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Aggregation mesophases of self-assembling amphiphiles in water are highly important in the context of biology
(biomembranes), therapy (liposomes), industry (polymer surfactants), and condensed-matter physics (lyotropic
liquid crystals). Besides helping to increase fundamental understanding of collective molecular behavior,
simulations of these lyotropic phases are pivotal to technological and medical developments such as smart drug
carriers for gene therapy. Implicit-solvent, coarse-grained, low resolution modeling with a simple pair potential
is the key to realizing the larger length and time scales associated with such mesoscopic phenomena during a
computer simulation. Modeling amphiphiles by directed, soft, ellipsoidal cores interacting via a computationally
simple yet tunable anisotropic pair potential, we have come to such a single-site model amphiphile that can rapidly
self-assemble to give diverse lyotropic phases (such as fluid bilayers, micelles, etc.) without requiring the explicit
incorporation of solvent particles. The model directly represents a tunable packing parameter that manifests in
the spontaneous curvature of the amphiphile aggregates. Besides the all-important hydrophobic interaction, the
hydration force is also treated implicitly. Thanks to the efficient solvent-free molecular-level coarse graining, this
model is suitable for generic mesoscale studies of phenomena such as self-assembly, amphiphile mixing, domain
formation, fusion, elasticity, etc., in amphiphile aggregates.

DOI: 10.1103/PhysRevE.95.023315

I. INTRODUCTION

Amphiphiles (such as lipids and surfactants) are macro-
molecules consisting of a hydrophilic (water-loving) head
linked to one or more hydrophobic (water-hating) chains
(tails). Phenomena associated with water solution of am-
phiphiles span many scales in length and time. At extreme
dilution the amphiphiles get adsorbed at the water surface
or stay dispersed as monomers. Above a certain temperature
(Krafft point) and a certain concentration (critical micelle
concentration) single-chain surfactants self-assemble into mi-
celles [1–5]. Spherical, elliptical and cylindrical micelles have
been observed [6,7]. With increasing concentration (and/or
varying temperature), the amphiphiles are known to generate
a variety of ordered aggregation phases such as tubular
middle phase, neat phase from lamellar bilayers, cubic phase,
sponge phase, multiply connected bilayers, etc. [6,8,9]. The
importance of these lyotropic liquid crystals [6] cannot be
overestimated in physical, biological, therapeutic, and indus-
trial contexts. Analysis of the relevant processes are, however,
very challenging due to the complexity of the interactions
and the fact that many scales are involved simultaneously.
Computer simulation, therefore, holds a very special place in
the study of amphiphile aggregates. Since atomistic computer
simulations employ the most detailed and chemically specific
models, they are unable to probe, within viable processor time,
the largest length and time scales associated with events such
as self-assembly into aggregates, amphiphile mixing, fusion
of aggregates, etc. [10]. Moreover, complete atomistic detail
may actually obscure the fundamental mechanisms underlying
these processes providing no significant insight into them.
We, therefore, need coarse-grained (CG) models of lower
resolutions with inherent time and length scales not too small
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compared to the scales to be probed. Coarsening of models
by elimination of some of the degrees of freedom smooths
the phase-space energy surface and speeds up dynamics by
allowing larger time steps [10]. It also reduces the number of
site-site interactions for a given number of macromolecules
implying a larger length scale and lesser expensive force
computations at each step. However, the small size of CG
water molecules compared to the amphiphiles, combined with
their multitude (∼10 CG water particles per amphiphile),
still limits the scales of a simulation as most processor time
is spent computing the solvent interactions and movements.
Yet most CG water models act merely as mediators of
an effective hydrophobic bonding [11,12] so that stable
amphiphile aggregates can be achieved. Implicit-solvent (IS)
or solvent-free amphiphile models do away with this CG water
by mimicking the solvent-mediated interactions with some
specialized interparticle force field instead [10]. An ISCG
model thereby speeds up the computation manifold as it con-
centrates only on the amphiphiles and, hence, offers a means
to look into the largest time and length scales associated with
amphiphile aggregates. Almost all ISCG models that show
successful unassisted self-assembly constitute the amphiphiles
from a number of beads of different species (hydrophilic,
hydrophobic, linker, etc.) linked by flexible interbead bonds
[13–16]. Although the beads interact among themselves by
simple force laws, the models are invariably multisite and,
hence, computationally expensive compared to some simple
molecular-level single-site model. Such a molecular-level
model, therefore, promises the largest scales for qualitative
simulations [17].

Anisotropic single-site coarse graining, with several pa-
rameters, is often used in computational physics to replace
a linear array of beads efficiently [18,19]. Far from leading
to an impoverishment of the model, this might turn out to
give rise to some very interesting physical behavior [20].
Self-assembly into stable aggregates (including fluid bilayers)
is, however, a great challenge for single-site IS models with
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simple pair potentials [21]. To the best of our knowledge, only
two attempts in this direction [22,23] have been reported so far.
Although Ref. [22] models a tunable phase curvature (packing
parameter [24,25]) successfully, it does so at the expense of
self-assembly. It also suffers drawbacks in that unphysical
monolayers (sometimes with domains of alternating head-tail
orientations) are allowed within bulk solvent for some values
of the parameters and hydration force [26] is not accounted
for. The relatively simpler model by Noguchi [23], however,
never compromises self-assembly.

The present paper gives a single-site IS model that is unique
in its direct representation of a tunable packing parameter
without compromising self-assembly. Hydration force is also
modeled and monolayers within bulk water are energetically
unfavorable. Diverse stable phases of non-negative curvature
(e.g., fluid lamellar bilayers, spherical micelles, etc.) are ob-
tained in computer simulations proving the model appropriate
for qualitative mesoscale studies of amphiphile aggregates in
water.

II. MODEL

Our model amphiphile consists of a soft-core, directed,
prolate spheroid of tunable length with a tunable anisotropic
force field. Here, actually, we make use of the approximate
spheroid geometry that appears in the popular Gay-Berne (GB)
force field [18]. Taking two identical uniaxial spheroids i and
j with centers at ri and rj and directed major (or minor)
axis along unit vectors ûi and ûj , the GB ellipsoidal contact
distance is given by

σGB(r̂,ûi ,ûj ) = σ0

{
1 − 1

2
χ

[
(r̂ · ûi + r̂ · ûj )2

1 + χ (ûi · ûj )

+ (r̂ · ûi − r̂ · ûj )2

1 − χ (ûi · ûj )

]}−1/2

, (1)

where r̂ = (ri − rj )/r , r being the center-center dis-
tance. Above, the anisotropy parameter χ is given by
[(σe/σs)2 − 1]/[(σe/σs)2 + 1] where the parameter σe(σs)
means the end-end (side-side) contact distance. σGB, scaled by
σ0 (= σs), determines the steric profile of the GB ellipsoid. The
well depth of the GB potential contains an energy ellipsoidal
term

εGB(r̂,ûi ,ûj )

= 1 − 1

2
χ ′

[
(r̂ · ûi + r̂ · ûj )2

1 + χ ′(ûi · ûj )
+ (r̂ · ûi − r̂ · ûj )2

1 − χ ′(ûi · ûj )

]
. (2)

χ ′ is related to the anisotropy in well depth: for the end-end
configuration, εGB becomes εe = (1 − χ ′)/(1 + χ ′).

Figure 1 depicts the directed spheroid that we envisage.
As indicated, û, i.e., the unit vector along the directed major
axis of our model prolate spheroid, is taken to concur with the
built-in directionality of the inversion asymmetric amphiphile:
tail to headgroup. Taking R = (r − σGB + σ0)/σ0, our model
potential, scaled by energy ε0, reads

V (r,r̂,ûi ,ûj ) = 4ε0

(
1

R12
− 1

R6

)
+ ε0 − εwd(r̂,ûi ,ûj ),

if r < rl

FIG. 1. Our implicit-solvent model amphiphile: a directed
spheroid. Directionality (arrow) indicated by single- and double-chain
amphiphiles. The spheroids interact through parametrized potentials.
The spheroids pack like cones (with angles depending on the choices
of parameters), mimicking hydrated amphiphiles with equilibrium
headgroup area larger than the tail cross section [see Fig. 5(b)].

= s(r)εwd(r̂,ûi ,ûj ), if rl � r < ru

= 0, otherwise. (3)

Above, rl = (21/6 − 1)σ0 + σGB and ru = rl + range,
where range signifies the tunable range of interaction. s(r)
is a cubic switching function [27]:

s(r) = (ru − r)2(3rl − 2r − ru)/range3. (4)

The anisotropic well-depth function εwd(r̂,ûi ,ûj ) is given
as

εwd = ε0[ν1(ûi · ûj ) + ν2(ûi · r̂ − ûj · r̂)

− ν3(ûi · r̂)(ûj · r̂) + 1]ν0εGB; (5)

ν0, ν1, ν2, ν3 are four parameters to be input externally along
with the parameter εe associated with εGB(r̂,ûi ,ûj ) [Eq. (2)].

For any set of (r̂,ûi ,ûj ) the generic r dependence of
our model potential is shown in Fig. 2. The attractive tail
of V (r) is broader compared to the Lennard-Jones-like r−6

form. Empirically it is known that this slower decay is a

FIG. 2. V (r) [Eq. (3)] for some choice of (r̂,ûi ,ûj ) such that
σGB = σ0 = 1 and εwd = ε0 = 1; range = 2.
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FIG. 3. Relative orientations of amphiphiles in order of decreas-
ing preference from a to e. Directed arrow significance also shown
with a single-chain surfactant cartoon. Black and white amphiphiles
(arrows) can be of the same or different species.

necessity for ISCG models based on pair potentials since stable
fluid bilayers are not obtained otherwise [21,28]. The range

parameter offers a tunable thermal stability of the amphiphile
aggregates as in the other models in the literature with a tunable
range [21].

In amphiphile aggregates, the hydrophobic bulk is se-
questered from the polar solvent by oil-water interfaces.
Free-energy gain in transfer of hydrophobic chains from water
to oily bulk is the main drive behind surfactant self-assembly
[29–32]. Formation of the water-hydrocarbon interface and
headgroup repulsion, however, act against it [32,33]. Loss of
entropy due to orientational confinement in aggregates also
acts as a limiting cause [32]. We modeled the net effect with
directed amphiphiles interacting through short range forces
favoring certain relative orientations to others. Figure 3 shows
five of these orientations in order of decreasing preference
from left to right with arrows directed towards the headgroup
from the tail of the amphiphile. Phenomenology suggests
that the side-side parallel configuration of two surfactants a

should be more favorable than the corresponding antiparallel
configuration c, as flipping of amphiphiles is a relatively
rare phenomenon within amphiphile aggregates. End-end
antiparallel configuration with hydrophilic heads away from
each other, b, is similarly favorable compared to c. However,
hydrophobic interaction and lipophilic (oil-loving) cohesion
favors a over b. Hydration pressure, repelling hydrated head
groups in the vicinity of each other, makes the end-end
headgroup facing configuration e unfavorable compared to c.
Hydrophobic and lipophilic interactions also suggest that the
end-end parallel configuration d should be favorable compared
to e but unfavorable compared to c.

Orientational preferences, as in Fig. 3, are achieved in our
model via differences in well depths for different orientations.
For example, interamphiphile repulsions in configurations
d and e in Fig. 3 are modeled with negative well depths
(Fig. 4). A familiar interaction where relative orientations
of two directed vectors are energetically distinguished is the
dipole-dipole interaction. The first and third terms within
square brackets in Eq. (5) are actually inspired by similar terms
in the dipole-dipole interaction. It may also be noted that the

FIG. 4. V (r) [Eq. (3)] for some choice of (r̂,ûi ,ûj ) such that
σGB = σ0 = 1 and εwd = ε0 = −1; range = 2. The dotted line
depicts an exponential fitted to the tail part.

repulsive tail in Fig. 4 can be approximated as an exponential
decay reminiscent of the exponential distance dependence of
the hydration forces [26].

Well depth for the cross (X) configuration of the two
spheroids is ε0 from Eq. (5). If the well depth for the a and c

configurations are given, respectively, as wda and wdc, then
[Eq. (5)]

wda = ε0(ν1 + 1)ν0 , (6)

wdc = ε0(1 − ν1)ν0 . (7)

Solving these gives ν0 and ν1. It is, however, necessary that
ν0 be odd as otherwise the negative well depths required to
produce repulsions will never be generated. Knowledge of well
depths corresponding to the remaining three configurations in
Fig. 3, similarly, gives ν2, ν3, and εe. In other words, the five
parameters in Eq. (5) are able to completely reproduce the well
depths of five characteristic configurations (Fig. 3). Taking

ν0 > 0, (8)

Eqs. (6) and (7), together with the inequality wda > wdc,
imply

ν1 + 1 > 1 − ν1 > 0, i.e. 1 >ν1 > 0. (9)

Proceeding similarly with inequalities between well depths
of the other configurations in Fig. 3, we find

ν1 + ν2 > ν3, (10)

ν1 < ν3 − 1. (11)

The condition wda > wdb > wdc gives upper and lower
bounds on εe as(

1 + ν1

1 − ν1 + 2ν2 + ν3

)ν0

> εe >

(
1 − ν1

1 − ν1 + 2ν2 + ν3

)ν0

.

(12)

The inequalities (8)–(12) serve in checking the consistency
of any simple choice of the parameters.
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FIG. 5. Curvature: (a) Well depth εwd [Eq. (5)] as a function of
interim angle θ between two directed ellipsoids with directed axes ûi

and ûj making equal angles with the line joining their centers (inset).
Choice of parameters: ν0 = 1, ν1 = 0.8, ν2 = 4, ν3 = 3, εe = 0.12,
and ε0 = 1. (b) Equivalent packing parameter model in black.

As we move from the most preferred configuration a in
Fig. 3 to the next preferred one b by gradually increasing the
angle θ between the spheroids [see inset of Fig. 5(a)], ûi · ûj

and εGB decrease while ûi · r̂ − ûj · r̂ and −(ûi · r̂)(ûj · r̂)
increase. This implies a crossover with a maximum εwd

[Eq. (5)] at some θ , say θmax, between 0 and π [Fig. 5(a)].
This orientation, with one spheroid inclined to another at
angle θmax, is arguably the most preferred (i.e., minimum
energy) orientation between a pair of spheroids. The spheroids
therefore, would prefer to pack in clusters like cones with angle
θmax [Fig. 5(b)]. Hence, the effective packing parameter [34]
of our model spheroids is dependent on θmax. Other model

parameters remaining constant, θmax increases with increasing
εe. Therefore εe can be regarded as the parameter governing
phase curvature or packing parameter. For example, the other
parameters remaining constant, double-chain lipids forming
flat bilayers will have smaller εe compared to single-chain
surfactants forming globular micelles.

In view of the above discussion, our single-site model
amphiphile can be interpreted as any amphiphile with a polar
head and apolar tail(s) treating both the hydrated headgroup
and the hydrophobic and lipophilic tail interactions implicitly.
It may be noted that mixtures of amphiphiles of different
species can easily be modeled by choosing parameters of
the interspecies interaction differently from the intraspecies
ones. However, all species must have the same length as
interaction between spheroids of two different lengths has no
interpretation in our model.

III. COMPUTER SIMULATIONS

In absence of any explicit aqueous phase for pressure
coupling, NVT molecular dynamics (MD) was performed
instead of NPT with the above model for systems of identical
amphiphiles [35,36]. The Nosé-Hoover (NH) algorithm was
employed for the canonical thermostating [37,38]. Transla-
tional and rotational degrees of freedom were thermostated
separately [39]. Sufficiently large time steps were used without
compromising the desired conservation of an appropriate
quantity that remains conserved in NH MD [39]. A simple
integrator for linear molecules was used to rotate the uniaxial
spheroids [40]. Periodic boundary conditions and a fixed cubic
simulation box were employed for all the simulations. System
sizes (number of amphiphiles in the simulation box) chosen

FIG. 6. Dark spheres signify headgroups for directed surfactants. Self-assembly into bilayers from randomized initial configuration for
parameters as in Fig. 7(a). Integration time step: 0.0025.
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FIG. 7. Stable bilayers from 1372 particles (number density =
0.17) for ν0 = 1, ν1 = 0.8, ν2 = 4, ν3 = 3, εe= 0.052, σe = 3,
range = 3, and amphiphile moment of inertia = 4. (a) Fluid phase
(temperature = 2.5); (b) gel phase (temperature = 1).

were 256, 500, 1372, and 6912. Reduced units (meaning σ0 =
1, ε0 = 1 and amphiphile mass = 1) were used throughout.

Self-assembly from randomized initial configurations was
found to be quite rapid with aggregates forming within 3000
(spherical micelles) to 4000 (bilayers) steps. Figure 6 shows
a series of snapshots at 1000 step intervals starting from the
randomized gas phase. Within 4000 steps the bilayers become
quite recognizable. Increasing εe [within the bounds defined in
Eq. (12)] while retaining the rest of the parameters, phases with
more and more positive curvature were obtained. This trend
was consistently reproduced for varied choices of parameters
and system sizes. For a given choice of parameters and system
size, phases at different number densities were studied, though
no systematic exploration of the phase diagram was attempted.

Aggregate stability was checked by complete disassembly
through heating followed by cooling to the temperature under
study. The phases, if regained, would most likely be stable.
Under suitable conditions (density or box dimension) box-
spanning stable bilayers forming a multibilayer neat phase [6]
were obtained. Figure 7(a) depicts such a neat phase with two
bilayers in the cubic simulation box at temperature 2.5 for 1372
amphiphiles (of length σe = 3 and moment of inertia = 4)
with number density 0.17. The model parameters used were
ν0 = 1, ν1 = 0.8, ν2 = 4, ν3 = 3, εe= 0.052, and range = 3.
The integration time step was 0.0025. Note that the effective
treatment of hydration pressure keeps the two bilayers apart. In

FIG. 9. Curved phases from 500 particles (number density = 0.1)
for ν0 = 1, ν1 = 0.8, ν2 = 4, ν3 = 3, σe = 3, range = 3, amphiphile
moment of inertia = 4, and temperature = 2. (a) Box spanning
cylinder (εe = 0.11); (b) micelle (εe = 0.15).

other cases, many bilayer patches or disc-shaped micelles re-
mained in the simulation box. Sometimes multiply connected
ramp structures were observed. Although no sealed vesicles
were obtained, curved bilayers reminiscent of vesicular cross
sections were observed at large system sizes (of the order of
1000 particles in the simulation box). Configurations such as
pores, passages, and necks were also observed at these system
sizes [41]. At lower temperatures (comparable to or lower than
1) crystal-like gel phases [Fig. 7(b)] were observed for low
values of εe as opposed to the fluid bilayer phases for higher
temperatures (greater than 1). Fluidity was apparent when
the time series of root-mean-square displacement showed
an increasing trend [35] [Fig. 8(a)]. Another characteristic
feature of the fluidity is the loss of hexagonal order in the
bilayer plane [Fig. 8(b)]. With increasing length of the model
spheroid (from σe = 3 to σe = 5) the (gel-like) smectic-A [6]
configuration gained more thermal stability and interdigitation
became prominent.

For high εe, spherical micelles were obtained. An example
is provided in Fig. 9(b) for parameters given in the caption.
However, micellization was always observed above some
threshold density, thus mimicking the critical micelle concen-
tration. Thanks to our hydration force modeling by repulsive
interactions, unphysical clustering of micelles [16] was never
observed. Micelles were also found to arrange themselves in
a cubic crystal as in an isotropic phase [6]. For εe with values
interim between the bilayers and spherical micelles, cylindrical

FIG. 8. Bilayer fluidity: (a) Postequilibration root-mean-square (rms) displacement for 15 000 steps starting from the configuration in
Fig. 7(a). Integration time step size = 0.0025 in reduced units. (b) No hexagonal order in bilayer plane for bottom leaflet in Fig. 7(a).

023315-5



SOMAJIT DEY AND JAYASHREE SAHA PHYSICAL REVIEW E 95, 023315 (2017)

and ellipsoidal micelles were found often in coexistence with
spherical micelles. Box-spanning cylinders sometimes were
also generated [Fig. 9(a)]. Micelles were generally seen to be
thermally more stable compared to bilayers.

IV. DISCUSSIONS: SCOPE

To conclude, a packing parameter based, single-site model
amphiphile has been presented that treats water-mediated
interactions implicitly with simple pair potential. The model
successfully shows rapid unassisted self-assembly into phases
with diverse morphology. It is a direct representation of
a tunable packing parameter without compromising self-
assembly. Being nonspecific, simple, and solvent-free, it is
suitable for qualitative mesoscopic studies aimed towards a
fundamental understanding of collective molecular behavior
such as amphiphile mixing, domain formation, and elasticity
in aggregates ranging from cellular lipid bilayers to synthetic
copolymer micelles. With lower computational demand thanks
to the effective molecular-level coarse graining, such a model
may also encourage suggestive pilot simulations of technologi-
cal and medical importance with follow up by higher resolution
modeling later on. As a specific example, dynamical studies of
self-assembly of liposomal drug carriers and their fusion with
cellular biomolecular aggregates such as lipid bilayer vesicles
(endosomes) and membranes may be taken up with the present
model and its possible future extensions.

This paper responds to a long-standing need for an
efficient single-site model in the context of simulating large
scale phenomena emerging from aggregation of nanoscale
molecules in solution. Studies of these lyotropic phases
are scarce compared to thermotropic liquid crystals due
to severe computational demand in simulating amphiphile
solutions. Simple, single-site, anisotropic interaction models
such as Gay-Berne ellipsoids have contributed significantly
to thermotropic studies. With the present model the same is
hoped in connection to the more versatile field of lyotropic
liquid crystals.
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APPENDIX: EXPRESSIONS FOR FORCES AND TORQUES

The force exerted on amphiphile i by amphiphile j is Fij =
−−→∇ rV and that on j by i is Fji = −Fij . Now,

−→∇ rV = ∂V

∂r
r̂ + 1

r
[
−→∇ r̂V − {(−→∇ r̂V ) · r̂}r̂]

=
{

∂V

∂r
− (

−→∇ r̂V ) · r̂
r

}
r̂ + 1

r

−→∇ r̂V. (A1)

The torque on i due to j is given by Tij = −ûi × −→∇ ûi
V and

that due to i on j , by Tji = −ûj × −→∇ ûj
V . However, Fij , Tij ,

and Tji are related by the vector equation, Tji + Tij + r ×

Fij = 0. This follows directly from the rotational invariance
of V (r,r̂,ûi ,ûj ) [42]. It is, therefore, sufficient to have the

expressions for ∂V/∂r ,
−→∇ r̂V , and

−→∇ ûi
V in order to obtain all

the necessary forces and torques from them. Now,

∂V

∂r
= −24ε0(2R−13 − R−7)/σ0, if r < rl

= 6(ru − r)(r − rl)εwd(r̂,ûi ,ûj )

range3
, if rl � r < ru

= 0, otherwise. (A2)

Additionally,

−→∇ r̂/ûi
V = −∂V

∂r

−→∇ r̂/ûi
σGB − −→∇ r̂/ûi

εwd, if r < rl

= s(r)
−→∇ r̂/ûi

εwd, if rl � r < ru

= 0, otherwise. (A3)

Writing [ν1(ûi · ûj ) + ν2(ûi · r̂ − ûj · r̂) − ν3(ûi · r̂)(ûj · r̂) +
1] as ε′, Eq. (5) becomes

εwd = ε0ε
′ν0εGB. (A4)

Hence,

−→∇ r̂/ûi
εwd = ν0

εwd

ε′
−→∇ r̂/ûi

ε′ + ε0ε
′ν0

−→∇ r̂/ûi
εGB. (A5)

Now,

−→∇ r̂ε
′ = ν2(ûi − ûj ) − ν3[(ûj · r̂)ûi + (ûi · r̂)ûj ], (A6)

and

−→∇ ûi
ε′ = ν1ûj + [ν2 − ν3(ûj · r̂)]r̂. (A7)

The last pieces needed, therefore, are
−→∇ r̂/ûi

σGB and−→∇ r̂/ûi
εGB. Note that by defining

g(x) = 1

2

{
(r̂ · ûi + r̂ · ûj )2

1 + x(ûi · ûj )
+ (r̂ · ûi − r̂ · ûj )2

1 − x(ûi · ûj )

}

= (r̂ · ûi)
2 + (r̂ · ûj )2 − 2x(r̂ · ûi)(r̂ · ûj )(ûi · ûj )

1 − x2(ûi · ûj )2 ,

(A8)

we have σGB = σ0/
√

1 − χg(χ ) and εGB = 1 − χ ′g(χ ′).
Hence, the knowledge of

−→∇ r̂/ûi
g(x) gives

−→∇ r̂/ûi
σGB and−→∇ r̂/ûi

εGB. Now,

−→∇ r̂g(x) = 2
ζ i
j ûi + ζ

j

i ûj

1 − x2(ûi .ûj )2 , (A9)

where ζ i
j = r̂ · ûi − x(r̂ · ûj )(ûi · ûj ), and

−→∇ ûi
g(x) = 2

ζ i
j r̂ + x[x(ûi · ûj )g(x) − (r̂ · ûi)(r̂ · ûj )]ûj

1 − x2(ûi · ûj )2 .

(A10)
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