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We consider a spring-block model with both dry and viscous frictions, subjected to a periodic driving allowing
mechanically stable configurations to be sampled. We show that under strong driving, the scaling of the correlation
length with the energy density is incompatible with the prediction of the Edwards statistical approach, which
assumes a uniform sampling of mechanically stable configurations. A crossover between the Edwards scaling
and nonstandard high-energy scaling is observed at energy scales that depend on the viscous friction coefficient.
Generalizing Edwards thermodynamics, we propose a statistical framework, based on a sampling of marginally
stable states, that is able to describe the scaling of the correlation length in the highly viscous regime.
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The statistical description of driven dissipative systems
remains one of the challenging open issues of nonequilibrium
statistical physics. A subclass of these includes systems that
are periodically driven and relax to a mechanically stable
configuration (MSC) between two driving phases. Of specific
interest are such systems that, similar to granular matter, are
subject to dry friction, which generates a huge number of
MSCs, that can be characterized by an extensive entropy. Such
systems are thus relevant candidates for testing generalized
forms of statistical mechanics. In this spirit, Edwards and
co-workers [1-6] have put forward the simplest generalization
of equilibrium statistical mechanics, by assuming that MSCs
are sampled uniformly (or according to an effective Boltzmann
weight), excluding configurations that are not mechanically
stable. Whether this simple assumption is or is not valid
has to be ultimately tested in experiments or in numerical
simulations, provided a driving protocol is given. Several tests
of the Edwards hypothesis have been attempted in packings of
grains, both experimentally [7-10] and numerically [11-15].
Tests have also been performed in abstract models such as
spin and lattice gas models [16-24], as well as in glass and
spin-glass models [5,25-28]. Such tests are performed by
comparing the average values of some observables recorded
along the dynamics, with the values obtained from the flat
average over MSCs with a given volume or energy. Note
that, while the original Edwards construction is based on
volume and energy in analogy to equilibrium statistical
mechanics, another formulation focusing on the stress tensor
has also been put forward more recently [29-34]. Overall, the
Edwards assumption is generally believed to be a reasonable
approximation in most cases [6], even though some departure
from uniform sampling has been shown in some abstract
solvable models [21,22]. The complexity of the Edwards
thermodynamics then mainly boils down to the computation
of the entropy (or free-energy) characterizing blocked states
[35-39]. A usual way to tackle this difficult calculation is to
resort either to simple abstract models [16-19,21,22], or to
mean-field [40] or more involved [35] approximations.

Recently, however, a full treatment of the Edwards thermo-
dynamics has been performed in a more realistic spring-block
model with dry friction, showing the buildup of extended spa-
tial correlations when the strength of the driving is increased
[41]. Here, we generalize the above model to include both
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viscous and dry friction. The competition between viscous
and dry friction has been shown to play an essential role in
the rheology of dense suspensions [42—44], and it is thus of
high interest to try to develop theoretical approaches able to
take into account both effects. From a conceptual viewpoint,
adding viscous friction is actually a challenging test of the
Edwards thermodynamics: Since viscous friction affects only
relaxation and not MSCs (which are only controlled by static
dry friction), it appears as a key ingredient controlling the
way MSCs are sampled. Hence, any significant variation of
statistical properties as a function of the viscous damping
coefficient undoubtedly shows that the Edwards assumption
fails to describe the properties of the system in a faithful way.
Studying this generalized spring-block model, we indeed find
strong deviations from the predictions of the standard Edwards
approach. The goal of this Rapid Communication is to present
an extension of the Edwards theory based on a nonuniform
sampling of MSCs, emphasizing the importance of marginally
stable states. We show that this extended statistical framework
is able to capture the main results of the numerical simula-
tions of the spring-block model in the presence of viscous
friction.

We consider a model represented by a one-dimensional
chain of blocks of mass m connected by N harmonic springs
sliding on a horizontal plane [41,45-49]. Each particle is
subjected both to dry (Coulomb) friction and to viscous
friction. The position of the ith mass is denoted as x;. When
sliding, a block is subjected to a dissipative force proportional

to the dynamic friction coefficient, f; 4y = —pamg sgn(x;),
with g the gravitational constant, and to a dissipative force
proportional to the viscous friction, f; isc = —yX; (the dot

denotes a time derivative). When a block is at rest, it starts
moving when the applied force exceeds the static friction
force, | f;| > usmg. The elongation of the ith spring is & =
X;i — x;—1 — lp, with [y the constant rest length, so that the
elastic force on each block reads k(§;+1 — &;), with k the
spring stiffness. Taking +/k/m, gk/m, and mg as units of
time, length, and force, respectively, we can write the following
dimensionless equation of motion,

X = —yX — pasgn(x;) + xip1 +xio1 — 2x; + £ ()
with |§i41 — & + ] > us the condition to start motion. We

simulated a chain of N 4+ 1 = 4096 blocks with open boundary
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conditions taking identical values of static and dynamic dry
friction coefficients, pus = pg. In the following, we do not
distinguish between us and pg4, and simply denote as u the
dry friction coefficient.

The “blocked” configurations are those which, in the
absence of external force, are mechanically stable: Vi, x; = 0,
and |&1; — &| < u. We then define the following rapping
dynamics: The external forces f*' are switched on in Eq. (1)
and act during a given period of time t, after which they are
switched off and the system relaxes to a MSC. This procedure,
that we call the driving cycle, is repeated a large number
of times to sample MSCs. The driving protocol consists in
pulling a finite fraction of the particles, fixed to p = 0.5, with
a constant force F, while keeping fixed the duration 7. Each
MSC is characterized by the typical value of the energy stored
by the springs ¢ = (1/2N) Z,N=1 E2.

In the case where only dry friction is present, it has
been shown that correlations of spring elongations, defined
as C(r) = (&,,&)/(£%), extend over a correlation length
which grows linearly with the energy density ¢ [41]. The
Edwards approach is able to reproduce this scaling of the
correlation length with the energy density [41]. The Edwards
ansatz for the probability of a configuration C reads P(C) =
e PuE©) F(C)/ Z, with Bgq an effective temperature, E(C) the
energy of configuration C, and Z a normalization constant. The
function F(C) enforces the constraint of mechanical stability:
F(C) = 1ifC is mechanically stable, and F(C) = 0 otherwise.
For the spring-block model, 7(C) = H,N:_11 O — &+ — &l
[41], with ® the Heaviside function. By taking the continuum
limit where the spring index i is replaced by a continuous
variable s so that spring elongations are represented as the local
field £(s), the probability of a configuration reads as e =Sl
with (as a lowest-order approximation) a Gaussian effec-
tive Hamiltonian S[&] = [ ds[(3&/3s)*/(41*) + Pra&*(s)/2]
[41]. Two important predictions of this theory are as follows:
(i) the linear increase of the correlation length A(g) ~ ¢ with
the average energy per spring [41]; and (ii) the linear increase
of the mean-square displacement for the spring elongation
measured along the chain, ([A£(r)]>) ~ r, where A&(r) =
&4, — &;. These behaviors are modified in the presence of
viscous friction.

Figure 1(a) displays the correlation length as a function of
energy for different values of the viscous friction coefficient
y. At relatively low energies, all curves have a linear behavior
as in the absence of viscous friction; note that the prefactor is
independent of y. When increasing the energy, one observes a
crossover, with an intermediate regime which depends strongly
on y, to a high-energy scaling A(¢) ~ /¢, with here again a
prefactor which is independent of y. The dependence on y
can be rationalized according to two distinct scaling regimes.
A first regime A(e) = y 7' Fi(ye) [Fig. 1(b)] describes the
departure from the low-energy linear regime A(g) ~e. A
second regime A(g) = y’le(yzs) [Fig. 1(c)] describes the
convergence to the asymptotic high-energy scaling A(¢)~./z.
In other words, the linear regime A(g) ~ ¢ is valid for
& KL el ~ y~!, and the square-root regime A(g) ~ /& is
valid for & > &3 ~ y 2. The fact that the prefactors of the
scaling functions Fj , are ¥~ in both cases indicates that the
correlation length scales as A ~ y ! in the whole intermediate
regime £ < € < &J.
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FIG. 1. (a) Correlation length A as a function of the average
energy density ¢ of the sampled MSCs, for different values of
the viscous friction coefficient y, indicated by different symbols.
Dashed lines emphasize the linear (A ~ &) and square-root (A ~ /)
behaviors reached for low and high energies, respectively. (b) First
rescaling yA = Fi(y¢) around the departure from the linear regime.
(c) Second rescaling yA = F»(y?%¢) around the onset of the square-
root regime.

Another characterization of the behavior of the model is
through the mean-square displacement of the spring elongation
([AE(r)]?), which was found to be linear (i.e., diffusive),
([AE(r)]?) ~ r, when the dynamics involves only dry friction
[Fig. 2(a)]. In the presence of a strong enough viscous
friction (or, for a given nonzero y, at high enough energy),
the mean-square displacement is observed to be ballistic,
([A&(r)P) ~ r? [Fig. 2(b)].

The results obtained in the presence of viscous friction are
clearly not compatible with those predicted in the standard
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FIG. 2. Mean-square displacement of spring elongation,

([AEV(r)) = ([£i+r — &]%). (2) When only dry friction is present
(y = 0), the mean-square displacement is diffusive, ([AE]%(r)) ~ r.
(b) For strong enough viscous friction, the mean-square displacement
is ballistic, ({AE]*(r)) ~ r? (y = 0.3). Data are collapsed by plotting
([AE1?(r)) /e as a function of the rescaled distance r/A(g), with A(e)
the correlation length.
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FIG. 3. (a) A typical MSC sampled at high energy in the presence
of viscous friction. The total force fiel = &1 — & acting on each mass
is plotted as a function of the mass index i (u = 0.6). (b) Correlation
of the elastic force f; at the end of the driving phase, before relaxation
takes place. (c) Correlation length A of spring elongations, a function
of the energy ¢, as obtained from the transfer operator method. A
Gaussian approximation (with standard deviation o = 0.5) of the
delta function has been used.

Edwards framework, namely, A(e) ~ & and ([AE(r)]?) ~ r.
Let us emphasize that the presence of viscous friction only
affects the relaxation process, and not the definition of MSCs,
which depends only on dry friction. The Edwards statistics is
thus the same regardless of the value of the viscous friction
coefficient. Hence the present results call for an alternative
ansatz to describe the nonuniform sampling of configurations
in the presence of strong enough viscous damping. In order to
determine such an ansatz, we start by examining typical MSCs
reached after a viscous relaxation, following a strong enough
driving phase. Figure 3(a) displays the total elastic force ffl =
&1 — & acting on mass i as a function of the mass index.
Contrary to the dry friction case where the force spans the
interval [—pu, ] in an essentially uniform way (in agreement
with the Edwards assumption), the force is seen to take almost
everywhere only the two values ffl = £pu [Fig. 3(a)]. The
typical length of the “plateaus” at values -u is of the order of
the correlation length A.

The emergence of such configurations of the force can be
understood as follows in terms of the relaxation process. At
the end of the driving phase, the elastic forces f acting on
different masses are almost uncorrelated [Fig. 3(b)]. Assuming
a strong driving, the velocities are large in the initial stage of
the relaxation, so that the dry friction term —u sgn(x;) can
be neglected in this regime with respect to the viscous term
—yx;. If y is large enough, we may also neglect inertia and
use an overdamped dynamics. In a continuum limit where the
position x; (¢) is replaced by a field x(s,¢), where the continuous
variable s generalizes the index i, one obtains the following
early-stage relaxational dynamics,

ax 3% )
Yor T st @

The velocity field dx/d¢ also follows a diffusive dynamics,
and its correlation length £(¢) grows as £(t) ~ «/t. This purely
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diffusive relaxation stops after a time ~ t,), when velocities
have decreased to a point where the viscous friction term
becomes of the same order as the dry friction one. For ¢t > t,,
the dynamics reads

ox 0x n 92x 3)
— = —usgn| — —.
Vaor = TR %) T as2

If the correlation length £(t.)) reached at the end of the
diffusive relaxation is large enough, the intervals (in s)
over which dx/d¢ has a constant sign remain large in the
subsequent relaxation. In a simplified picture, one may assume
that these intervals do not change in time. Defining x(s) =
sgn[ox/0t(s,te)], one has

ox o+ 2% )
— = —ux@) + —.
Var = THX 952

The relaxation described by Eq. (4) converges to a MSC x*(s)
such that d%x*/ds> = px(s). Since the elastic force f®(s)
acting on a mass with index s is given by f°(s) = 9%x/ds2,
we end up with f°(s) = ux(s), thus recovering the typical
shape of a configuration of the force shown in Fig. 3(a).

Note that a piecewise constant force f°(s) implies a
piecewise linear elongation £(s), since d&/ds = f°(s). This
piecewise linear behavior of the elongation in turn accounts
for the ballistic behavior of the mean-square displacement
([AE(r)]?) ~ u?r* of the elongation. A simple scaling ar-
gument then allows one to understand easily the origin of
the behavior A ~ /¢ of the correlation length. At large
r, ([AE(r)]?) converges to 2(£2) = 4e. One thus expects
([AE(M)]?) = 4e, which results, from the ballistic behavior,
as A2 &~ 4e/u®. Note also that one recovers from this simple
argument that A /./¢ is independent of y in this regime.

The fact that A ~ y~! in the intermediate scaling regime
(Fig. 1) can be understood as follows. As argued above, the
overdamped relaxation yields a correlation of the elastic force
field. In contrast, an underdamped relaxation yields essentially
no correlation of the elastic force, in agreement with the dry
friction case. The early stage of the relaxation is described by a
linear equation, more conveniently expressed in Fourier space,
introducing £(q,t) = [ ds x(s,1)e'?",

0°% 0x R
W—H/E—i—qzx:& (5)
The solution of this equation takes the form, for ¢ < y,

2(q.1) = X1(@)e T + Xo(q)e ), (6)

where X ,(q) are related to the initial conditions. When y
is large (overdamped limit), the first term on the right-hand
side of Eq. (6) dominates the dynamics. For smaller values
of y, the second term comes into play, accounting for inertial
effects. The crossover between these two regimes is obtained
by balancing the decay rates, ¢2/y ~ (y — ¢*/y). Taking
q~ A~ ! as the relevant wave number, one obtains that the
crossover between inertial and overdamped regimes is reached
for A ~ y~!. This result is consistent with the numerical
results reported in Fig. 1, provided one identifies the inertial
and overdamped regimes with the scaling regimes A ~ ¢ and
A ~ /€, respectively. Note that the existence of y-independent
regimes A ~ ¢ and A ~ /¢ and of an intermediate regime
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where A ~ y~! is enough to account for the two scalings

described by the functions F , [Figs. 1(b) and 1(c)].

To go beyond scaling arguments, we propose an ansatz
generalizing the standard Edwards assumption of the uniform
sampling of MSCs. Considering that MSCs typically sampled
when viscous friction is high enough correspond to forces
f = £u, we propose the following ansatz, which precisely
enforces this property,

1 sy 2y
PI§) = ze F 208 [Togi— 6 —6D. @
i=1

where Z is a partition function determined by normalization,
i N N
_ PEd 2
z= /dsl cedey e FELE T 8(u — l6i — &D. (8)
i=1

and where fBgq = TE_d1 is an effective inverse temperature. Note
that Bgq is a parameter that can be eliminated at the end of
the calculation, reexpressing all quantities in terms of the
average energy density e. In the following, we replace the
delta functions in Eq. (8) by narrow Gaussian distributions
of width o. Thermodynamic properties (free energy, average
energy, or entropy) as well as correlation functions can
be determined semianalytically from Eqgs. (7) and (8), by
evaluating the partition function Z using a transfer operator
representation [41], Z = Tr(7 Ny, where the linear operator
7 acts on a function ¢ as T[¢](x) = [ dy T'(x,y)¢(y), with
T(x,y) a symmetric L? kernel. To evaluate Z as defined in
Eq. (8), we use the kernel

L 2.2 T )
T(x,y) = o= B2y~ ==y P/ 207) ©)

Note that we use periodic boundary conditions, which do not
affect the results in the thermodynamic limit. The properties of
the kernel 7' (x,y) guarantee the existence of an orthonormal set
of eigenvectors of 7, which can be numerically diagonalized.
Following this approach we have checked that our results do
not depend on the value of the parameter o in the large Tgq
limit. The two-point correlation function C(r) = (&4,&)/(£%)
can be numerically determined within the transfer operator
formalism from the eigenvectors of 7, and from it the
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correlation length A(e) is obtained (technical details on the
transfer operator method can be found in the Supplemental
Material of Ref. [41]). Extracting the correlation length
from C(r) for different values of the energy &, we recover
the behavior A ~ /¢ [Fig. 3(c)]. Note that the prefactor is
independent of y, since y does not appear in Eq. (7).

The above results suggest one to consider, beyond the
present specific model, the following prescription for systems
subjected to both dry and viscous frictions. Mechanical stabil-
ity, as resulting from dry friction, is expressed by inequalities
involving the dry friction coefficient. We define as marginally
stable the configurations such that these inequalities are
satisfied as equalities. A general formulation of the ansatz
(7) is that marginally stable configurations are sampled with
a Boltzmann weight, while other configurations have zero
probability.

In summary, we have shown by studying a periodically
driven spring-block model that the presence of viscous friction
deeply changes the way MSCs are sampled, yielding a scaling
of the correlation length with energy density which is incom-
patible with the Edwards assumption. We have shown that
typically sampled MSCs correspond to states with marginal
mechanical stability, which provides another example of a
system where marginal stability plays a key role, in addition to
other types of driven elastic systems [50,51] as well as glasses
and soft amorphous solids [52], notably in connection to the
Gardner transition [53].

We have proposed a generalized ansatz according to which
only marginally stable MSCs have a nonzero probability, and
are sampled according to an effective Boltzmann weight. This
ansatz is able to reproduce the key features of the spring-block
model under viscous friction, including the square-root scaling
of the correlation length with energy, and the ballistic behavior
of the mean-square displacement of spring elongation. It would
be of interest to test this ansatz in other types of systems where
viscous damping is present, such as sedimenting suspensions
under tapping dynamics.
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discussions. G.G. acknowledges financial support from ERC
Grant No. ADG20110209.
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