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Recently, it was shown that the probability distribution function (PDF) of the free energy of a single continuum
directed polymer (DP) in a random potential, equivalently to the height of a growing interface described by
the Kardar-Parisi-Zhang (KPZ) equation, converges at large scale to the Tracy-Widom distribution. The latter
describes the fluctuations of the largest eigenvalue of a random matrix, drawn from the Gaussian unitary ensemble
(GUE), and the result holds for a DP with fixed end points, i.e., for the KPZ equation with droplet initial conditions.
A more general conjecture can be put forward, relating the free energies of N > 1 noncrossing continuum DP
in a random potential, to the sum of the N th largest eigenvalues of the GUE. Here, using replica methods, we
provide an important test of this conjecture by calculating exactly the right tails of both PDFs and showing that
they coincide for arbitrary N .
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Introduction. Remarkable connections have emerged in the
last decade between random matrix theory, growth models, and
glassy systems. The celebrated Kardar-Parisi-Zhang (KPZ)
equation [1] provides the simplest description for the growth
of an interface in the presence of noise. This equation sits
at the center of a wide universality class [2], encompassing
several models and physical systems, such as the polynuclear
growth model (PNG) [3], the asymmetric exclusion processes
(ASEPs) [4–6], and Burgers turbulence [7].

Additionally, the height h(x,t) of the KPZ interface in
d dimensions can be exactly mapped into (minus) the free
energy of a directed polymer (DP) of length t in a quenched
random potential in 1 + d dimension [8,9]. The DP is one
of the most straightforward realizations of a glass, with
applications including domain walls in magnets [10], vortex
lines in superconductors [11], localization paths in Anderson
insulators [12], and even to problems in biophysics [13] and
economics [14].

The link between KPZ and DP has been particularly
fruitful in d = 1, where a hidden integrable structure comes
to light. In this case, several exact solutions, first for zero
temperature [15], and later for finite temperature discrete [16–
18] and continuum DP models [19–24], unveiled an astounding
connection: The probability distribution of the (scaled) KPZ
height field h(x,t) coincides with the (scaled) distribution
of the largest eigenvalue of a random matrix drawn from
the famous Gaussian ensembles. This is the so-called Tracy-
Widom (TW) distribution [25], recurring in a broad variety of
contexts [26]. In particular, if we define as Ẑ1(t) the partition
function in the continuum of a DP which starts and ends at the
same point x(t) = x(0) (see below for an explicit definition),
it was found in Refs. [19–21,27] that at large time one
can write ln Ẑ1(t) � −t/12 + γ̂1t

−1/3, where γ̂1 follows the
β = 2 TW distribution associated with the Gaussian unitary
ensemble (GUE). Here, we use a caret to denote a random
variable. Furthermore, rigorous mathematical treatments have
confirmed these results [28,29], suggesting the existence of a
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refined mathematical connection between the KPZ equation
and Whittaker-Macdonald processes, which degenerate in
certain limits to the GUE ensemble. Nevertheless, a more direct
interpretation of the deep reason behind this correspondence
is still lacking. A natural direction to shed some light on this
problem is to extend this connection beyond the maximal
eigenvalue γ̂1, to the full portion of the GUE spectrum around
the edge.

In the present Rapid Communication, we consider an
ensemble of N mutually avoiding polymers, i.e., several
directed paths constrained not to intersect with one another,
and competing to optimize their total energy in the same
random media. We extend the study of the single polymer
partition function Ẑ1 to the one of N noncrossing paths ẐN .
We build on a general method which we recently developed
to treat any number N of DPs, but until now, only applied in
the specific case N = 2 to analyze the noncrossing probability
[30–32] (see Fig. 1).

Here, we corroborate the conjecture that the N -path free
energy takes the form at large time [33],

ln ẐN (t) � −Nt/12 + t1/3ζ̂ (N), (1)

where the random variable ζ̂ (N) coincides in law with the
partial sum of the N -largest eigenvalues γ̂1, . . . ,γ̂N of a GUE
random matrix,

ζ̂ (N) in law≡
N∑

i=1

γ̂i =: γ̂ . (2)

The validity of this conjecture for the continuum, finite
temperature model, is suggested by an argument of universality
[30,31,34,35], together with exact results on discrete DP
models at zero temperature, specifically, the last passage
percolation model [36,37] and the semidiscrete directed
polymer [16,38–40]. Furthermore, a more abstract conjecture
was recently proposed relating the KPZ equation and the Airy
line ensemble [41]: If proved, it would imply Eq. (2) as a
particular case.

Obviously, showing the equality of the probability dis-
tribution functions (PDF) P DP

N (ζ ) and P GUE
N (γ ) is a major

challenge. Here, we will provide a test, by showing that
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FIG. 1. Sketch of the N = 2 case: Two polymers start and end at
(almost) coinciding points. The blue and yellow lines represent the
point with maximal probability at any time slice t and the disorder
realization is chosen to have well-separated paths.

their leading (stretched exponential order) tail approximant
functions are identical. More precisely, we will show that at
large arguments

P DP
N (ζ ) = ρDP

N (ζ )[1 + O(e−aN ζ 3/2
)], (3)

P GUE
N (γ ) = ρGUE

N (γ )[1 + O(e−a′
N γ 3/2

)], (4)

with aN,a′
N > 0 and exactly the same function ρDP

N (γ ) =
ρGUE

N (γ ) = O(e− 4γ 3/2

3
√

N ). Here and below, O(e−aγ 3/2
) means at

leading exponential accuracy. Note that the function ρGUE
N (γ )

is nontrivial, hence the coincidence is a strong hint for
the conjecture to hold. For instance, in the simpler case
of N = 1, where the conjecture is known to hold, one has
ρGUE

N=1(γ ) = Ai′(γ )2 − γ Ai(γ )2. Likewise, we will provide a
(more complicated) formula for N > 1.

Note that nonintersecting Brownian motions (sometimes
dubbed “watermelon configurations”) have already been put
in relation with Airy processes and Tracy-Widom distributions
[42]. These studies hold, however, in a very different context,
in particular, in the absence of any quenched disorder.

The GUE ensemble. To fix the notation we take the GUE
specified by the measure ∝exp (− Tr H 2)(dH ), where H is a
complex N × N Hermitian matrix. For large N , the support
of the spectrum concentrates in (−√

2N ,
√

2N ). Nevertheless,
there is a finite probability for the eigenvalues λ̂1 > · · · >

λ̂N to fall outside this interval. In particular, introducing
the rescaled eigenvalues γ̂l = (λ̂l − √

2N )
√

2N 1/6, the mean
spacing for the variables close to γ̂1 becomes of order
unity. In the limit N → ∞, this results in a well-defined
determinantal point process, characterized by the correlation
functions [43,44]

rN (x1, . . . ,xN ) = det[KAi(xi,xj )]Ni,j=1, (5)

for the density probability that there is a scaled eigenvalue
in each interval [xi,xi + dxi], i = 1, . . . ,N . Here, the Airy
kernel has been introduced as

KAi(x,y) =
∫ ∞

0
dw Ai(x + w) Ai(y + w). (6)

Correlation functions in Eq. (5) can then be used to recover the
distribution of the N -largest (scaled) eigenvalues γ1 > · · · >

γN : One has to remove all the configurations where an arbitrary
number of other eigenvalues x1, . . . ,xk fall in between. In order
to avoid overcounting, the inclusion-exclusion principle can be
employed, and we refer to Ref. [45] for the details. This leads

to

pN (γ N ) =
∞∑

k=0

(−1)k

k!

k∏
j=1

∫ ∞

minN
i=1 γi

dxj rN+k(γ N,xk), (7)

where the bold symbol γ N stands for γ1, . . . ,γN (and similarly
for xp). Here, we conventionally normalize to 1 the integral of
such probability in the domain γ1 > · · · > γN . In the particular
case N = 1, this expression can be recast as the derivative of
a Fredholm determinant: p1(γ ) ≡ f2(γ ) is the GUE Tracy-
Widom function. Setting f2(γ ) = dF2(γ )/dγ , the cumulative
distribution function F2(γ ) is expressed as

F2(γ ) = Det(1 − �γ KAi�γ ), (8)

with �γ the projector onto [γ,+∞).
Sums of largest eigenvalues. We now introduce the partial

sum of the N -largest eigenvalues, defined as

γ̂ (N) = γ̂1 + · · · + γ̂N , (9)

and in the following we will omit the superscript N when not
explicitly necessary. The probability distribution P GUE

N (γ ) for
this quantity can be inferred from Eq. (7),

P GUE
N (γ ) = 1

N !

∫
dγ1 · · · dγN δ

(
γ −

N∑
k=1

γk

)
pN (γ N ).

(10)

It is useful to introduce the double-sided Laplace transform
(LT) of PN (γ ) as

P̃ GUE
N (u) := exp(uγ̂ ) =

∫ ∞

−∞
dγ P GUE

N (γ )euγ . (11)

We are interested in the right tail γ 	 1, which governs the
integral when u is large. Because of the behavior of the tail

KAi(γi,γj ) ∼ e− 2
3 (γ 3/2

i +γ
3/2
j ), this regime is dominated by the

configuration minimizing the sum
∑

i γ
3/2
i at fixed γ = ∑

i γi :
This suggests that large values of the sum γ require all the N -
largest eigenvalues to be of the same order of magnitude, i.e.,
γk � γ /N . Then, in order to estimate the tail ρGUE

N (γ ) defined
by (3) of the distribution of the sum in Eq. (10), we can limit
the expansion in Eq. (7) to the first term pN (γ N ) � rN (γ N ).
Rearranging the determinant in rN (γ N ), we obtain

ρ̃GUE
N (u) = 1

N !

N∏
i=1

∫ ∞

0
dvi

× det

[∫ ∞

−∞
dγ eγu Ai(γ + vj ) Ai(γ + vk)

]N

j,k=1

,

(12)

which, after some simple manipulations [46], leads to our main
result,

ρ̃GUE
N (u) = e

Nu3

12 u− 3N
2

πN/2N !

N∏
i=1

∫
vi>0

e−2vi det
[
e
− (vj −vk )2

u3
]N

j,k=1,

(13)
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FIG. 2. The empirical distribution P2(γ ) for the rescaled sum
γ = (λ1 + λ2 − √

8N )
√

2N 1/6 of the first N = 2 eigenvalues in 105

realizations of GUE matrices of size N = 250. The continuous lines
are two different approximations for the tail obtained: from the inverse
Laplace transformation of Eq. (12) (orange and continuous line); from
the simple approximation RN (γ ) = 1 in Eq. (16) (blue and dashed
line).

which generalizes the remarkably simple N = 1 result for the
LT of the tail of the Tracy-Widom distribution,

ρ̃GUE
N=1(u) = e

u3

12

2π1/2u
3
2

. (14)

For N > 1 it takes the general form

ρ̃GUE
N (u) = e

Nu3

12 G(N + 1)

2N(N+1)/2πN/2u3N2/2
QN

(
1

u3

)
, (15)

where G(x) is the Barnes function, QN (0) = 1, and QN (z)
admits a series expansion around z = 0, since at large large
u, this last determinant can be computed explicitly [46]. The
Laplace inversion of (15) gives the general form of the tail
function ρGUE

N (γ ) where the leading behavior at large γ is
apparent [with RN (+∞) = 1],

ρGUE
N (γ ) = N

3N2−1
4 G(N + 1)e− 4γ 3/2

3
√

N

22N2 (2π )
N+1

2 γ
3N2+1

4

RN (γ ). (16)

The function RN (γ ) can be obtained from subdominant orders
in a saddle-point expansion and has the form of a double series
in 1/γ and 1/γ 3/2. In Fig. 2, we compare these predictions with
the empirical distribution for N = 2. Note that the exact form
of ρGUE

N (γ ) is a major improvement compared to the naive
approximation for the tail obtained by setting RN (γ ) = 1 in
Eq. (16). From considerations of Airy function asymptotics it
is easy to see that the corrections in Eq. (3) to ρGUE

N (γ ) itself,
calculated as above, are indeed subdominant by O(e−a′

N γ 3/2
)

with a′
N = 2

3N−3/2.
Mutually avoiding directed polymers. We introduce the

partition function of a directed polymer with fixed end points
x,y,

Ẑη(x; y|t) ≡
∫ x(t)=y

x(0)=x

Dxe− ∫ t

0 dτ [ 1
4 ( dx

dτ
)2−√

2c̄η̂(x(τ ),τ )], (17)

in a given realization of a random potential with white-
noise correlations η̂(x,t)η̂(x ′,t ′) = δ(x − x ′)δ(t − t ′). In the
following, to simplify the notation, we rescale time and space
and set c̄ = 1. Considering N polymers starting respectively
at x = x1, . . . ,xN and arriving at y = y1, . . . ,yN , the partition
function constrained to nonintersecting paths can be expressed,
using Ref. [47], as a single determinant,

Ẑ(N)
η (x; y|t) = det[Ẑη(xi ; yj |t)]Ni,j=1. (18)

This expression involves arbitrary space dependence; in order
to simplify it, we consider therefore the limit where all the
initial and final points coincide: xi = yi = εui . In the limit
ε → 0, Ẑ(N)

η (x; y|t) � εN(N−1)

G(N+1)2

∏
i<j (ui − uj )2ẐN (t), where

[30,31,34,48]

ẐN (t) = det
[
∂i−1
x ∂j−1

y Ẑη(x; y|t)|x=y=0
]N

i,j=1
. (19)

This random variable will be our quantity of interest. Its
integer moments can be treated in the framework of the nested
Bethe ansatz (NBA) [30] and of Macdonald processes [28].
As showed in Ref. [30], both methods lead to an expansion in
terms of a sum over eigenstates of the (integrable) quantum
Hamiltonian associated with the attractive δ-Bose gas, i.e., the
Lieb-Liniger model. In particular, using a residue expansion of
the contour-integral formula of [49], one obtain a series over
integer partitions,

ẐN (t)m =
n∑

ns=1

n!

ns!(2π )ns

∑
(m1,...,mns )n

ns∏
j=1

∫ +∞

−∞

× dkj

mj

e−tE[k,m]�[k,m]BN,m[k,m], (20)

where (m1, . . . ,mns
)n indicates the sum over all integers mj �

1 whose sum equals
∑ns

j=1 mj = n = mN and the energy of
the string configuration has the form E[k,m] = ∑ns

j=1 mjk
2
j +

1
12 (mj − m3

j ). Equation (20) can be interpreted as an expansion
over the Lieb-Liniger eigenstates composed by ns strings of
sizes m1, . . . ,mns

. Then, the factor �[k,m] can be obtained
from the normalization of the string eigenstates and has the
form [19,50]

�[k,m] =
∏

1 � i < j � ns

(ki − kj )2 + (mi − mj )2/4

(ki − kj )2 + (mi + mj )2/4
.

(21)

The factor BN,m[k,m] encodes the noncrossing constraint and
contains all the dependence on N and m. It is expressed by
introducing (μjk = μj − μk)

BN,m[μ] = 1

N !m
σμ

[∏m
i=1

∏
(i−1)N<j<k�iN h(μjk)∏
1�j<k�n f (μkj )

]
, (22)

where the functions h(u) = u(u + i) and f (u) = u/(u + i)
and σ λ[W (λ)] = ∑

R W (Rλ)/n! is the symmetrization of
W (λ) over the variables λ. Then, to obtain BN,m[k,m], one
needs to specialize the n variables μ = {μ1, . . . ,μn} with
{k̃1,k̃1 + i, . . . ,k̃1 + i(m1 − 1),k̃2,k̃2 + i, . . .} and k̃j = kj −
i(mj − 1)/2.

The standard way to extract the PDF of the random variable
ζ̂ in Eq. (1) from the knowledge of the moments in Eq. (20) is
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to introduce a generating function by

gN (s) =
∞∑

m=0

(−1)m

m!
xmẐN (t)m = exp(−e−λs+t1/3 ζ̂ ), (23)

where x is related to s by xe− Nt
12 = e−λs and we introduce the

rescaled time λ = (Nt/4)1/3. Equation (23) has two advan-
tages: (i) It lifts the constraint over the sum of mi in Eq. (20);
(ii) in the limit t → ∞, gN (s) → Prob[ζ̂ < (N/4)1/3s], i.e.,
the cumulative distribution function (CDF) of the random
variable ζ̂ . Unfortunately, even without the constraint, it
is difficult to perform the sum (23) exactly for N > 1:
Indeed, already obtaining a closed expression for BN,m[μ]
is a nontrivial task, which, apart from B1,m[μ] = 1, has been
overcome only for N = 2 [32], where, however, the sum in
Eq. (20) remains an open challenge.

Fortunately, however, we can still deal with (23) by
replacing each moment with its asymptotics at large time.
Although this does not give the exact large time behavior of
gN (s), it is sufficient, as discussed below, to obtain the exact
tail behavior of the PDF of ζ̂ . Indeed, such properties already
appear in the studies of the case N = 1,

At large times t and for fixed N,m, the sum in Eq. (20)
is dominated by the configurations m with smallest energy
E[k,m]. In general, the energy E[k,m] will be minimized
by the configurations with the largest possible mi . For a
single polymer N = 1, this simply translates into ns = 1
and m1 = n. However, for N > 1, this configuration gives
a vanishing contribution: A general property of BN,m[k,m] is
that it vanishes on any configuration with at least one mj > m

[32]. This condition has the simple physical interpretation: A
bound state (i.e., a string) cannot be formed joining particles
which have been constrained to avoid each other. Surprisingly,
this property is sufficient to completely determine the value
of BN,m[k,m] on the lowest energy configuration with a
nonvanishing contribution, which is the one consisting of a
set of N m-strings, i.e., ns = N and every mj = m [46].
Combining Eq. (21) with Eq. (22) on this configuration, we
have (omitting now the trivial dependence on mj = m, and
noting kij = ki − kj )

�[k]BN,m[k] = m!N

(mN )!

∏
1<i<j<N

(−ıkij )m(ıkij )m, (24)

where (x)m indicates the Pochhammer symbol. Inserting in
the formula for the mth moment (20) and keeping only the
configuration mj = m, j = 1, . . . ,ns with ns = N , one finds
Z (0)

N,m(t), defined as the leading contribution at large t and fixed

N,m, to ẐN (t)m in Eq. (20) (see Ref. [46]).
We now calculate g0

N (s) = ∑∞
m=0(−1)mxmZ (0)

N,m(t). In or-
der to deal with the summation over m we follow two steps:
(i) We use the Airy trick [19,20] to get rid of the factor m3 in
the exponent:

∫ ∞

−∞
dy Ai(y)eyw = ew3/3; (25)

(ii) we rewrite the sum over m using the Mellin-Barnes
representation

∑
m�1

(−1)mf(m) = − 1

2i

∫ ε+i∞

ε−i∞

dz

sin(πz)
f(z), (26)

where ε ∈]0,1[ has to be chosen such that the function f(z) does
not have singularities for Re(z) > ε. After some manipulations
(see Ref. [46]), one arrives at

g
(0)
N (s)

t→∞= 1 − 1

N !

N∏
i=1

∫ +∞

−∞

dki

2π

∫ ∞

0
dy

× Ai

(
y +

∑
i

k2
i + s

)∫ ε+ı∞

ε−ı∞

dz

2πız
e
√

Nzy

× det

[
1

2z + ıkjk

]N

j,k=1

. (27)

We observe how a nice determinantal structure emerges at
this level, reminiscent of the N × N determinant appearing
in Eq. (12). To compare further, we obtain the PDF by
differentiating with respect to s and we take again the Laplace
transform,

ρ̃DP
N (u) = exp(uζ̂ ) =

∫ ∞

−∞
ds ∂sg

(0)
N (s)e( N

4 )1/3us . (28)

The integral over s in Eq. (28) can now be computed by a
simple variation of Eq. (25),∫ ∞

−∞
ds Ai′(s + x)ews = −we−xwew3/3, (29)

where in order to simplify the notation we set ũ ≡ (N/4)1/3u.
When inserting this equality back in Eq. (28), the integral over
y can be easily performed as ε > 0 and leads to a simple pole
at z = ũ/

√
N . This allows us to perform the integral over z,

by closing the contour in the positive Re[z] half plane and
arriving at

ρ̃DP
N (u) = e

ũ3

3

N !

N∏
i=1

∫ +∞

−∞

dki

2π
e− ũk2

i
N det

[
1

2ũ + ıkjk

]N

j,k=1

.

(30)

We now check that this expression is equivalent to Eq. (13).
Indeed, employing the standard expansion of a determinant as
a sum over the permutation group SN of N and introducing
auxiliary variables v1, . . . ,vN , we have

det[
1

2ũ + ıkjk

] =
∑

P∈SN

(−1)σP

N∏
j=1

∫ ∞

0
e
−2ũvj −ı(kj −kPj

)vj ,

(31)

where σP is the signature of P . We can now easily perform the
Gaussian integrals over the k1, . . . ,kN variables and, relabeling
P → P −1 in the sum, one obtains exactly the expansion of the
determinant in Eq. (13) (see Ref. [46] for more details), i.e.,
the two Laplace transforms coincide, ρ̃GUE

N (u) = ρ̃DP
N (u). Via

a Laplace inversion, this shows our main statement, below
Eq. (2), namely, that the two PDF exactly coincide in the tails,
i.e., ρGUE

N (γ ) = ρDP
N (γ ).
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Note that we have assumed that the restriction to the
N m-string states gives the exact tail of the PDF of ζ̂ at
large time, in other words, that limt→+∞ g

(0)
N (s)|

s=(4/N)1/3ζ
=

1 − ∫ +∞
ζ

dζ ′ρDP
N (ζ ′), and that the neglected terms give a

contribution subdominant by O(e−aN ζ 3/2
) as in Eq. (4). This,

however, can be justified by examining the contributions of the
remaining states, which necessarily contain a larger number of
strings. As in the case of N = 1, these lead to a larger number
of Airy functions, hence to subdominant asymptotics.

Conclusion. We analyzed a general correspondence be-
tween random variables arising in very different contexts of
statistical mechanics: on the one hand, the sum of the N -largest
eigenvalues in the GUE, and on the other, the free energy of N

noncrossing directed polymers in a d = 1 + 1 random media.
We provided a striking indication that these two quantities have
the same distributions for any N , by comparing the tails of their
PDFs at large positive values. Indeed, the perfect agreement
found between the Laplace transforms associated with the
leading stretched exponential decays implies the nontrivial
matching of an infinite series of coefficients. This naturally
extends the well-known N = 1 case, where the single-polymer
free energy, in turn, the KPZ height, maps to the largest
eigenvalue of a GUE random matrix. In view of existing

results for DP discrete zero temperature models, it also nicely
suggests universality for N > 1. Along the same line of ideas,
one can put forward a more general conjecture, where the joint
distributions of the ensemble of noncrossing free energies in
the same random medium are mapped into the joint distribution
of the N -largest eigenvalues, i.e.,

lim
t→∞

{
Ft

(Z1

Z0

)
, . . . ,Ft

( ZN

ZN−1

)}
in law≡ {γ1, . . . ,γN }, (32)

with Ft (z) = t−1/3(ln z + t/12). It seems natural [34,41] as
both ensembles of random variables involve strong correla-
tions which reflect in the distributions of the marginals (i.e., the
partial sums) studied in this Rapid Communication. A proof of
this conjecture would be beneficial for a full understanding of
the ubiquitous appearance of random matrix extreme statistics.
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