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In this work, a high-order weighted essentially nonoscillatory (WENO) finite-difference lattice Boltzmann
method (WENOLBM) is developed and assessed for an accurate simulation of incompressible flows. To handle
curved geometries with nonuniform grids, the incompressible form of the discrete Boltzmann equation with the
Bhatnagar-Gross-Krook (BGK) approximation is transformed into the generalized curvilinear coordinates and
the spatial derivatives of the resulting lattice Boltzmann equation in the computational plane are solved using
the fifth-order WENO scheme. The first-order implicit-explicit Runge-Kutta scheme and also the fourth-order
Runge-Kutta explicit time integrating scheme are adopted for the discretization of the temporal term. To examine
the accuracy and performance of the present solution procedure based on the WENOLBM developed, different
benchmark test cases are simulated as follows: unsteady Taylor-Green vortex, unsteady doubly periodic shear
layer flow, steady flow in a two-dimensional (2D) cavity, steady cylindrical Couette flow, steady flow over a
2D circular cylinder, and steady and unsteady flows over a NACA0012 hydrofoil at different flow conditions.
Results of the present solution are compared with the existing numerical and experimental results which show
good agreement. To show the efficiency and accuracy of the solution methodology, the results are also compared
with the developed second-order central-difference finite-volume lattice Boltzmann method and the compact
finite-difference lattice Boltzmann method. It is shown that the present numerical scheme is robust, efficient, and
accurate for solving steady and unsteady incompressible flows even at high Reynolds number flows.
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I. INTRODUCTION

In the last three decades, the lattice Boltzmann method
(LBM) has become one a powerful technique to simulate fluid
flow problems. In recent years, the LBM is used to simulate
complex fluid flows such as incompressible flows, high-
speed compressible flows, multiphase and multicomponent
flows, magnetohydrodynamics, and so on, and it has been
an attractive alternative computational technique to the tra-
ditional Navier-Stokes solvers. The simplicity of considering
microscopic interactions for modeling of additional physical
phenomena is the main advantage of the LBM. Specifically,
because of its roots in statistical mechanics and kinetic theory,
the LBM performs very well for flows where continuum
assumptions break down. Historically the LBM evolved from
the lattice gas automata (LGA) method, but later it was shown
that it can be derived independently from the continuous
Boltzmann equation by discretizing the velocity space [1].

In the lattice Boltzmann framework, macroscopic flow
variables can be recovered from the dynamic evolution of
particle distribution functions in the phase space. From a
computational point of view, the solution of the LB equation
seems to be easier than the Navier-Stokes equations for the
fluid flow simulations. In fact, the LB equation is a simple
linear hyperbolic equation which consists of only first-order
derivatives and therefore it can be solved simply and efficiently
by applying conventional numerical methods. Note that the
Navier-Stokes equations contain both the first- and second-
order derivatives and besides that, the convective terms in
the Navier-Stokes equations are nonlinear, and nonlinearity
is a source of numerical difficulty. Another advantage of the
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LBM over the Navier-Stokes equations is that the pressure in
the incompressible Navier-Stokes solvers using the pressure-
based methods should be obtained by solving a Poisson
equation in an iterative manner that is very time consuming;
however, the pressure in the LBM is calculated locally via an
equation of state in an efficient manner. One can also solve
the incompressible Navier-Stokes equations with the artificial
compressibility method to obtain the pressure field. In [2],
it has been shown that the simulated pressure fields from
the LBM and the Navier-Stokes equations with the artificial
compressibility method exhibit a significant difference and the
LBM may be more accurate than the artificial compressibility
method in capturing the pressure waves. Also, in [3] some
features of the linkwise artificial compressibility method of
Asinari et al. [4], in which the replacement of parts of the LBM
algorithm by expressions deduced from finite-differencing the
primitive variables is performed, are analyzed and discussed
and alternative finite-difference expressions are proposed to
improve the resulting simulations. So, in addition to the
capability of the LBM to simulate complex physics, ease
of programing and parallelization make this method very
attractive in computational fluid dynamics.

In spite of the advantages of the LBM over Navier-Stokes
flow solvers, it has some serious limitations too. In the standard
LBM, which is based on the streaming and collision steps,
the physical structure of the lattice is coupled to the velocity
discretization of particle distribution functions; hence the
method is restricted to uniform Cartesian grids with equal
spacing. The use of a uniform mesh in the standard LBM
greatly limits its applications to solve engineering practical
problems with complex geometries. Another important limi-
tation of the standard LBM is its inherent instability at high
Reynolds number flows. To overcome the stability problem,
some efforts have been made in the literature. One way is to
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use the multi-relaxation-time method [5] or to implement the
cascaded LBM [6] which improves the numerical stability of
the LBM.

Another way to enhance the stability limits and accuracy of
the LBM is to decouple the numerical mesh from the lattice
structure and discretize space and time independently. He and
Luo [1] have shown that the discretization of phase space
and the physical space can be made independently. According
to this idea, the other way to improve stability is to use
the conventional ways to discretize the discrete Boltzmann
equation (DBE) since the instability problem is closely related
to strong coupling between time and space discretizations.
In recent years, different traditional numerical methods such
as finite-difference (FD) [7–16], finite-volume (FV) [17–
21], finite-element (FE) [22–26], and spectral methods [27]
have been used to improve the computational accuracy and
efficiency of the LBM. These differential types of LB methods
can overcome the difficulties encountered at high Reynolds
number flows by using body-conforming, curvilinear meshes
with clustering of grid points in critical zones.

For precisely predicting complex fluid flows, high-order
accurate numerical methods have to be used; these methods
reduce the number of grid points and the CPU time require-
ments compared to the other traditional low-order numerical
methods. Achieving high-order accuracy in finite-difference
methods is simple and straightforward compared to the other
numerical methods. Since the LB equation has a simpler
formulation than the Navier-Stokes equations, the implementa-
tion of high-order accurate finite-difference methods to solve
the LB equation seems to be easier and high-order accurate
FDLBM can be considered as an alternative to the high-order
accurate FD Navier-Stokes solvers.

Most of the previous FDLBM developed in the literature are
based on usual finite-difference schemes with second-order ac-
curacy. In FDLBM, one can apply high-order accurate numer-
ical methods for improving the accuracy and performance of
the solution. Recently, the high-order compact finite-difference
method has been applied to the LBM (CFDLBM) and it has
been shown that it improves the capability of the LBM in
modeling different fluid flow problems [15,16]. Although the
CFDLBM has shown an improvement in the LBM, because
there is no built-in upwinding, a filtering procedure has to be
applied to stabilize the numerical solution. Thus, it is desirable
to apply an accurate and practical numerical method based on
the finite-difference LBM that does not contain this deficiency.

Although the FDLBM has better stability than the standard
LBM, it still suffers from numerical instability, especially
when the relaxation time is small (i.e., Reynolds number is
high). From a numerical point of view, at small relaxation
time, the LB equation with the Bhatnagar-Gross-Krook (BGK)
approximation becomes stiff, which means that it requires a
very small time step �t ≈ O(τ ) to maintain the numerical
stability. The requirement of small �t is particularly restrictive
in the case of flows with high Reynolds numbers where τ

is very small [28]. One of the simple and effective ways
to treat the stiff equations is to use the implicit-explicit
(IMEX) Runge-Kutta scheme for the time discretization. In
this method, the collision term which is the source of instability
and stiffness is treated implicitly and the convective terms
are treated explicitly. With the IMEX time discretization, the

restriction of �t ≈ O(τ ) due to the explicit approximation
of the collision term can be relaxed; however, the explicit
discretization of the convective terms imposes a stability
criterion on �t through the Courant-Friedrichs-Lewy (CFL)
condition, i.e., CFL = �t/ min(�x,�y) < 1.

The main objective of this paper is to implement the
high-order WENO finite-difference scheme with the incom-
pressible LBM in the generalized curvilinear coordinates
with nonuniform grids. The WENO scheme has already
been applied to the compressible LB equation to simulate
compressible flows [29,30] and this scheme has not been
applied and assessed to the incompressible LB equation in
the literature yet. The upwind nature of the WENO scheme
guarantees that the scheme can readily be used in applica-
tions involving high Reynolds number flows or flows with
strong shear. To handle curved geometries with nonuniform
grids the incompressible LB equation is transformed into
the generalized curvilinear coordinates. Herein the spatial
derivatives in the incompressible form of the LB equation in
the computational plane are discretized by using the fifth-order
WENO finite-difference scheme. The temporal term is solved
based on the first-order IMEX scheme and also the fourth-order
explicit Runge-Kutta scheme. The accuracy and efficiency of
the WENOLBM are examined by solving different benchmark
incompressible flow problems at different conditions. Results
obtained by applying the WENOLBM are compared with those
of the developed second-order finite-volume lattice Boltzmann
method (FVLBM) and also the fourth-order compact finite-
difference lattice Boltzmann method (CFDLBM).

The paper is organized as follows: In Sec. II, the LB
equation for the two-dimensional (2D) incompressible flows
based on the pressure distribution function is presented and it
is transformed into the generalized curvilinear coordinates in
Sec. III. In Sec. IV, the spatial and time discretization schemes
are given. The implementation of boundary conditions is
presented in Sec. V. Section VI is devoted to presenting the
results obtained by applying the WENOLBM and FVLBM for
different 2D test cases. Finally, some conclusions are given in
Sec. VII.

II. GOVERNING EQUATIONS

The governing equation in the lattice Boltzmann method is
the continuous Boltzmann equation

∂f

∂t
+ e · ∇f = �, (1)

in which f is the particle distribution function, e is the particle
velocity, and � is the collision term between particles. Ac-
cording to the Bhatnagar-Gross-Krook (BGK) approximation,
the collision between particles drives the particle distribution
function toward an equilibrium distribution f eq with a single
relaxation time τ [31],

� = −1

τ
(f − f eq). (2)

A two-dimensional square lattice model with nine velocity
directions (D2Q9) is employed to discretize Eq. (1) in the
lattice configuration. Therefore, the lattice Boltzmann (LB)
equation for the particle distribution function fα in the
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direction of microscopic velocity eα may be written as

∂fα

∂t
+ eα · ∇fα = − 1

τ

(
fα − fα

eq
)
, α = 0,1, . . . , 8, (3)

where the subscript α denotes the direction of the particle
speed. In the D2Q9 discrete Boltzmann model, the microscopic
velocities are given as

eα = (eαx,eαy) =

⎧⎪⎨⎪⎩
(0,0) α = 0[

cos
(

α−1
2 π

)
, sin

(
α−1

2 π
)]

α = 1,2,3,4[
cos

(
α−5

2 π + 1
4π

)
, sin

(
α−5

2 π + 1
4π

)]√
2 α = 5,6,7,8

. (4)

The equilibrium distribution function f eq must be chosen
such that the mass and momentum remain conserved and the
incompressible Navier-Stokes equations are satisfied through
the Chapman-Enskog expansion. The incompressible form of
the LB equation used herein is based on the model given by
He and Luo [32]. They introduced a local pressure distribution
function, redefining the density distribution in the LB equation
by the fact that the error terms in the order of O(M2)
[where M = uref/cs is the Mach number in which uref is the
reference (characteristic) macroscopic velocity and cs is the
speed of sound] are explicitly removed from the equilibrium
distribution function. In this formulation, the fluid density is
not calculated in the simulations and the incompressible form
of the LB equation solves the pressure in the computational
domain as the independent variable. The resulting equation of
the equilibrium distribution function f

eq
α is defined as

f eq
α = wα

{
p + p0

[
3

eα · u
c2

+ 9

2

(eα · u)2

c4
− 3

2

|u|2
c2

]}
, (5)

where u = (u,v) is the macroscopic velocity vector in Carte-
sian coordinates and the weight coefficient wα for the D2Q9
model is given by

w0 = 4/9,

w1 = · · · = w4 = 1/9,

w5 = · · · = w8 = 1/36. (6)

The macroscopic fluid pressure p and the macroscopic
velocity vector u are obtained from the following relations:

p =
∑

α

fα, p0u =
∑

α

eαfα, (7)

where p0 = c2
s ρ0 and cs = 1/

√
3 [33] in the LBM, and ρ0 is

the constant density of the fluid.
By applying the Chapman-Enskog expansion to the DBE,

the incompressible Navier-Stokes equations can be derived
from the incompressible LB model,

1

c2
s

∂p

∂t
+ ∇ · u = 0, (8)

∂u
∂t

+ u · ∇u = −∇p + ν∇2u, (9)

where v is the kinematic viscosity of the fluid and the relation
for the relaxation time τ in the finite-difference LB model is
given by [10]

τ = ν

c2
s

. (10)

III. TRANSFORMATION TO GENERALIZED
CURVILINEAR COORDINATES

In the generalized curvilinear coordinates, the physical
and computational domains are denoted by (x,y) and (ξ,η),
respectively:

ξ = ξ (x,y), η = η(x,y). (11)

The relationship between the physical and computational
domains satisfies the following condition:[

ξx ξy

ηx ηy

]
= 1

J

[
yη −xη

−yξ xξ

]
, (12)

where J is the Jacobian of the transformation given by

J = xξyη − xηyξ . (13)

Using the chain rule, the convection term in Eq. (3) can be
rewritten as

eα · ∇f = eαx

∂fα

∂x
+ eαy

∂fα

∂y

= eαx

(
∂fα

∂ξ
ξx + ∂fα

∂η
ηx

)
+ eαy

(
∂fα

∂ξ
ξy + ∂fα

∂η
ηy

)
= (eαxξx + eαyξy)

∂fα

∂ξ
+ (eαxηx + eαyηy)

∂fα

∂η

= ẽαξ

∂fα

∂ξ
+ ẽαη

∂fα

∂η
, (14)

where ẽα = (ẽαξ ,ẽαη) = (eαxξx + eαyξy, eαxηx + eαyηy) is the
microscopic contravariant velocity vectors in the computa-
tional plane. Then, in the generalized coordinates, Eq. (3) can
be written as

∂fα

∂t
=−

(
ẽαξ

∂fα

∂ξ
+ ẽαη

∂fα

∂η

)
− 1

τ

(
fα − fα

eq
)
,

α = 0,1, . . . , 8. (15)

IV. DISCRETIZATION PROCEDURE

In the present study, we apply the fifth-order finite-
difference weighted essentially nonoscillatory (WENO)
scheme to the spatial derivatives in the LB equation in the
computational domain and the first-order implicit-explicit
Runge-Kutta scheme and the fourth-order explicit Runge-
Kutta scheme are applied for the temporal discretization to
achieve an accurate and efficient incompressible flow solver.
A second-order finite-volume LB solver is also developed for
the assessment of the WENO solver.
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A. Spatial discretization

1. Fifth-order WENO scheme

The natural implementation of upwinding in the WENO
scheme is to use the signs of microscopic contravariant
velocity in front of the spatial derivatives in Eq. (15). The
semidiscretized form of Eq. (15) is

∂fα

∂t
+ ẽαξ

�ξ
(fα,i+1/2,j − fα,i−1/2,j )

+ ẽαη

�η
(fα,i,j+1/2 − fα,i,j−1/2) = − 1

τ

(
fα − f eq

α

)
, (16)

where i and j are indices of each cell and fα,i±1/2,j , fα,i,j±1/2

are computed based on the fifth-order WENO scheme as
follows [29,34]:

fα,i+1/2 =
3∑

k=1

ωkf
(k)
α,i+1/2, (17)

where f
(k)
α,i+1/2 is a third-order approximation of f (and if

ẽαξ > 0); we have

f (1)
α,i+1/2

= 1
3fα,i−2 − 7

6fα,i−1 + 11
6 fα,i ,

f (2)
α,i+1/2

= − 1
6fα,i−1 + 5

6fα,i + 1
3fα,i+1,

f (3)
α,i+1/2

= 1
3fα,i + 5

6fα,i+1 − 1
6fα,i+2. (18)

The nonlinear weights ωk in Eq. (17) are

ωl = ω̃l

/ 3∑
l=1

ω̃l, ω̃l = γl

(ε + βl)2 , (19)

where the smoothness indicators βl(l = 1,2,3) are given by

β1 = 13
12 (fα,i−2 − 2fα,i−1 + fα,i)

2

+ 1
4 (fα,i−2 − 4fα,i−1 + fα,i)

2,

β2 = 13
12 (fα,i−1 − 2fα,i + fα,i+1)2

+ 1
4 (fα,i−1 − fα,i+1)2,

β3 = 13
12 (fα,i − 2fα,i+1 + fα,i+2)2

+ 1
4 (3fα,i − 4fα,i+1 + fα,i+2)2, (20)

and the linear weights γl are γ1 = 0.1, γ2 = 0.6, and γ3 = 0.3.
Finally, ε is a small positive number used to avoid the
denominator becoming zero and is typically chosen to be
ε = 10−6.

Equation (17) is applied in the computational domain for
the grid points i = 3, . . . ,Imax − 2 for each j . At the near
boundary points, the third-order reconstructions for fα,i+1/2

are used as follows:

for i = 2 : fα,i+1/2 = − 1
6fα,i−1 + 5

6fα,i + 1
3fα,i+1,

for i = Imax − 1 : fα,i+1/2 = 1
3fα,i−2 − 7

6fα,i−1 + 11
6 fα,i ,

(21)

and if ẽαξ < 0, fα,i+1/2 is constructed symmetrically as above
about i + 1

2 . The calculation of fα,i,j±1/2 is performed in the
same manner. It should be noted that the metrics (xξ ,yξ , . . .)

appearing in Eq. (15) are also calculated by using the fourth-
order central finite-difference formula.

2. Second-order finite-volume scheme

In order to assess the accuracy and performance of the
WENOLBM, we have also developed a second-order finite-
volume lattice Boltzmann method (FVLBM). The selected
approach is a flux averaging cell-centered finite-volume
scheme based on the quadrilateral elements. By integrat-
ing Eq. (3) over each element, the governing equation is
described as∫

s

[
∂fα

∂t
+ eα · ∇fα + 1

τ

(
fα − f eq

α

)]
ds = 0,

α = 0,1, . . . ,8. (22)

The integration for the convective term is performed by
applying Green’s theorem and using the flux averaging on the
faces as follows:∫

s

(eα · ∇fα)ds =
∫

s

(
eαx

∂fα

∂x
+ eαy

∂fα

∂y

)
ds

=
∮

around cell
(eαxfαdy − eαyfαdx)

≈
∑

all faces

[fα]cell + [fα]neighbor

2

× (eαxdy − eαydx), (23)

where eαx and eay are constant. With the assumption of fα

and f
eq
α to be constant over each cell, the discretized form of

Eq. (22) is given by[
∂fα

∂t

]
A =−

∑
all faces

[fα]cell + [fα]neighbor

2

× (eαxdy − eαydx) − A

τ

(
fα − f eq

α

)
, (24)

where A is the area of the element. In flux averaging schemes,
spurious oscillations are inherited in the numerical solution;
then the artificial dissipation terms should be added to the
formulation to stabilize the numerical simulation. The fourth-
order artificial dissipation as

D(4)fα = εd

[
(∇�)2

x + (∇�)2
y

]
fα (25)

is added to Eq. (24), where εd is the damping factor. In Eq. (25)
the gradient operator is discretized in the x and y directions as
follows:

(∇�)2
xfα,i,j = fα,i+2,j − 4fα,i+1,j + 6fα,i,j

− 4fα,i−1,j + fα,i−2,j ,

(∇�)2
yfα,i,j = fα,i,j+2 − 4fα,i,j+1 + 6fα,i,j

− 4fα,i,j−1 + fα,i,j−2. (26)

B. Temporal discretization

1. Fourth-order explicit Runge-Kutta (RK4) scheme

For stiff equations, all the explicit methods have stability re-
striction and the computations tend to become very inefficient
because the time step size dictated by the stability requirements
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is very small. Among the explicit methods, the fourth-order
Runge-Kutta methods have good stability and are suitable for
the accurate calculation of unsteady flows. The semidiscretized
form of Eqs. (15) or (24) can be written as follows:

dfα

dt
= R(fα), (27)

where R(fα) is the operator defined by the right-hand side
of Eqs. (15) or (24). The explicit fourth-order Runge-Kutta
scheme is expressed as

f 0
α = f t

α,

f k
α = f 0

α +λk�tRk−1(fα), k=1,2,3,4 λk= 1
4 , 1

3 , 1
2 ,1,

f t+�t
α = f 4

α . (28)

2. Implicit-explicit (IMEX) Runge-Kutta scheme

The IMEX Runge-Kutta scheme consists of the implicit
time discretization of the collision term and the explicit one
for the convective terms and in this scheme the restriction of
�t � 2τ can be relaxed and the only restriction on �t is due to
the explicit discretization of the convective terms. The scheme
is expressed as [29]

f (j )
α = f n

α − �t

j−1∑
k=1

m̃jk

(
eα · ∇f (k)

α

)
−�t

j∑
k=1

mjk

f (k)
α − f

eq(k)
α

τ
, (29)

f n+1
α = f n

α − �t

r∑
j=1

ñj

(
eα · ∇f (k)

α

)
−�t

r∑
j=1

nj

f (k)
α − f

eq(k)
α

τ
, (30)

where f
(j )
α and f

eq(j )
α are the j th stage of the particle

distribution function and the equilibrium particle distribution
function, respectively. Here, r is the stage number and two
r × r matrices M̃ = m̃jk and M = mjk , and the two vectors
ñj and nj characterize the IMEX Runge-Kutta scheme. The
characteristic of the collision invariants φ of the LBM provides
us with a simple trick to update f

(j )
α . One can rewrite Eq. (29)

as [29]

8∑
α=0

f (j )
α φ =

8∑
α=0

f n
α φ − �t

j−1∑
k=1

m̃jk

[
8∑

α=0

(
eα · ∇f (k)

α

)
φ

]

−�t

j∑
k=1

mjk

τ

[
8∑

α=0

(
f (k)

α − f eq(k)
α

)
φ

]
, (31)

and from

8∑
α=0

(
f (k)

α − f eq(k)
α

)
φ = 0 (32)

we can further obtain

8∑
α=0

f (j )
α φ =

8∑
α=0

f n
α φ − �t

j−1∑
k=1

m̃jk

[
8∑

α=0

(
eα · ∇f (k)

α

)
φ

]
, (33)

where φ can be 1,eαx and eαy . With this equation, the j th stage macroscopic variables (u(j ),v(j ),p(j )) can be calculated, so one
can update corresponding f

eq(j )
α . Therefore, f

(j )
α can be given explicitly as

f (j )
α = f n

α − �t
∑j−1

k=1 m̃jk

(
eα · ∇f (k)

α

) − �t
∑j−1

k=1 mjk
f (k)

α −f
eq(k)
α

τ
+ �tmjjf

eq(j )
α /τ

1 + �t
τ

mjj

. (34)

Thus, owing to the characteristic of the collision invariants
in the LBM, no iteration is needed in practice.

The IMEX schemes are usually represented by a double
Butcher’s tableau as follows:

M̃

ñ

M

n

In this study, we use a simple two-stage first-order IMEX
Runge-Kutta scheme as follows:

0 0
1 0
1 0

0 0
0 1
0 1

V. BOUNDARY CONDITIONS IMPLEMENTATION

In the LB equation, the boundary conditions must be
specified in terms of the distribution function fα; however, fα

is not given at the boundaries; therefore a special treatment

should be utilized for calculating its value based on the
macroscopic variables at each boundary. Here, the distribution
function at each boundary is written as follows:

fα = f eq
α + f non-eq

α , (35)

where f
eq
α is calculated by Eq. (5) with the use of the specified

or extrapolated macroscopic variables at the desired boundary.
At the inlet and on the wall boundary with no slip condition, the
velocity components are known and to calculate the pressure
at the boundary, the one-sided finite-difference extrapolation
is used to discretize ∂p

∂η
= 0:

p1 = 1
125 (240p2 − 180p3 + 80p4 − 15p5). (36)

At the outlet, the pressure is set to a fixed value and the
same extrapolation is used for the velocity components.

The nonequilibrium part of distribution function f
non−eq
α

at the boundaries can be computed using the one-sided
fourth-order finite-difference approximation of the formula
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∂2f
non-eq
α

∂ξ 2 = 0 as follows:

f
non-eq
α,1 = 1

180

(
616f

non-eq
α,2 − 856f

non-eq
α,3 + 624f

non-eq
α,4

− 244f
non-eq
α,5 + 40f

non-eq
α,6

)
, (37)

where the nonequilibrium distribution function is defined as
f

non−eq
α = fα − f

eq
α .

VI. NUMERICAL RESULTS

To investigate the accuracy and robustness of the high-
order numerical scheme (WENOLBM) applied, the solution
algorithm is used to simulate different steady and unsteady
flow problems. Different benchmark problems are considered
for verifying the present computations and demonstrating the
stability, accuracy, and efficiency of the solution algorithm:
unsteady Taylor-Green vortex, unsteady doubly periodic shear
layer flow, steady flow in a 2D cavity, steady cylindrical Cou-
ette flow, steady flow over a 2D circular cylinder, and steady
and unsteady flows over a NACA0012 hydrofoil at different
flow conditions. Results obtained for these test cases are com-
pared with those of the developed second-order finite-volume
lattice Boltzmann method (FVLBM) and also the available
numerical and experimental results. All the present computa-
tions are performed on a computer with an Intel core i7-740QM
processor, 1.73 GHz, with a 64-bit operating system.

A. Taylor-Green vortex problem

The Taylor-Green vortex decay problem has been widely
used for the verification of incompressible flow solvers. This
problem is solved here to demonstrate the accuracy and
efficiency of the WENO finite-difference lattice Boltzmann
method applied. The two-dimensional problem is introduced
by Taylor [35] based on the incompressible Navier-Stokes
equations in terms of the stream function and the vorticity vari-
able. The exact solution of this unsteady problem is known as

u(x,y,t) = −uref cos(N1x) sin(N2y)e−ν t (N2
1 +N2

2 ),

v(x,y,t) = N1

N2
uref sin(N1x) cos(N2y)e−νt(N2

1 +N2
2 ),

p(x,y,t) = p0 − 1

4
ρ0u

2
ref

[
cos(2N1x) +

(
N1

N2

)2

cos(2N2y)

]
× e−2νt(N2

1 +N2
2 ) (38)

where uref is the initial velocity magnitude, ν is the kinematic
viscosity, and N1 = 2 and N2 = 2 are the wave numbers
in the x and y directions. Periodic boundary conditions are
applied to all boundaries at the four sides of the domain
(0 � x � L, 0 � y � L, L = 2π ). The analytical initial
conditions for the velocity and pressure fields are obtained by
setting t = 0 in Eq. (38).

Figure 1 indicates the computed Taylor’s array of vortices
with Re = urefL/υ = 10π at the dimensional time t = 10.
As shown in this figure, the number of vortices is defined by
2 × Ni in each direction. The present computations using the
high-order WENO finite-difference LBM (WENOLBM) for
the normalized velocity components (u/uref,v/uref) at the mid-
lines y = π and x = π , respectively, are compared with the
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FIG. 1. Computed flow field shown by streamlines (top) and
comparison of velocity profiles (bottom) for Taylor-Green vortex
problem with Re = 10π and t = 10.

analytical solution and the second-order finite-volume LBM
(FVLBM) at t = 10. It is observed that the WENOLBM solver
gives more accurate results than the FVLBM solver for the
same number of grid points.

The order of accuracy of the present numerical scheme
is calculated for this problem for three reference velocity
values, uref = 0.1, 0.01, and uref = 0.001 and the calculations
are performed for the five computational grids, namely,
(11 × 11), (21 × 21),(41 × 41), (81 × 81), and (161 × 161)
at the Reynolds number Re = 10π and t = 10. The error is
calculated based on the L2 norm of the u-velocity profile
compared with the analytical solution and also that of the
most refined grid. The results in Table I show that a small
value of reference velocity leads to a more accurate solution
due to decreasing the compressibility effects. The order of
accuracy of the solution obtained is 3.48, 4.3, and 5.03
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TABLE I. Order of accuracy of the solution based on the L2 norm of u-velocity profile for Taylor-Green vortex problem with Re = 10π

at t = 10.

Grid �y log10(�y) log10(L2 norm[Error])

uref = 0.1 Compared with the most refined grid (161 × 161) (11 × 11) 2π/10 –0.2018 –0.9286
(21 × 21) 2π/20 –0.5028 –1.6745
(41 × 41) 2π/40 –0.8038 –3.0542
(81 × 81) 2π/80 –1.1049 –4.6529

Order of accuracy ∼4.81

Compared with the analytical solution (11 × 11) 2π/10 –0.2018 –0.9285
(21 × 21) 2π/20 –0.5028 –1.6742
(41 × 41) 2π/40 –0.8038 –3.0077
(81 × 81) 2π/80 –1.1049 –3.9725

Order of accuracy ∼3.48

uref = 0.01 Compared with the most refined grid (161 × 161) (11 × 11) 2π/10 –0.2018 –0.3243
(21 × 21) 2π/20 –0.5028 –1.2294
(41 × 41) 2π/40 –0.8038 –2.7593
(81 × 81) 2π/80 –1.1049 –4.2331

Order of accuracy ∼4.85

Compared with the analytical solution (11 × 11) 2π/10 –0.2018 –0.3243
(21 × 21) 2π/20 –0.5028 –1.2300
(41 × 41) 2π/40 –0.8038 –2.8394
(81 × 81) 2π/80 –1.1049 –4.0552

Order of accuracy ∼4.3

uref = 0.001 Compared with the most refined grid (161 × 161) (11 × 11) 2π/10 –0.2018 –0.3696
(21 × 21) 2π/20 –0.5028 –1.5526
(41 × 41) 2π/40 –0.8038 –3.0343
(81 × 81) 2π/80 –1.1049 –4.5463

Order of accuracy ∼4.9

Compared with the analytical solution (11 × 11) 2π/10 –0.2018 –0.3695
(21 × 21) 2π/20 –0.5028 –1.5528
(41 × 41) 2π/40 –0.8038 –3.0405
(81 × 81) 2π/80 –1.1049 –4.5737

Order of accuracy ∼5.03

by calculating the error based on the L2 norm of the u-
velocity profile compared with the analytical solution for the
reference velocities uref = 0.1, 0.01, and 0.001, respectively.
The present study shows that the fifth-order accuracy of the
numerical method implemented is verified by considering
a small value of the reference velocity for both ways of
calculating the solution error. Note that the fifth-order accuracy
of the numerical method applied is achieved independently of
the value of the reference velocity when the error is calculated
based on the solution of the most refined grid. Figure 2 shows
the L2-norm error of the solution obtained by the WENOLBM
compared with the FVLBM for the Taylor vortex problem
with uref = 0.001. It is observed that the WENOLBM is more
accurate than the FVLBM by considering the same number of
grid points and the FVLBM requires a higher number of grid
points to provide the same accuracy achieved by applying the
WENOLBM. To further assess the accuracy of the solution
method applied, the Taylor vortex problem is also simulated
on the nonunity aspect ratio grids for different grid sizes at
Re = 10π and t = 10. The corresponding errors based on the
L2 norm of the μ-velocity profile compared with the analytical
solution are given in Table II which verifies that by decreasing
the reference velocity, the desired order of the accuracy can be
achieved even for the nonunity aspect ratio grids.
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FIG. 2. Comparison of L2-norm error of the solution for Taylor-
Green vortex problem at Re = 10π and t = 10 with uref = 0.001.
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TABLE II. Order of accuracy of the solution based on the L2

norm of the u-velocity profile for the Taylor-Green vortex problem
with Re = 10π at t = 10 on nonuniform grids.

Grid �y log10(�y) log10(L2 norm)

uref = 0.1 (11 × 21) 2π/20 –0.50285 –1.0395
(21 × 41) 2π/40 –0.80388 –1.9488
(41 × 81) 2π/80 –1.1049 –3.2217

Order of accuracy ∼3.91

uref = 0.01 (11 × 21) 2π/20 –0.50285 –0.4353
(21 × 41) 2π/40 –0.80388 –1.5216
(41 × 81) 2π/80 –1.1049 –3.1432

Order of accuracy ∼4.49

uref = 0.001 (11 × 21) 2π/20 –0.50285 –0.5548
(21 × 41) 2π/40 –0.80388 –1.8457
(41 × 81) 2π/80 –1.1049 –3.3318

Order of accuracy ∼4.61

In Table III, the efficiency of the proposed solution
methodology based on the WENO finite-difference LBM is
examined by comparison with the second-order finite-volume
LBM in terms of the computation time with the same time
step size. It is indicated that for a specified accuracy, the
WENOLBM method applied requires a lower number of grid
points and the computation time can be significantly reduced
compared to the FVLBM. For example, the computation
time of the explicit Runge-Kutta WENOLBM solver with
the mesh (81 × 81) is about 2.5 h; however, the FVLBM
requires the mesh (321 × 321) to give the same accuracy and

TABLE III. Comparison of computation time for Taylor-Green
vortex problem with Re = 10π at t = 10 for uref = 0.001.

WENOLBM FVLBM

RK4 Grid size (41 × 41) (81 × 81)
Computation time (h) 0.6 0.3

RK4 Grid size (81 × 81) (321 × 321)
Computation time (h) 2.7 8.0

IMEX Grid size (41 × 41) (81 × 81)
Computation time (h) 0.1 0.1

IMEX Grid size (81 × 81) (321 × 321)
Computation time (h) 0.6 2.7

the computation time is 8.0 h. It should also be noted that
the computational time of the IMEX method is much less
than the explicit Runge-Kutta method. The performance of
the WENOLBM is improved compared to the FVLBM when
considering a more accurate solution. Thus, for studying more
practical problems in which high-order accuracy solutions are
required to accurately represent flow physics, the performance
of the WENOLBM is more emphasized compared to the
FVLBM.

Now, the accuracy of the WENOLBM is examined for
the traveling Taylor vortex problem which has an advection
in addition to the pure diffusion. The exact solution of
the traveling Taylor vortex problem on a doubly periodic
square domain (0 � x � 2π, 0 � y � 2π ) has been given in
Ref. [36], and in the present simulation using the WENOLBM
it is rewritten as follows:

u(x,y,t) = uref{1 − cos[N1(x − uref t)] sin[N2(y − uref t)]e
−νt(N2

1 +N2
2 )},

v(x,y,t) = N1

N2
uref{1 + sin [N1(x − uref t)] cos [N2(y − uref t)]e

−νt(N2
1 +N2

2 )},

p(x,y,t) = p0 − 1

4
ρ0u

2
ref

[
cos [2N1(x − uref t)] +

(
N1

N2

)2

cos [2N2(y − uref t)]

]
e−2νt(N2

1 +N2
2 ). (39)

Note that the above relations will become the same as
those given in Eq. (38) for each complete cycle. Here,
the wave numbers in the x and y directions are set to be
N1 = N2 = 1. The order of the accuracy of the WENOLBM
applied is verified considering four computational grids,
namely, (11 × 11), (21 × 21), (41 × 41), and (81 × 81) at
Re = 10π and after one complete circle, i.e., at t = 2π/uref .
The reference velocity is set to be uref = 0.001 and the error
is calculated based on the L2 norm of the u-velocity profile
compared with the analytical solution and also that of the
most refined grid (161 × 161). Results in Table IV show that
the fifth-order accuracy is achieved for the WENOLBM even
for the traveling Taylor vortex problem by considering a small
value of the reference velocity (or the Mach number).

B. Doubly periodic shear layer flow

The numerical solution of the unsteady doubly periodic
shear flow problem [37,38] is performed to demonstrate the
stability of the high-order WENO finite-difference lattice

Boltzmann method (WENOLBM) employed. This problem
is an important numerical test case in order to observe whether
the numerical procedure is stable when there is a strong shear
in the flow domain. In this problem, the normalized velocity
field is initialized as

u

u0
=

{
tanh[4(y − 1/4)/w] y � 1/2

tanh[4(3/4 − y)/w] y > 1/2
v

u0
= δ sin[2π (x + 1/4)]

0 � x � 1, 0 � y � 1,

(40)

where w approximates the initial shear layer width and δ is
the strength of the initial perturbation; here, δ = 0.05 and
w = 0.05. In this problem, the shear layer between the Kelvin
Helmholtz vortices rolls up due to stretching. In the present
study, a (121 × 121) grid is used in the doubly periodic domain
0 � x, y � 1 and the fluid viscosity is set to be υ = 0.0001.
The value of uref is set to be uref = 0.1. The numerical solution
of this test case is performed by implementing the WENO
finite-difference LBM and the results obtained are compared
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TABLE IV. Order of accuracy of the solution based on the L2 norm of the u-velocity profile for traveling Taylor vortex problem with
Re = 10π at t = 2π/uref .

Grid �x log10(�x) log10(L2 norm[Error])

uref = 0.001 Compared with the most refined grid (161 × 161) (21 × 21) 2π/10 –0.2018 –1.7193
(41 × 41) 2π/20 –0.5028 –3.1408
(81 × 81) 2π/40 –0.8038 –4.6556

Order of accuracy ∼4.89

Compared with the analytical solution (21 × 21) 2π/10 –0.2018 –1.7188
(41 × 41) 2π/20 –0.5028 –3.1270
(81 × 81) 2π/40 –0.8038 –4.6289

Order of accuracy ∼4.85
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FIG. 3. Computed vorticity contours for doubly periodic shear flow at (a) t∗ = 1, (left) t∗ = 1.5 (right) WENOLBM; (b) t∗ = 1 (left),
t∗ = 1.5 (right) FVLBM with numerical dissipation; and (c) t∗ = 1 FVLBM without numerical dissipation.
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FIG. 4. Comparison of vorticity profiles at x = 0.25 (top) and
x = 0.75 (bottom) for doubly periodic shear flow with v = 0.0001 at
t∗ = 1.

with those of the FVLBM with and without the artificial
dissipation.

Figure 3 shows the vorticity contours at the nondimensional
times t∗ = turef/L = 1.0 and t∗ = 1.5, respectively. It is
observed in the FVLBM that the solution procedure becomes
unstable without the artificial dissipation, particularly at the
thinnest points of the two shear layers at t∗ = 1. As the solution
marches in time towards t∗ = 1.5, the unstable region gets
larger and the solution diverges; however, the WENOLBM
procedure leads to a stable solution and the roll-up of the
shear layers due to the Kelvin Helmholtz vortices is accurately
resolved without using any dissipation or filtering scheme.
Figure 4 gives the vorticity profiles at the two sections, x =
0.25 and x = 0.75, computed by the WENOLBM compared
with the FVLBM. This figure shows that the WENOLBM with
the grid size (121 × 121) provides comparable results with the
FVLBM using the grid size (241 × 241).
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FIG. 5. A (51 × 51) mesh distribution for 2D cavity flow.

C. Flow in a 2D cavity

Due to its complicated flow behavior, the square lid-driven
cavity is an appropriate benchmark problem to examine
accuracy and stability of different numerical methods. The
simple configuration of a lid-driven cavity consists of a
two-dimensional square cavity in which the top wall moves
with a constant velocity u = uref and all the other three walls
are stationary (u = v = 0). Since the corners in the lid-driven
cavity are singular points, it is desirable to use nonuniform
grids and refine the mesh near these regions to reasonably
resolve the flow field there. Herein, the numerical simulations
are carried out for a square cavity of height H = 1.0 with
uref = 0.1 and the results are presented for three different
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FIG. 6. Grid refinement study on velocity profiles at the midplane
of 2D cavity flow with Re = 1000.
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Reynolds numbers, Re = urefH/v = 100, 1000, 3200, 5000,
and 7500. The nonuniform mesh used here is generated by the
following transformation [39]:

x = y = L
(2α + β)[(β + 1)/(β − 1)]2(η−0.5) + 2α − β

(2α + 1){1 + [(β + 1)/(β − 1)]2(η−0.5)} ,

0 � η � 1, (41)

where β is the clustering parameter, and here it is considered
to be equal to 1.1. The computational grid (51 × 51) is shown
in Fig. 5.

A grid refinement study is performed for the flow condition
Re = 1000 to examine the sensitivity of the results obtained
by applying the WENOLBM to the grid size. Three different
grids (Imax,Jmax) = (26,26), (51,51), (101,101) are used and
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FIG. 7. Computed flow field shown by streamlines (top) and
comparison of velocity profiles (bottom) for 2D cavity flow with
Re = 100.
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FIG. 8. Computed flow field shown by streamlines (top) and
comparison of velocity profiles (bottom) for 2D cavity flow with
Re = 1000.

both the u-velocity profile along the vertical center line and the
v-velocity profile along the horizontal center line are plotted
in Fig. 6 for these grids. The sensitivity study has shown that
for Re = 100, 1000, and 3200 the grid (51 × 51), and for
Re = 5000 and 7500 the grid (101 × 101), are appropriate
ones for an accurate calculation of the flow field by applying
the WENOLBM on the nonuniform grids.

Figures 7–11 give the computed flow field shown by the
streamlines and also comparisons of the velocity profiles in the
midplanes for the mentioned Reynolds numbers. The effect of
the value of Reynolds number on the flow structure and the
velocity profiles is observed clearly in these figures. For flows
with Re = 100 and 1000, three vortices appear in the cavity:
a primary one at the center and a pair of secondary ones in the
lower corners of the cavity. It is indicated that by increasing
the value of Re, the flow structure becomes more complex and
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FIG. 9. Computed flow field shown by streamlines (top) and
comparison of velocity profiles (bottom) for 2D cavity flow with
Re = 3200.

for higher Re, other recirculating regions are formed near the
upper left corner and the lower left and right corners, and they
are well resolved by applying the WENOLBM.

The study shows that the flow structure is reasonably
resolved by the high-order WENO finite-difference LBM
implemented on the nonuniform grids. The present results
obtained by applying the fifth-order WENO finite-difference
LBM (WENOLBM) on the relatively coarse meshes are
compared with the benchmark results by Ghia et al. [40] for
this steady test case for different Reynolds numbers which
exhibit excellent agreement. It is found that the present solution
procedure based on the WENOLBM allows the calculation
of the flow field accurately with a smaller number of grid
points compared with the second-order finite-volume lattice
Boltzmann (FVLBM). Note that the performance of the
WENOLBM is improved and highlighted compared to the
FVLBM by increasing Re.
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FIG. 10. Computed flow field shown by streamlines (top) and
comparison of velocity profiles (bottom) for 2D cavity flow with
Re = 5000.

To assess the efficiency of the WENOLBM compared to the
FVLBM, the computation time of these two LBM solvers to
obtain the steady-state solution for Re = 3200 using different
grid sizes is given in Table V. The convergence history of
the solution based on the error calculated by the L∞ norm
(maximum norm) of the u-velocity profile in the flow field
at this Reynolds number for the IMEX scheme is shown
in Fig. 12. It is observed that the WENOLBM has a faster
convergence rate than the FVLBM to reach the steady-state
solution. As indicated in Fig. 9, the results obtained by the
WENOLBM with the mesh (51 × 51) are comparable with
that of the FVLBM with the mesh (201 × 201) and Table V
indicates that the computation time of the steady-state solution
obtained by applying the WENOLBM is much less than
that of the FVLBM. Note also that the maximum time step
size of the implicit-explicit scheme (IMEX) is higher than
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FIG. 11. Computed flow field shown by streamlines (top) and
comparison of velocity profiles (bottom) for 2D cavity flow with
Re = 7500.

that of the explicit Runge-Kutta scheme (RK4) and therefore
the computation time of the IMEX scheme to reach the
steady-state solution is much less than that of the RK4 method.

TABLE V. Comparison of computation time for 2D cavity flow
with Re = 3200.

WENOLBM FVLBM
RK4 Grid size (51 × 51) (101 × 101)

Computation time (h) 20.9 22.1
RK4 Grid size (101 × 101) (201 × 201)

Computation time (h) 130.7 151.2
IMEX Grid size (51 × 51) (101 × 101)

Computation time (h) 1.0 1.1
IMEX Grid size (101 × 101) (201 × 201)

Computation time (h) 6.9 8.8
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FIG. 12. Comparison of L2-norm error of u-velocity profile for
2D cavity flow with Re = 3200.

To compare the numerical stability of the explicit Runge-
Kutta method (RK4) and the implicit-explicit Runge-Kutta
scheme (IMEX), the stability regions of each scheme based on
�t/τ and CFL = �t/�x are presented for different Reynolds
numbers. Broadly speaking, �t/τ represents the nonlinear sta-
bility constraint imposed by the collision and the CFL number
represents the linear stability constraint of the explicit advec-
tion [28]. In all the plots, • indicates a stable solution while ◦
indicates an unstable solution. Figure 13 shows the stability re-
gion of the RK4 and IMEX schemes for Re = 100 obtained by
the present solution by applying the WENOLBM. We observe
that the RK4 scheme is unstable beyond �t/τ > 2 and the
stable solutions for �t/τ < 2 are obtained only at small CFL
numbers. The IMEX scheme gives a stable solution for higher
�t/τ and the CFL number compared to the RK4 scheme. As
Reynolds number increases, the collision term becomes more
stiff and the benefit of using the IMEX scheme becomes more
noticeable. For example, in Fig. 13, the stability regions of the
RK4 and IMEX schemes for Re = 1000 and Re = 3200 are
presented. It is evident that with increasing the Reynolds num-
ber the stability region of the IMEX scheme becomes wider.

D. Cylindrical Couette flow

To investigate the accuracy of the WENOLBM in the
generalized curvilinear coordinates, the cylindrical Couette
flow between the two cylinders of radius r1 and r2 is simulated
here. In this problem, the outer cylinder is stationary and
the inner cylinder moves with the constant angular velocity
uθ . Here, r1 = 4, r2 = 8, uθ = uref , and Re = urefr1/ν = 50.
Note that the exact solution for the steady cylindrical Couette
flow does not depend on the Reynolds number and the steady
angular velocity is given as

uθ (r)

uref
=

(
r2

r1
− r1

r2

)−1(
r2

r
− r

r2

)
. (42)
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FIG. 13. Stability region of the RK4 (left) and IMEX (right) schemes for (a) Re = 100, (b) Re = 1000, (c) Re = 3200.

Figure 14 represents the computational grid (21 × 21) used
to simulate this problem. Figure 15 gives the computed flow
field shown by the velocity vectors and Fig. 16 shows the
comparison of the steady angular velocity profile computed
by the WENOLBM with the exact solution which indicates
excellent agreement. It should be noted that this problem has
been simulated by Tiwari and Vanka [41] by applying the
ghost fluid LBM (GF LBM) and thus the accuracy of the
present solution based on the WENOLBM can be assessed by
comparison with their solution based on the standard interpo-
lation bounce back LBM. They have solved the cylindrical
Couette flow with uref = 0.057 (corresponds to the Mach

number M = 0.1) using grid sizes (41 × 41), (81 × 81), and
(161 × 161) grid points and they have reported the L2-norm
error of the steady angular velocity for these grids compared
with the solution of the most refined grid (321 × 321). The
calculations are performed for the WENOLBM with three
grid sizes (11 × 11), (21 × 21), and (41 × 41), and the error
for each grid is calculated based on the L2 norm of the steady
angular velocity profile compared with the solution of the
most refined grid (81 × 81) obtained by the WENOLBM.
Figure 17 indicates that the WENOLBM provides a more
accurate solution than the GF LBM by considering the same
number of grid points. Note that in the GF LBM (or the
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FIG. 14. A (21 × 21) mesh distribution for cylindrical Couette
flow.

interpolation bounce back LBM) [41], the geometry is covered
by a Cartesian grid and therefore some grid points are not
located in the solution domain and this procedure causes a
larger error compared to the WENOLBM implemented in the
curvilinear coordinates. Note also that the slope of the error for
the WENOLBM is about 5 which is higher than that of the GF
LBM which is about 2. The calculations are also carried out for
a smaller reference velocity, i.e., uref = 0.01 and the order of
the accuracy of the WENOLBM is obtained for this condition.
The error is calculated based on the L2 norm of the steady
angular velocity profile compared with the exact solution and
also the solution of the most refined grid (81 × 81) by applying
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FIG. 15. Computed flow field shown by velocity vectors for
cylindrical Couette flow with Re = 50.
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FIG. 16. Comparison of steady angular velocity profile for
cylindrical Couette flow with Re = 50.

the WENOLBM. Results in Table VI show that the order of the
accuracy of the WENOLBM applied is 4.51 for uref = 0.01
by comparing with the exact solution. It is also indicated that
the fifth-order accuracy of the WENOLBM is achieved when
the error is calculated based on the solution of the most refined
grid.

E. Flow over a 2D circular cylinder

Although the flow in the square cavity is complex, the
geometry is nevertheless simple because only flat boundaries
are involved. To demonstrate the capability of the present
solution procedure for the numerical simulation of the fluid
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FIG. 17. Comparison of L2-norm error of the solution for
cylindrical Couette flow problem with Re = 50 and uref = 0.057.
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TABLE VI. Order of accuracy of the solution based on the L2 norm of steady angular velocity profile for cylindrical Couette flow problem
with Re = 50.

Grid �r log10(�r) log10(L2 norm[Error])

uref = 0.01 Compared with the most refined grid (81 × 81) (11 × 11) 4/10 –0.3010 –0.7205
(21 × 21) 4/20 –0.6020 –1.9931
(41 × 41) 4/40 –0.9030 –3.7013

Order of accuracy ∼4.96

Compared with the analytical solution (11 × 11) 4/10 –0.3010 –0.7217
(21 × 21) 4/20 –0.6020 –2.031
(41 × 41) 4/40 –0.9030 –3.4291

Order of accuracy ∼4.51

flow with curved boundaries, the two-dimensional steady
flow over a circular cylinder is studied at different Reynolds
numbers Re = urefD/υ, where D is the diameter of the
cylinder and the free stream velocity uref is considered 0.1
in all the simulations.

This problem has been studied extensively as a benchmark
test case by many researchers and thus there are numerous
experimental and numerical results available in the literature
for this test case for the validation of the results obtained by
applying the WENO finite-difference LBM in the generalized
curvilinear coordinates. For Reynolds numbers lower than its
critical value (Recr ≈ 47), a steady-state condition is obtained
and a pair of recirculating regions appears behind the cylinder.
Herein, the computations are performed for Re = 10, 20, and
40, and the results are compared with the numerical and
experimental results.

For this test case, an O-type grid with the size of (101 × 51)
is used. The diameter of the cylinder is equal to unity and the
outer radius of the computational domain is set to be 30 times
the diameter of the cylinder. The mesh is stretched in the ξ

direction near the rear stagnation point. For the stretching in
the η direction, which is in the wall-normal direction here, the
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FIG. 18. A (101 × 51) mesh distribution around the circular
cylinder.

x

y

-2 0 2 4

-2

0

2

(a)

x

y

-2 0 2 4

-2

0

2

(b)

x

y

-2 0 2 4

-2

0

2

(c)

FIG. 19. Computed flow field for steady flow over the circular
cylinder shown by streamlines with (a) Re = 10, (b) Re = 20, and
(c) Re = 40.
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TABLE VII. Comparison of the results of steady flow over the circular cylinder with the available results.

Re Author(s) Method Cd −Cp(0) Cp(π ) 2 L

D
θs

10 Coutanceau and Bouard [42] Experiment – – – – 32.5
Tritton [43] Experiment 3.06 – – 0.68 –
Dennis and Chang [44] Navier-Stokes 2.846 0.742 1.489 0.53 29.6
Nieuwstadt and Keller [45] Navier-Stokes 2.828 0.692 1.500 0.434 27.96
Guo and Zhao [9] FDLBM 3.049 0.661 1.476 0.486 28.13
Mei and Shyy [7] FDLBM – – – 0.489 30.0
He et al. [46] IS LBM 3.170 0.687 1.393 0.474 26.89
Imamura et al. [47] GI LBM 2.848 0.733 1.403 0.478 26.0
Hejranfar and Ezzatneshan [15] CFDLBM 2.801 0.6733 1.4867 0.489 29.83
Present solution WENOLBM 2.813 0.673 1.468 0.488 29.86

FVLBM – – – – –

20 Coutanceau and Bouard [42] Experiment – – – 1.86 44.8
Tritton [43] Experiment 2.2 – – – –
Dennis and Chang [44] Navier-Stokes 2.045 0.589 1.269 1.88 43.7
Nieuwstadt and Keller [45] Navier-Stokes 2.053 0.582 1.274 1.786 43.37
Guo and Zhao [9] FDLBM 2.048 0.512 1.289 1.824 43.59
Mei and Shyy [7] FDLBM – – – 1.804 42.1
He et al. [46] IS LBM 2.152 0.567 1.233 1.842 42.96
Imamura et al. [47] GI LBM 2.051 0.589 1.251 1.852 43.3
Hejranfar and Ezzatneshan [15] CFDLBM 2.021 0.5465 1.2659 1.848 43.58
Present solution WENOLBM 2.062 0.565 1.281 1.80 43.94

FVLBM – – – – –

40 Coutanceau and Bouard [42] Experiment – – – 4.26 53.5
Tritton [43] Experiment 1.65 – – – –
Dennis and Chang [44] Navier-Stokes 1.522 0.509 1.144 4.69 53.8
Nieuwstadt and Keller [45] Navier-Stokes 1.550 0.554 1.117 4.357 53.34
Guo and Zhao [9] FDLBM 1.475 0.448 1.168 4.168 52.44
Mei and Shyy [7] FDLBM – – – 4.38 50.12
He et al. [46] IS LBM 1.499 0.487 1.113 4.490 52.84
Imamura et al. [47] GI LBM 1.538 0.514 1.156 4.454 52.4
Hejranfar and Ezzatneshan [15] CFDLBM 1.515 0.4808 1.154 4.510 51.86
Present solution WENOLBM 1.524 0.476 1.158 4.568 53.29

FVLBM 1.518 0.485 1.129 4.548 54.39

following transformation function is used:

yn = δ
(β + 1) − (β − 1)[(β + 1)/(β − 1)](1−η)

1 + [(β + 1)/(β − 1)](1−η) , 0 � η � 1,

(43)

where δ is the radial distance between the body and the outer
boundary. The stretching parameter β is set to be 1.06 for all
the cases computed. The mesh near the body surface is shown
in Fig. 18.

Figure 19 shows the streamlines for the computed flow field
for Re = 10,20, and 40 and a pair of stationary recirculating
regions appears in the wake of the cylinder for each condition.
It is observed that the length of the recirculating region L

and the separation angle θs increase as the Reynolds number
increases. In Table VII, the computed results, namely, the
hydrodynamic coefficients and the location of separation
and reattachment points for different Reynolds numbers are
compared with the available experimental and numerical
results. As shown in this table, the present results obtained by
applying the WENO finite-difference LBM are compared well
with the results of the other studies [7,9,42–48]. Figures 20 and
21 show the distribution of the surface pressure coefficient
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FIG. 20. Comparison of surface pressure coefficient distribution
for the circular cylinder with Re = 40.
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FIG. 21. Comparison of skin friction coefficient distribution for
the circular cylinder with Re = 40.

and the skin friction coefficient obtained by employing the
WENO finite-difference LBM (WENOLBM) in comparison
with the experimental data [48], the fourth-order compact
finite-difference LBM (CFDLBM) [16], and the second-order
finite-volume LBM (FVLBM) for the Reynolds number 40,
which exhibits good agreement.

F. Flow around the NACA0012 hydrofoil

The steady and unsteady laminar flows around the
NACA0012 hydrofoil are simulated to demonstrate the ac-
curacy and robustness of the present solution methodology
based on the WENO finite-difference LBM in the generalized
curvilinear coordinates. In the present work, the steady-state
solutions are studied at Re = 500 and two angles of attack
α = 0◦ and 10◦. Here, the Reynolds number Re = urefc/υ

is defined based on the free stream velocity uref = 0.1 and
the chord length of the hydrofoil c = 1. The grid lines are
nearly orthogonal to the body surface with an appropriate
clustering for accurately resolving the flow field near the body
surface. Figure 22 shows the (101 × 71) mesh system near
the hydrofoil geometry employed for these simulations. For
this geometry, the radius of the computational domain is set
to be 10 chords. A grid refinement study is performed based
on three grid systems, the coarse grid (61 × 41), the medium
grid (101 × 71), and the fine grid (201 × 121). As shown in
Fig. 23, the differences between the predicted surface pressure
coefficient distributions for the medium and fine meshes are
negligible and the solution is independent of the grid size.
Therefore, the medium grid system is chosen for all the
subsequent simulations, because it needs less computational
effort without affecting the accuracy of the solution.

The pressure contours and the streamlines obtained by the
present solution for the flow around the NACA0012 hydrofoil
with Re = 500 at the angles of attack α = 0◦ and 10◦ are shown
in Fig. 24. A symmetry flow pattern is observed at α = 0◦,
while the flow separation occurs in the suction side of the
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FIG. 22. A (101 × 71) mesh distribution around the NACA0012
hydrofoil.

hydrofoil at α = 10◦. Figures 25 and 26 compare the computed
results by the implementation of the WENO finite-difference
LBM in the curvilinear coordinates with the results of the
second-order finite-volume LBM, the fourth-order compact
finite-difference LBM (CFDLBM) [16], and the interacting
boundary layer solution by Hafez et al. [49]. The present study
shows that the implemented algorithm can obtain accurate
and reliable results for this geometry at relatively high angles
of attack. In Figs. 27 and 28, the surface pressure coefficient
distribution and the velocity profiles at x/c = 0.5 calculated
based on the WENO finite-difference LBM are compared
with the results of the generalized form of interpolation
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FIG. 23. Grid refinement study on surface pressure coefficient
distribution of the NACA0012 hydrofoil with Re = 500 and α = 10◦.
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FIG. 24. Computed flow field around the NACA0012 hydrofoil
shown by pressure contours and streamlines with Re = 500 and α =
0◦ (top) and α = 10◦ (bottom).

supplemented LBM (GI LBM) code by Imamura et al. [50]
at Re = 500 and α = 0◦. As shown in this figure, the results
obtained are in good agreement with these LBM solvers
which implies the validity of the WENO finite-difference
LBM applied.

To demonstrate the capability of the presented method
to resolve time-dependent flows with curve geometries, the
numerical solution of the unsteady laminar flow over the
NACA0012 hydrofoil at the Reynolds number Re = 800
and the angle of attack α = 20◦ is also performed. At this
condition, the flow over the hydrofoil becomes periodically
unsteady with the development of a vortex street. Here, the
computations are performed with the grid size of (126 × 121)
and the radius of the computational domain is set to be
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FIG. 25. Comparison of surface pressure coefficient distribution
for the NACA0012 hydrofoil with Re = 500 and α = 10◦.

20 chords. Figure 29 shows the instantaneous streamlines
around the hydrofoil at two different dimensionless times. The
low-frequency periodical vortex shedding is clearly observed
in this figure. The temporal development of the v-velocity
component at the point (x/c,y/c) = (1.1,0.0) behind the
NACA0012 hydrofoil calculated based on the present solution
procedure is given in Fig. 30 and compared with those of
the fourth-order compact finite-difference LBM (CFDLBM)
[16] and Hafez et al. [49], which are almost identical, and the
small differences observed between these solution procedures
may be due to different numerical algorithms with different
accuracies or different grid sizes or distributions used.
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FIG. 26. Comparison of skin friction coefficient distribution for
the NACA0012 hydrofoil with Re = 500 and α = 10◦.
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FIG. 27. Comparison of surface pressure coefficient distribution
for the NACA0012 hydrofoil with Re = 500 and α = 0◦.

VII. EXTENSION OF THE METHODOLOGY
TO THREE DIMENSIONS

The formulation of the WENOLBM can be straight-
forwardly extended to three dimensions, and here a brief
description is given for the 3D formulation. In 3D, the lattice
Boltzmann equation (LBE) with the BGK approximation of
the collision term can be written as

∂fα

∂t
+ eα ·∇fα = − 1

τ

(
fα − f eq

α

)
, α = 0,1, . . . ,18, (44)
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FIG. 28. Comparison of boundary layer profile for the
NACA0012 hydrofoil with Re = 500 and α = 0◦ at x/c = 0.5.
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FIG. 29. Computed flow field for unsteady periodic flow over
the NACA0012 hydrofoil shown by streamlines with Re = 800 and
α = 20◦ at t = 5 (top) and t = 10 (bottom).

where the subscript α denotes the direction of the particle
speed. In the D3Q19 discrete Boltzmann, the macroscopic
velocities are given as [51]

eα = (eαx,eαy,eαz)

=
⎧⎨⎩(0,0,0) α = 0

(±1,0,0),(0,±1,0),(0,0,±1) α = 1−6
(±1,±1,0),(±1,0,±1),(0,±1,±1) α = 7−18

. (45)

The equilibrium distribution function is defined as

f eq
α = wα

{
p + p0

[
3

eα · u
c2

+ 9

2

(eα · u)2

c4
− 3

2

|u|2
c2

]}
, (46)

023314-20



HIGH-ORDER WEIGHTED ESSENTIALLY . . . PHYSICAL REVIEW E 95, 023314 (2017)

Nondimensional Time

V
x=

1.
1

0 2 4 6 8 10 12

0

0.5

1

1.5 WENO-LBM
CFDLBM
 Hafez et al. [49] 

FIG. 30. Comparison of temporal development of v-velocity
component at (x/c,y/c) = (1.1,0.0) for the NACA0012 hydrofoil
with Re = 800 and α = 20◦.

where wα for the D3Q19 model is given by

w0 = 1/3,

w1 = · · · = w6 = 1/18,

w7 = · · · = w18 = 1/36. (47)

and the pressure p and the velocity u are obtained from the
following relations:

p =
∑

α

fα, p0u =
∑

α

eαfα. (48)

Now, the spatial derivatives in the 3D LB equation (44) can
be discretized by the WENO scheme and the temporal term can
be discretized by either the fourth-order explicit Runge-Kutta
method or the implicit-explicit method, as described in Sec. IV.

VIII. CONCLUSION

In this study, a weighted essentially nonoscillatory finite-
difference LBM solver for computing 2D incompressible
flows in the generalized curvilinear coordinate is applied and
assessed. The spatial derivatives in the LB equation in the
computational domain are discretized using the fifth-order
WENO scheme. Different test cases including the unsteady
Taylor-Green vortex, unsteady doubly periodic shear layer
flow, steady flow in a 2D cavity, steady cylindrical Couette
flow, steady flow over a 2D circular cylinder, and steady and
unsteady flows over a NACA0012 hydrofoil are simulated
to investigate the accuracy and performance of the high-
order WENOLBM applied. Some conclusions and remarks
regarding the present study are as follows:

(1) It is shown that the results obtained by applying the
WENO finite-difference LBM (WENOLBM) are in good
agreement with the analytical solutions and the available
numerical and experimental results for the problems simulated.
By the implementation of the WENOLBM in the generalized

curvilinear coordinates, curved geometries with nonuniform
grids can be straightforwardly handled and thus an accurate
solution of incompressible flows over practical geometries can
be achieved.

(2) Two different time integration schemes, namely, the
first-order implicit-explicit Runge-Kutta (IMEX) scheme and
the fourth-order Runge-Kutta (RK4) explicit scheme are
applied for the discretization of the temporal term. The
numerical experiments for the cavity problem show that the
IMEX WENOLBM is more stable compared to the RK4
WENOLBM scheme. This benefit in the IMEX scheme is
due to the implicit time discretization of the collision term
that causes the restriction of �t � 2τ to be relaxed and the
only restriction on �t is due to the explicit discretization of
the convective terms. As the Reynolds number increases, the
benefit of using the IMEX scheme becomes more noticeable
compared to the RK4 scheme.

(3) A sensitivity study is performed to examine the effect of
numerical parameters on the accuracy of the solution obtained
by applying the WENOLBM. The study indicates that by
considering a small value of the reference (characteristic)
velocity to reduce the compressibility effects, the fifth-order
accuracy of the numerical method implemented is verified
when estimating the error based on the analytical solution.
Note that the fifth-order accuracy of the numerical method
applied is achieved independent of the value of the reference
velocity when the error is calculated based on the solution of
the most refined grid.

(4) To show the accuracy and efficiency of the WENOLBM
applied, the results are compared with the developed second-
order central-difference finite-volume lattice Boltzmann
method (FVLBM). The study indicates that the WENOLBM
solver developed provides more accurate solutions than the
FVLBM solver for the same mesh used. It is shown that for
a specified accuracy, the WENOLBM applied needs a coarser
mesh and the computation time is greatly reduced compared
to the FVLBM.

(5) To more assess the accuracy and robustness of the
WENOLBM, the results obtained are also compared and
verified with those of the high-order compact finite-difference
LBM (CFDLBM). It is demonstrated that both the solution
procedures give nearly the same results for the same mesh
utilized. The main advantage of the formulation of the
WENOLBM over the CFDLBM is that there is no need to ap-
ply any numerical dissipation or filtering procedure and the so-
lution algorithm is stable even at high Reynolds number flows.

(6) The study shows that the present solution procedure is
robust, efficient, and accurate for solving steady and unsteady
incompressible flows. Results obtained by the present solution
are comparable with those of Navier-Stokes solvers with the
note that the implementation of the WENO finite-difference
LBM is much simpler; thus it may be considered as a suitable
alternative flow solver to high-order WENO finite-difference
Navier-Stokes solvers for studying more practical problems in
which high-order accuracy solutions are needed to precisely
represent flow physics.
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