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Non-Gaussian limit fluctuations in active swimmer suspensions
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We investigate the hydrodynamic fluctuations in suspensions of swimming microorganisms (Chlamydomonas)
by observing the probe particles dispersed in the media. Short-term fluctuations of probe particles were
superdiffusive and displayed heavily tailed non-Gaussian distributions. The analytical theory that explains
the observed distribution was derived by summing the power-law-decaying hydrodynamic interactions from
spatially distributed field sources (here, swimming microorganisms). The summing procedure, which we refer
to as the physical limit operation, is applicable to a variety of physical fluctuations to which the classical
central limiting theory does not apply. Extending the analytical formula to compare to experiments in active
swimmer suspensions, we show that the non-Gaussian shape of the observed distribution obeys the analytic
theory concomitantly with independently determined parameters such as the strength of force generations and
the concentration of Chlamydomonas. Time evolution of the distributions collapsed to a single master curve,
except for their extreme tails, for which our theory presents a qualitative explanation. Investigations thereof and
the complete agreement with theoretical predictions revealed broad applicability of the formula to dispersions of
active sources of fluctuations.

DOI: 10.1103/PhysRevE.95.030601

I. INTRODUCTION

Properties of small systems fluctuate measurably and
statistics of such fluctuations are often the key to investigate
their physical behaviors [1,2]. In a homogeneous continuum
under thermodynamic equilibrium, for instance, a micron-
sized probe particle exhibits Brownian motion due to inces-
sant independent collisions of innumerable molecules. The
variance of the local stress attributable to these collisions is
finite and quantitatively related to the continuum mechanics of
surrounding media via the fluctuation-dissipation theorem [3].
The classical central limit theorem (CLT) guarantees that the
sum of independent fluctuations with finite variance converges
to Gaussian. Thermal probe fluctuations in homogeneous con-
tinuum are therefore Gaussian, which is a stable distribution
for variables whose variance is finite [4].

Phenomena at the mesoscopic scales are more than just
stochastic. Sometimes they are even chaotic as typically
observed in an active material [5,6]; i.e., a system driven
out of equilibrium by force-generating inclusions such as
microorganisms swimming in buffer [7–9], or motor proteins
in cytoskeletons [10–12]. These active materials exhibit
peculiar rheological properties and collective behaviors that
do not obey the statistics of thermodynamic equilibrium
[11,13]. For their theoretical description, coarse graining, i.e.,
taking quantities such as the concentration, orientation, and
flows as continuum fields [8,9], has been adopted. Formally,
it can be validated for systems concentrated with active
inclusions. Frequently, however, active force generators such
as microorganisms and motor proteins are sparsely distributed
in space. Their average nearest-neighbor distance can be much
larger than the probe size. Fluctuations are thus collective and
correlated at least in the distance of active inclusions. Such
fluctuations have been studied with numerical simulations
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[14] and/or phenomenological modeling [15]. Criterion for the
applicability of the CLT to fluctuations in active suspensions
or to other general physical systems is still elusive.

A suspension of swimming microorganisms has been used
as a simple model of an active material [7–9,13]. Microorgan-
isms can swim since they create forces and transmit them to the
surrounding media. For instance, Chlamydomonas reinhardtii,
which was chosen for this study, pulls on the surrounding
fluid using two flagella at its front to move its body forward
(Fig. 1). The resulting flows in the surrounding media were
studied by tracking the motion of colloidal probe particles. It
has been found that displacements of the probe particles show
non-Gaussian heavily tailed distributions [16,17]. In a whole
sample with macroscopic dimensions, many Chlamydomonas
independently swim and generate forces. If the flow generated
by a Chlamydomonas has finite variance, CLT requires that
probe fluctuations that arise as the sum of independent flows
from many Chlamydomonas should converge to Gaussian dis-
tribution. The observed non-Gaussianity seems to apparently
violate CLT.

The hydrodynamic flow field around a force generator
(Chlamydomonas) spatially decays with a power-law function.
It is then possible to show that the field intensity due to a single
Chlamydomonas that is randomly placed in the system should
exhibit power-law distribution. If such power-law distribution
was attained in an infinite range, its variance would diverge.
The generalized central limit theorem (G-CLT) would then
require that sum flow field should converge to another limit
distribution referred to as Lévy stable distribution [4,18].
However, the variance of the physical power-law fields does
not diverge since they are usually truncated at its larger
end somehow. In the case of Chlamydomonas suspension,
infinitely large fluctuation does not occur since a probe and
a force generator do not share the same position. Therefore,
G-CLT does not explain the observed non-Gaussianity.

Both the classical CLT and G-CLT are broken in active
swimmer suspension, since the standard limit operation
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FIG. 1. (a) Chlamydomonas were dispersed and sealed in a
glass-bottom dish together with microstirrer bars. (b) A single
Chlamydomonas was randomly inserted into a spherical volume, and
a probe was placed at the origin. A pair of balanced forces F and −F
were exerted on the surrounding medium and form a force dipole.
The swimming direction is represented by n̂.

adopted for these conventional CLT cannot be used for
summing hydrodynamic power-law fields. As we show below,
the limit distribution of the fluctuations induced by all
Chlamydomonas in the macroscopic sample is attained, not
by just increasing the Chlamydomonas number in the system,
but by taking the infinite system size while keeping the
concentrations of Chlamydomonas constant. This “physical”
limit operation increasing the system size affects the distribu-
tion of the flow originated from a single Chlamydomonas;
the power-law range of the distribution extends towards
smaller values during the operation. As was found recently,
the limit operation appropriate for physical situation leads
to an analytical formula that smoothly intermediates the
mathematical limit distributions, Gauss and Lévy [19]. Below,
we first summarize its derivation and extend the formula so that
it can compare to experimental observations of hydrodynamic
fluctuations in active swimmer suspensions.

II. THEORETICAL BASIS

Lévy distribution is defined by its Fourier transform
(characteristic function) in the form of P̃ (k) = exp(−b|k|α)
where the characteristic exponent α is restricted to 0 < α <

2. Suppose that there are N -independent Chlamydomonas
swimming in a spherical volume with a radius Rmax. A probe
particle is placed at its center, which is defined as the origin of
the system (Fig. 1). In dilute situations, each Chlamydomonas
independently swims and contributes to the velocity of the
probe as v1,v2,v3, . . . ,vN. The probability distribution W (v)
of the total velocity v = ∑N

i=1 vi is then given by the (N − 1)-

fold convolution of wi(vi) which is the probability distribution
of vi . In Fourier space, the characteristic function of W (v) is
expressed as

W̃ (k) =
∏

i

w̃i(k). (1)

Hereafter, the use of “ ∼ ” above a function indicates that it
has undergone Fourier transform. Consider now that all wi(vi)
are isotropic and take the same probability distribution, i.e.,
w(vi) ≡ wi(vi) where vi ≡ |vi |. When w(v) exhibits a heavy
tail that follows a power law ∼1/vi

3+α , its variance diverges
when α is in the range 0 < α < 2. In this case, according to the
G-CLT that is extended for stochastic variables with infinite
variance, W (v) ≡ W (v) converges to Lévy stable distributions
[4,19,20].

Swimming microorganisms have been modeled as force
dipoles as a first approximation [21]. Because of the meso-
scopic size of the microorganisms, low Reynolds number
hydrodynamics is relevant. Since inertia is neglected, flows
in the media instantaneously respond to the applied forces
[22,23]; the pulling thrust applied by the flagella must be
counterbalanced with the drag of surrounding fluid over the
body. There is no monopole contribution because of the force
balance. The effects of higher-order multipoles are not negligi-
ble if it is too close to the Chlamydomonas [24,25]. However,
they decay much quicker away from the force generators.
Regardless of the perturbation of the flows close to a Chlamy-
domonas, overall velocity fields precisely follow v(n̂,r) ∝ 1/r

in two-dimensional (2D) suspensions [25] and approximately
follow v(n̂,r) ∝ 1/r2 in three-dimensional (3D) suspensions
[24,26]; both are consistent to the force-dipole model. Note
that 2D particle tracking can be performed with more precision
compared to 3D experiments, and v(n̂,r) ∝ 1/r in 2D supports
v(n̂,r) ∝ 1/r2 in 3D.

Suppose that the ith Chlamydomonas is placed at r with
orientation n̂ and strength κ (Fig. 1). The velocity of the flow
at the origin is then given by

vi(n̂,r) = κ{3(r̂ · n̂)2 − 1}r̂/8πηr2 ≡ γ /r2 (2)

up to the lowest order of 1/r [27]. Here, r̂ ≡ r/r , η is the
viscosity of the fluid, and γ represents the direction and
strength (γ ∼ κ/8πη) of the induced flow. Next, suppose
that we put a single Chlamydomonas in random orientations
and positions in an infinite spherical volume (Rmax → ∞).
Taking r and n̂ as random vector variables, the isotropic
power-law distribution of the velocity is obtained: w(vi) ≡
w(vi) ∝ vi

−9/2, meaning α = 3/2 [28,29]. If this power-law
distribution was obtained in an infinite range, its variance
diverges. If we take the simple mathematical sum of these
fluctuations, W (v) ≡ W (v) should converge to the Lévy stable
distribution with the same power-law tail ∝ v −9/2 [4,18–20].

The unphysical divergence of the variance arises because
the model neglects the finite sizes of objects, such as the
Chlamydomonas and the probe. As shown in Fig. 1, there
is minimum distance Rmin between a probe and a Chlamy-
domonas. In this case, w(vi) follows the power law ∼1/vi

9/2

in a range vmin ≡ γmin/R
2
max < vi < vmax ≡ γmax/R

2
min but it

is truncated outside. w(vi) is therefore approximated with a
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power-law function truncated at vmin and vmax as

w(v) =
{

αvα
min

4π
v−(3+α)

[
1 − (

vmin
vmax

)α]−1
(vmin < v < vmax)

0 (otherwise).

(3)

Whereas the actual flow around a force dipole is anisotropic
and γ might distribute, they merely obscure the truncation.
Based on the analysis including n̂ dependence of vi , we
estimate γmin � γ and γ < γmax< 2γ [19]. Substituting the
Fourier transform of Eq. (3) in Eq. (1), and by taking the
limit of a large system size (Rmax → ∞, N → ∞) with
N (vmin/vmax)3/2 = βcR3

min being constant, the limit distribu-
tion is obtained [19]:

W̃ (kv) = exp

(
βcR3

min

[
1 − 1F2

(
−3

4
;

3

2
,
1

4
; −γ 2

maxk
2
v

4R4
min

)])
.

(4)

Here, 1F2 denotes the hypergeometric function and
c is the number density of the Chlamydomonas. β ≡
4π/3(γmin /γmax)3/2 is a prefactor with the order of unity that
is removed hereafter. It is to be noted that vmin approaches zero
during this limit operation. This leads to a continuous increase
in the range of power-law distribution, whereas its variance
becomes infinitesimally small. This subtle balance leads to
nonstandard physical limit distributions. Provided that the
Chlamydomonas suspension is isotropic, the flow velocity dis-
tribution in the x direction is obtained by the one-dimensional
Fourier transform, W (vx) = 1

2π

∫ ∞
−∞ W̃ (kvx)e−ikvxvx dkvx .

The crucial quantity that determines the distribution given
in Eq. (4) is � ≡ cR3

min. In Fig. 2(a), σW (vx) is plotted versus
vx/σ for various c, Rmin, and fixed γ = 1.5 × 10−15 [m3/s].
σ 2 = −∂2W̃ (kvx)/∂k2

vx |kvx=0 = cγ 2/Rmin is the variance of
W (vx). γ was arbitrarily chosen since the rescaled plot does not
depend on it. The normalized distributions with the same � are
plotted in the same colors and clearly demonstrate the collapse
to a single curve. When � is small, the distributions are
heavily tailed and asymptotically approach a Lévy distribution
that should exhibit power-law tail ∝ v

−5/2
x [broken curve in

Fig. 2(a)]. Note that this power law corresponds to ∝ v−9/2.
When � is large, they converge to Gaussian [dash-dotted
curve in Fig. 2(a)]. The distributions are scaled solely with �

that indicates the number of Chlamydomonas in the spherical
volume with radius Rmin, as schematically shown in Fig. 2(b).

III. METHODS

Experiments were carried out using the strain Chlamy-
domonas reinhardtii (NIES collection, NIES-2236). Chlamy-
domonas were cultured in distilled water containing 0.5%
Hyponex (Hyponex Japan Corp.) under the illumination of
a fluorescent lamp. The suspensions of Chlamydomonas were
concentrated by centrifugation at 7500 rpm (5000 × g) and
then resuspended in the glass-bottom dish (D11130H, Mat-
sunami Glass Ind.) together with fluorescent probe particles
(Magsphere Inc., diameters 5 and 10 μm) and microstirrers
(VP717-1, V&P Scientific). The dish has a 14-mm-diameter
hole at the bottom that is covered by a laminated No. 1
coverslip. This circular region was filled with suspension to a
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FIG. 2. (a) Theoretical curves of normalized W (vx) versus vx/σ .
Plots with the same cR3

min are shown in the same color and collapse
to the same curve. The predicted curves for cR3

min � 1 approach
a heavily tailed Lévy distribution that is characterized with its
power-law tail ∝ u−5/2

x (broken curve), whereas those corresponding
to cR3

min � 1 converge to Gaussian distributions (dash-dotted curve).
(b) Schematic illustration of cR3

min that indicates the numbers of
Chlamydomonas in the R3

min volumes, which are indicated by the
dashed circles.

full depth of 1 mm, and an airtight seal was made by another
No. 1 coverslip over the region (Fig. 1). Probe particles were
observed mid-height in the chamber to avoid surface effects.
Inhomogeneities of Chlamydomonas and their adherence to
the glass surface were negligible since the measurements
were done after stirring the suspension with microstirrers. The
number density of Chlamydomonas was obtained for each
experiment by counting the population using hematocytome-
ters (Thoma). Fluorescently labeled polystyrene latex particles
were tracked under a fluorescence microscope (TU-2000,
Nikon). Fluorescence images were captured with a NI-IMAQ
1408 board (National Instruments) at the video rate (30 Hz)
and the positions of fluorescence particles were obtained with
custom-made LABVIEW software.

IV. RESULTS AND DISCUSSIONS

In the dilute conditions chosen in this study
(2.7 × 1012 m−3 < c < 3.6 × 1013 m−3), the swimming be-
havior of different Chlamydomonas is hardly correlated. They
swim at similar speeds [∼80 μm/s, Fig. 3(a)], and turn their
swimming directions at intervals longer than 10 s, on average
[16]. In the smallest time intervals attainable (�t = 1/30 s),
the distance traveled by a Chlamydomonas is smaller than
Rmin. Consequently, the flow variation at the probe during
�t = 1/30 s is not large. Taking this into account, we assume
that the flow at the origin purely due to the swimming of
Chlamydomonas does not change much. The Fourier transform
of nonthermal probe displacements is therefore given by
P̃Ch(k; �t) = W̃ (k�t). Finally, the short-lag-time in-plane

030601-3



RAPID COMMUNICATIONS

KURIHARA, ARIDOME, AYADE, ZAID, AND MIZUNO PHYSICAL REVIEW E 95, 030601(R) (2017)

(c) (d)

(b)(a)

(e) (f)

γ (
10

-1
5 m

3 /s
)

403020100

c (10
12/m3)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

P
C

h 
(u

x;
 Δ

t)

3210
ux (10

-6m)

a = 5 μm

 c  (×10
12

 m
-3
)

   3.6
   5.4
   17

16

12

8

4R
m

in
 (

10
-6
m

)

403020100

c (10
12/m3)

M
S

D
 [

m
2 ]

0.1 1
Δt [s]

c ( × 10
12

m
-3

)
3.5 3.9
7.9 13 
15

 

~ Δt

~ Δt
2

10
0

 
10

2

 
10

4

 
10

6

 

P
C

h 
(u

x;
 Δ

t)
 (

m
-1
)

10
-7

10
-6

ux (m)

c (×10
12

 m
-3
)

 3.5
 7.9
 15
   ux

-5/2

a = 2.5 μm

FIG. 3. (a) Velocity distribution of Chlamydomonas. (b) MSD of
probes (2a = 5 μm) in Chlamydomonas suspensions. Superdiffusive
motion at small �t tends to become diffusive (MSD ∝ �t) at
longer time periods. (c), (d) Displacement distributions of probes
[ 2a = 10 and 5 μm for (c) and (d), respectively] in Chlamydomonas
suspensions prepared with different number densities c. The curves
are fits of the inverse Fourier transform in Eq. (3) obtained using Rmin

and γ as fit parameters. The broken line is the power law ∝ u−5/2
x

expected for the corresponding Lévy distribution. (e), (f) Fit values
for Rmin and γ . Open and filled symbols correspond to data for probes
with 2a = 10 and 5 μm, respectively. Solid and dashed lines in (e)
indicate the averages for probes with 2a = 10 and 5 μm that exactly
match to the sum of the probe radius and that of Chalmydomonas
(∼5 μm). The solid line in (f) indicates the average of γ that agrees
with independent estimation [30].

displacement distribution can be written as

P̃Ch(kx ; �t) = exp

[
cR3

min

{
1 − 1F2

(
−3

4
;
3

2
,
1

4
;

− γ 2k2
xφ(�t)

4R4
min

)}
− Dk2

x�t

]
. (5)

The last term in the exponent in Eq. (5) indicates the addi-
tional probe fluctuation due to thermal diffusion. The diffusion

coefficient D was estimated in this study by observing the
Brownian motion of the same probe particles after removing
the Chlamydomonas via centrifugation. Obviously, we choose
φ(�t) = �t2 for small �t (= 1/30 s) since we expect that
nonthermal motion of a probe is ballistic. But it can evolve
differently in longer time scales since temporal fluctuation of
the hydrodynamic flow affects probe displacements.

Figure 3(b) shows the mean square displacements [MSD
(�t) ≡ 〈{ux(t + �t) − ux(t)}2〉] of probes (2a = 5 μm) dis-
persed in Chlamydomonas suspensions. It was reported that
MSD in Chlamydomonas suspensions evolves linearly with
�t similar to thermal diffusion [16]. We reasonably observed
similar behavior only at large �t (�1 s). At smaller �t , we
observed clear superdiffusive behavior [MSD (�t) ∝ �t1.5],
which is consistent with our theoretical modeling. The more
ballistic probe motion expected for short-term behavior MSD
(�t) ∝ �t2 is possibly obscured by thermal fluctuations. Be-
cause of the fluctuations of flows induced by Chlamydomonas,
probe movement loses its memory and becomes Markov (MSD
∝ �t) at longer time scales. Figures 3(c) and 3(d) present
typical PCh(ux ; �t) measured at �t = 1/30 s using probes
with radii a = 5 and 2.5 μm, respectively. The curves are
the fits of the inverse Fourier transform of Eq. (3), and they
agree well with the experimental data. The dashed line in
Fig. 3(d) indicates the power law ∝ ux

−1−3/2 consistent for
Lévy distribution that is expected asymptotically for small �.
The symbols in Figs. 3(e) and 3(f) indicate the values of Rmin

and γ , respectively, that were obtained for samples prepared
with different concentrations and probe sizes. The dashed and
solid lines in Fig. 3(e) indicate the averaged Rmin for a = 5
and 2.5 μm, respectively. The value of Rmin obtained by the fit
is reasonable since it is consistent with the sum of the radii of
the probe and Chlamydomonas (∼5 μm). The force generated
by each swimming Chlamydomonas in an aqueous medium
is ∼30 pN [29]. By estimating the separation of monopoles
constituting the force dipole of each Chlamydomonas to be
equal to its radius (∼ 5 μm), the magnitude of the force
dipole, κ , was estimated to be ∼1.5 × 10−16 Nm . γ was then
obtained using γ ∼ κ/8πη ∼ 5 × 10−15 m3/s; this value is
also consistent with the average of our fit results as shown by
the solid line in Fig. 3(f).

We now discuss the time evolution of PCh(ux ; �t) using the
plot normalized to ux/σ , which is shown in Fig. 4(a). With this
rescaling, our data taken at different lag times (1/30 s � �t �
1 s) collapsed to a single master curve [16]. Each second, each
Chlamydomonas moves ∼80 μm, which is much larger than
Rmin. The flow velocity at the probe can thus change during
�t if there is a Chlamydomonas nearby [Fig. 4(c), right].
Under the dilute conditions investigated in this study (� ≡
cR3

min ∼ 10−2), it is rare to have a single Chlamydomonas
close to the probe. Then it takes more time to alter the flow
velocity at the probe [Fig. 4(c), left]; these Chlamydomonas
arrangements are prevalent and contribute to the relatively
small probe displacements that show universal collapse.

By closely examining Fig. 4(a), it is seen that only the
central parts (|ux/σ | < 5) of the normalized distributions
overlap. The extreme tails outside this range did not collapse
since they were mostly caused by Chlamydomonas that
coincidentally passed near the probe. In this case, the local
field near the Chlamydomonas is not represented by Eq. (2)
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(a) (b)

(c)

FIG. 4. (a) The lag-time dependence of PCh(ux ; �t), which was
normalized by σ , for c = 1.7 × 1013 m−3 and a probe diameter of
10 m. For these data which have �t � 1 s, the central part of each
distribution in the range |ux/σ | < 5 has collapsed onto a single
curve. (b) Time evolution of the NGP calculated from the same
data used in (a). (c) When there are no Chlamydomonas close to
the probe (left), the complex flow close to a Chlamydomonas is
mostly negligible. A single Chlamydomonas appearing by chance
close to a probe (right) causes large, unpredictable displacements.
These displacements affect the extreme tails of the distributions and
are rarely observable with sufficient statistics.

[24,25]. A large deviation of the probe from the origin can
also compromise our theory. As �t increases, the probability
of a Chlamydomonas passing near the probe also increases.
The displacement fluctuations of probes observed at longer
lag times (�t > 1s) thus tend to converge to Gaussian
distributions [31]. This trend is evident in Fig. 4(b) where
the non-Gaussian parameter (NGP [32]) becomes negligible

at �t > 1 s. During such long lag times, a Chlamydomonas
moves more than the average distance between neighboring
Chlamydomonas (70–100 μm); the memory of the original
Chlamydomonas arrangement was completely lost and the
fluctuations of the probe particles were randomized. Classical
CLT can then be applied to fluctuations at longer �t since
they can be described as the sum of independent random
displacements in smaller time periods.

V. CONCLUSIONS

We observed nonthermal fluctuations of probe particles dis-
persed in swimming Chlamydomonas suspensions and found
that their distributions of short-term displacements complied
with the theoretical predictions that were made by randomly
superimposing power-law-decaying fields. We discuss that
the physical limit operations give rise to non-Gaussian limit
fluctuations where mathematical central limiting theorem does
not apply, and also give a clear-cut quantitative criterion
when physical fluctuations become (non-) Gaussian. The time
evolution of the distributions collapsed to a single master
curve when the distributions were normalized by their standard
deviations. The concept of random power-law fields explains
the reason for this collapse which has been elusive so far. We
also provide a qualitative explanation for the deviation from
the master curve observed at the extreme tail of distributions.
Heavily tailed distributions similar to those investigated in
this study have been widely observed in various active systems
such as living cells, active cytoskeletons [11,12], colloidal sus-
pensions close to the glass transition [33], etc. Our expression
was derived using the rather general assumption of random
power-law fields [19]. We therefore anticipate that this theory
is widely applicable to various nonequilibrium fluctuations
that have been found to have heavily tailed distributions.
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