
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 95, 030108(R) (2017)

Ultrametricity of optimal transport substates for multiple interacting paths over a square lattice
network
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We model a set of point-to-point transports on a network as a system of polydisperse interacting self-avoiding
walks (SAWs) over a finite square lattice. The ends of each SAW may be located both at random, uniformly
distributed, positions or with one end fixed at a lattice corner. The total energy of the system is computed as the
sum over all SAWs, which may represent either the time needed to complete the transport over the network, or the
resources needed to build the networking infrastructure. We focus especially on the second aspect by assigning
a concave cost function to each site to encourage path overlap. A simulated annealing optimization, based on a
modified Berg-Foerster-Aragao de Carvalho-Caracciolo-Froehlich (BFACF) algorithm developed for polymers,
is used to probe the complex conformational substate structure at zero temperature. We characterize the average
cost gains (and path-length variations) for increasing polymer density with respect to a Dijkstra routing and
find a nonmonotonic behavior as recently found for random networks. We observe the emergence of ergodicity
breaking and of nontrivial overlap distributions among replicas when switching from a convex to a concave cost
function (e.g., xγ , where x represents the node overlap). Finally, we show that the space of ground states for
γ < 1 is compatible with an ultrametric structure, as seen in many complex systems such as some spin glasses.
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The problem of optimal transport over various kinds of
networks is important both for theoretical and practical reasons
[1]. Areas of application range from river networks [2,3]
to vascular systems in animals and plants [4,5], and from
electric energy distribution systems [6] to communication
networks [7,8]. The adoption of a cost function minimization
scheme has allowed a unified approach to very diverse research
fields. Cost functions may be thought of as energy dissipation
for electricity grids, time delay, and/or resources needed
to build the networking infrastructure. In recent years, the
relation between the properties of the cost function and the
associated optimal solutions has been extensively studied
[7]. For instance, when multiple sources are connected to a
single destination (as in drainage basins), it is known that a
concave cost leads to multiple (nearly equivalent) spanning
trees, whereas a convex behavior shows a unique redundant
solution with many loops. When the character of the cost
function is not well defined, no a priori conclusions may be
drawn [9].

It is well known [7] that, for concave cost functions, a mul-
tiplicity of local optimal solutions exists. Since a hierarchical
organization of the states is observed, one may hypothesize an
ultrametric relation among them. Ultrametricity (UM) is one
of the key features of the mean-field Parisi picture for spin
glasses [10]: The states of the system obey an UM distance
which translates into a hierarchical organization. This behavior
has been hypothesized or observed for different polymer
systems with noise, such as directed polymers in random media
(DPRM) [11–13] and for self-interacting self-avoiding walks
(SAWs) in external fields [14].

In this Rapid Communication we propose a model having
three main differences with respect to the DPRM formulation:
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(1) The (locally) minimum cost is achieved by collectively
optimizing several interacting chains; (2) polymers are poly-
disperse and have at least one end which is randomly located
on the lattice, meaning that quenched disorder is achieved
through random topology rather than noisy bonds; and (3)
our polymers may not be directed—they are free to wander
backwards and sideways to achieve a global cost gain. This
behavior is seldom observed for weakly interacting polymers
or very dilute systems.

Our analysis reveals a nonmonotonic behavior of the
optimized cost gain, with respect to a Dijkstra routing,
when increasing polymer density, as previously found for
random networks [8]. Moreover, we observe broken ergodicity
and nontrivial overlap distributions among replicas only for
concave costs. Finally, we present evidence that the space of
ground states is compatible with an ultrametric structure.

Model and numerical methods. We consider a square
lattice network of N = L2 nodes and side L, each node
connected to its four nearest neighbors via uniform links with
adjacency matrix Aij = Aji = 1, zero elsewhere. A set of
M communications, modeled as polymers with fixed ends,
compete on the network for the available resources, each
occupying a path described by an interacting SAW. The
self-avoidance condition enforces that no path uses the same
node more than once, whereas distinct polymers can use
the same node. The occupation number of each path ν on
the node i is denoted by σ ν

i ∈ {0,1}. The total occupation
number on the ith node is Ii = ∑

ν σ ν
i . The interaction among

polymers is regulated by a Hamiltonian of the form

H = M
∑

i

f

(
ki

Ii

M

)
, (1)

where the concave or convex character of the cost function
f makes the system behave in qualitatively different ways
[7]. The occupation number is normalized by M in order to
have a uniform temperature behavior with respect to polymer
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multiplicity. The ki are node-dependent weights, in general set
to unity, which may be used to model spatial nonuniformity.
Here, we consider only ki = 1 and the simplest functional form
for the cost f : the power function f (x) = xγ . This functional
dependence leads to polymer repulsion for γ > 1, whereas
γ < 1 encourages overlap. For γ = 1 the polymers do not
interact, and it is known that the ground state of H is attained
by (highly degenerate) shortest-path routing [7,8].

To explore the energy landscape of H for γ �= 1, we adopt
a simulated annealing (SA) scheme in which temperature
is gradually decreased to zero within a canonical Monte
Carlo (MC). The basic MC move follows the Berg-Foerster-
Aragao de Carvalho-Caracciolo-Froehlich (BFACF) algorithm
developed for lattice polymers [15,16]. With respect to the
original scheme, at each iteration one polymer is randomly
selected and instead of applying the basic move at a single
random site, we perform multiple moves. The number of
moves on the SAW is randomly chosen within one and the
average polymer length. This random choice of basic move
multiplicity guarantees good MC acceptance rates [17]. Since
in this work we are dealing with several interacting polymers,
we rely on the Gibbs acceptation factor of the MC to extract a
chain of states from the canonical ensemble instead of direct
generation as in Ref. [15]. Assigning the same probability,
both to path-enlarging and path-shrinking BFACF moves,
leads to very low acceptance rates. We solve this problem
by tying the probability of path-enlarging moves to the MC
temperature [18].

The square lattice with uniform ki = 1 factors induces on
this problem some peculiarities not found in a continuous
representation of space. In particular, the ground states for ba-
sic routing problems (i.e., involving noninteracting polymers)
in two dimensions are intrinsically degenerate because

(
m+n

n

)
solutions with the same energy exist between any pair of points
with m horizontal and n vertical distances [19]. We restrict our
study to two-dimensional lattices with no periodic boundary
conditions (PBCs) to better model realistic network topologies.
Preliminary numerical results show that qualitatively similar
conclusions may be drawn when PBCs are imposed at the
boundaries.

Detecting UM in finite-volume systems can be very difficult
due to finite-size effects, especially with no PBCs [20–24].
To measure differences between replicas α,β for the same
quenched disorder, we define a path overlap qαβ , computed as
the ratio of the common visited nodes (node overlap q̇αβ ) or
common visited links (link overlap q̃αβ) with respect to path
length [25]. For homolog instances of the SAW ν belonging
to replicas α and β, we define the node overlap as

q̇ν
αβ = 1

Nnodes

∑
i

σ
α,ν
i σ

β,ν

i (2)

and the link overlap

q̃ν
αβ = 1

Nlinks

∑
i,j

Aijσ
α,ν
i σ

α,ν
j σ

β,ν

i σ
β,ν

j . (3)

We obtain compatible results for q̃ and q̇, but the data shown in
this work are computed by using the link overlap, so we define
qαβ ≡ q̃αβ . From the overlap we get the normalized Hamming
distance as δαβ = 1 − qαβ .

FIG. 1. Top: Dendrogram and distance matrix for 100 states with
N = 1024, M = 64, and γ = 0.5. Each matrix element is the δαβ for
one of the M homolog SAWs belonging to each pair of states. Bottom:
The nontrivial distribution of distances for the optimized states of
the above matrix (continuous black); pseudonormal distribution for
randomized polymers (dashed red). Thick and thin lines refer to a
Gaussian kernel estimation and a standard histogram, respectively.
We obtained similar results for a large fraction of SAWs, except
for pathological cases. Refer to the Supplemental Material for
details [27].

In an UM space [20] the triangle inequality δαγ � δαβ +
δβγ , valid for metric spaces, is replaced by a stronger version,
δαγ � max{δαβ,δβγ }. This inequality is equivalent to imposing
that any triple of points should form an acute isosceles triangle
or, at most, an equilateral one. In order to discern between
trivial UM due to equilaterals or true UM due to acute isosceles,
after performing a standard UM test [21], we propose a
procedure that consists of analyzing the frequency distribution
of each triple of ordered distances δmax,δmed,δmin, by keeping
only two transformed components as defined in Ref. [26]:
Y = δmax − δmed vs X = δmed − δmin.

We compute the distance δαβ for all pairs of states within the
same quenched disorder. This is achieved by selecting pairs of
homolog SAWs belonging to two states α and β, and finally
computing their normalized Hamming distance. By applying
a clustering algorithm [21,22,24] to each disorder, we obtain
a dendrogram such as the one in the top left part of Fig. 1.
The procedure starts with each state in a separate cluster, then
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iteratively the nearest clusters are merged. At each step the
intercluster distances are recomputed by averaging among all
pairs of their member states. The procedure ends when a root
common cluster appears. We then sort all states in the same
order as the dendrogram and finally plot the adjacency matrix:
A well-visible block-diagonal complex structure emerges for
γ = 0.5 (we found similar results for γ = 0.99), along with
a deep hierarchy visible in the dendrogram. On the other
hand, nearly flat hierarchies, somewhat uniform distance
matrices, and pseudonormal overlap distributions are observed
for γ � 1 (see Fig. S7 [27]). To probe for an UM space
structure, we randomly select three configurations from the
hierarchical cluster structure (see Ref. [21]), resulting in three
mutual distances that we sort to get δmax � δmed � δmin and
finally compute the correlator K = δmax−δmed

δmin
. If the phase space

is UM, we expect δmax � δmed for L → ∞. Thus P (K) should
converge to a delta function in K = 0 for L → ∞ and the
variance of the distribution Var(K) → 0. By this approach,
UM would be detected even in the case of equilateral triangles
(trivial UM). The alternative definition of K in Ref. [22] is
difficult to apply for polydisperse SAWs (each SAW length has
a distinct distance distribution), so we devised a supplementary
test to rule out trivial UM.

Results and discussion. All ground states have been
obtained by performing a SA energy minimization with an
exponential cooling converging to T = 0 at one third of
the total simulation length. To characterize cost gain and
path-length variation for the system with both random ends,
we performed several minimizations in which the number of
SA time steps varied with system size from 0.5 × 106 for
L = 8 and M = 8 to 10 × 106 for L = 64 and M = 1024.
The maximum number of basic BFACF moves per time step
was proportional to

√
N . For each lattice size we generated

ten quenched disorders with random uniform configurations
and for each disorder we produced 102 local ground states.
We plan to expand this number for future works. Some
examples of the ground states we obtained are shown in
Figs. S1–S4 [27].

The first goal has been to characterize the system as regards
the attainable cost gain with respect to the shortest path routing
that is widely used for many transport applications. In Fig. 2
we plot the energy difference ratio both for concave (γ < 1,
continuous blue online) and convex (γ > 1, dashed red online)
cost functions.

Since the average polymer length increases with L, we
observe in Fig. 2 the tendency for the curves to superimpose for
N → ∞. After a steep cost gain growth, maximum efficiency
with respect to Dijkstra is reached for both γ values, then
the value slowly decreases since most nodes are already busy
and the advantage of longer-than-Dijkstra detours is weaker.
The peaks are shifted for γ = 0.5 and γ = 2.0: M/

√
N ∼ 1

and ∼2, respectively. Cost gain ratios are quite different in
the two scenarios: For the convex case, the gain ratio is
relatively constant for any M at nearly 40%, while in the
concave situation, it rarely goes beyond 20% and decreases
more markedly for higher M values. By comparing the peak
values of Fig. 2 with their associated path-length variations
in Fig. 3, we show that large cost gains may be obtained
by employing paths slightly longer than Dijkstra (< 2% for
both γ values). These results are qualitatively very similar

FIG. 2. Cost decrease ratio of the SA with respect to a Dijkstra
algorithm.

to those obtained by an alternative optimization approach
presented in Refs. [8,9] for random paths on a random graph
with constant connectivity k = 3. It should be stressed that
the regular lattice is not tractable with that method since too
many loops exist, leading to severe ground-state degeneration.
The present method may be exploited to minimize network
construction resources by obtaining a set of lean structures
with γ < 1 (resource sharing encouraged) and then selecting
the best performing ground states for γ > 1 (paths competing
for resources).

Let us focus for the rest of this Rapid Communication on
the concave cost case. In the Supplemental Material to Ref. [8],
there is a brief discussion regarding the possibility of a replica
symmetry breaking (RSB) scenario for γ < 1. This led us to
question whether an UM structure among the ground states of
our closely related system exists. We consider two polymer
distributions: one in which both SAW ends are uniformly
distributed and another in which one end is constrained to
a lattice corner. The RSB scenario is apparent when looking at

FIG. 3. Path-length increase ratio for the SA with respect to a
Dijkstra algorithm.
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FIG. 4. Distribution P (K) for different N and polymer number
M = 2

√
N . The top graph refers to the unconstrained polymers, while

the bottom graph to the corner-constrained case. The peak associated
with collinear triangles (K ≈ 1) tends to disappear with growing N

for both systems.

nontrivial overlaps [28] among replicas at T = 0: We observe
multimodal overlap distributions for roughly half of the SAWs
(see Fig. S5 [27]). This fraction grows with N (see Fig. S6
[27]). In the Supplemental Material (SM) [27] we compare
individual dendrograms, distance matrices, and distributions.
For randomized paths and for γ � 1 the overlap distributions
are always quasinormal (see Fig. S7 [27]).

It has become customary to show a tendency towards UM
by plotting the distribution P (K) for several system sizes along
with its variance Var(K). In Fig. 4 the P (K) for the random-end
polymers (top) and for the fixed-end polymers (bottom) are
shown. There is a visible trend for both P (K) to diverge at
K → 0 when N → ∞. Both polymer topologies share the
same overall behavior. In the two insets of Fig. 4 (top and
bottom) we can compare the variance of the P (K) for both
systems with respect to their randomized counterparts [29]:
They both tend to zero as lattice size grows, so we cannot
still conclude in which case whether UM is attained in the
thermodynamic limit.

To further investigate this issue, we study the distribution of
distance triples for the fixed-end polymer system. In Fig. 5 we
plot the P (X,Y ) (considering all quenched disorders) both for
optimized and randomized polymers with increasing lattice
size. Plots for the single quenched disorders are shown in
Fig. S8 [27]. All optimized systems reveal higher concen-
trations (almost black) of triangles along the X axis, that is
the signature of true UM. For larger N , the high Y region
gets progressively depleted (light gray). The randomized plots

FIG. 5. Corner-constrained polymers: Every triple of distances
(among homolog SAWs) contributes to the distribution P (X,Y ). We
show P (X,Y ) for the optimized system (left) and for randomized
paths (right): The standard error of the c.m. (over ten quenched
disorders) compares with symbol size. A similar scenario (not shown)
holds for the unconstrained polymers.

show a P (X,Y ) that decreases with a constant gradient starting
from a maximum in the origin (equilaterals). The P (X,Y )
mode is in all six cases in (0,0), but for the optimized systems
its value is roughly half the sum of bins along the X axis.
This is better shown by the white circles representing the
center of mass (c.m.) for each distribution: With respect to
the randomized states, in which the c.m. shifts toward the
origin with N → ∞, the optimized states tend, on average
and for each quenched disorder, to stay just above the X axis
without converging to (0,0). The fraction of trivial UM is due
to pathological SAWs with very few accessible configurations.
Scalene triangles are produced by the shortest-path degeneracy
due to local low-polymer density on the lattice (see the
individual overlap distributions [27]).

Conclusions. In this Rapid Communication we presented
an approach to explore the ground states of an important class
of transport optimization problems on a regular square lattice.
We showed that with this method one is able to obtain solutions
for the optimal transport of a set of interacting communications
spread over the lattice with different topological constraints.
The interaction among paths is obtained within the unifying
framework of concave and convex cost functions. The fact
that this method works on a lattice allows the possibility
of discovering a hierarchy of the most inexpensive network
infrastructures encouraging transport coalescence (γ < 1) and
then to optimize the distilled graph for performance, fault
tolerance, and congestion resistance with a repulsive cost
function (γ > 1), as in Ref. [8]. We tested our optimization
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procedure by characterizing the global cost gain and path-
length variation for a system of randomly spread point-to-point
communications over a square lattice that has been recently
studied on random graphs via an unconventional use of
the replica and cavity methods [8], obtaining qualitatively
similar results. The appearance, for γ < 1, of families of
hierarchically related solutions (treelike, as predicted by
Banavar et al. [7]) led us to investigate whether RSB and an
UM structure hold. Similarities and differences with respect to
spin systems allowed us to borrow a standard approach to probe
for UM, which we slightly extended by plotting the distribution
of triangle types for growing lattice sizes. In conclusion,
we found evidence supporting the RSB scenario (nontrivial

overlap distributions) and UM at the level of single interacting
polymers, as hypothesized for DPRM systems [11]. Here, the
equivalent of noise (highly correlated) is apparently played
by all polymers minimizing the total energy, thus forming
a rough landscape [30,31]. It should be further investigated
whether and how this phenomenon depends on polymer
density, dispersity and γ values. Finally, we plan to further
explore the possibility of defining a global similarity measure,
encompassing all SAWs, to assess whether a systemwise UM
structure exists.
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