over
the different sets of realizations as explained above. The data
presented here are for T = 0.050; similar plots were made for
T = 0.010,0.100. For each of the coefficients and for each
system size, the values of Bn across the whole ensemble
(N = 300–800 realizations) were binned and normalized to
produce the probability density function. As in previous work
(see, e.g., [1,3]), one can see that the distribution of the shear
modulus μ = B1 converges to a δ function at a temperature-
dependent sharp value B1 = 15.9,14.9,14.1 at temperatures
T = 0.01,0.05,0.1, respectively. The second modulus B2 does
not converge with the system size and the variance of the
third modulus B3 diverges with the system size. It is therefore
interesting to examine the variances of the distribution as a
function of system size, as shown in Fig. 2. The values of
ensemble variance (δBk)2 are presented in a log-log plot for
different system sizes and are fitted to linear curves. From the
data we can extract the following scaling laws:

(δB1)2 ∼ Nα1 , (δB2)2 ∼ Nα2 , (δB3)2 ∼ Nα3 . (14)

To determine the exponents we estimate the variance by
fitting a Gaussian function to the distribution. In our experience
this method is superior to measuring the variance from the raw
data that may have outliers that reduce the accuracy of the
estimate. We measure α1 = −0.95 ± 0.04 with only a slight
temperature dependence. For α3 we measure the values α3 =
1.6 ± 0.24. The distribution of B2 seems marginal and indeed
the measured value of the exponent α2 is close to zero, except
at the lowest temperature, where there is an apparent weak
divergence. This is in line with the results in the athermal case
[1], but differs from the thermal strain-controlled ensemble [3],
where a divergence was found also for the value of B2 variance.

It is interesting to relate these findings to a recent theoretical
work [8] predicting a so-called Gardner transition [4] in
thermal glass-forming liquids [7,8]. The phenomenon seen in

this transition is that at some temperature, lower than the glass
transition temperature, there appears a qualitative change in
the free-energy landscape, generating a rough surface with
arbitrarily small barriers between local minima. The con-
nection to the present work is that this is accompanied by
a breakdown of nonlinear elasticity in much the same way
reported here. The available theory pertains to a mean-field
treatment and a comparison of exponents is probably not
warranted. Nevertheless, it is interesting that the shear modulus
is expected to exist and the variances of Bk with k � 3 are
expected to diverge with the system size, in agreement with
the predictions of Ref. [1] and the findings of the present paper.
In Ref. [8] it was also predicted that the phenomenon should
disappear when the system is heated above the (protocol-
dependent) Gardner temperature. Whether or not this occurs
before the shear modulus itself vanishes depends on the speed
of quench from high to low temperatures. A search of a Gardner
temperature would require repeating our analysis on extremely
slowly quenched glasses as a way to provide a good separation
of the Gardner point and the point of disappearance of the
shear modulus [8]. Such an analysis is beyond the scope of the
present Rapid Communication but appears to be a worthwhile
endeavor for future research.

Finally, we should discuss the implications of our finding
for stress-controlled experiments. Clearly, one can repeat the
procedure described above at a given stress value instead of
zero stress. For any given stress one can determine the mean
strain, plot a stress vs strain curve, and determined the local
slope. The prediction that is implied in the present Rapid
Communication is that this local slope will be equivalent to
the value of the shear modulus μ = B1 that can be measured
from the moments of the strain fluctuations. There is no point
in attempting to fit a nonlinear stress vs strain curve since the
nonlinear moduli have no theoretical value. This prediction
warrants a careful experimental verification.
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