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The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable
attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation
is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of
classical spectral techniques problematic. We show that such methods can effectively be used if we focus on
the parent continuous process of beta distributed transition probabilities rather than on the target binary process.
This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative
amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully
general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially
decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An
application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving
the empirical autocorrelation.
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I. INTRODUCTION

A sequence of real numbers is called random if its statistical
properties can provide insight into what constitutes “typical”
behavior of real data obtained from a random experiment [1]. In
principle, large amounts of such numbers can be used to solve
any problem having a probabilistic interpretation by means
of statistical sampling techniques. Therefore, it is needless to
assert their usefulness in many different kinds of applications
for the past 70 years, as the availability of computers made
such statistical methods very practical [2].

To date, several algorithms have been put forward to pro-
duce computer-generated sequences of numbers that closely
resemble the samples of independent and identically dis-
tributed (iid) random variables [3]. However, in many areas of
physics and engineering, it is required to simulate stochastic
processes with prescribed dependence structures [4]. For the
majority of applications, the stochastic models are based on the
idea that a time series in which successive values are correlated
can frequently be regarded as generated from a Gaussian white
noise into a linear filter [5].

Such an approach, often called the convolution method,
allows one to produce sequences of real numbers with any
arbitrary mean and autocorrelation function, if it is math-
ematically feasible. Conversely, the problem of generating
correlated binary sequences with specified mean is still lacking
a general solution, despite being a key issue in a variety of
applications such as signal processing [6], modeling rainfall
intermittency [7], and the study of two-phase random media
[8], just to name a few. This difficulty depends on the discrete
(dichotomous) nature of binary processes, which makes the
convolution method developed for processes defined over a
continuous state space inapplicable [9]. Several techniques
have been proposed to solve this problem. However, most
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of the existing methods demand a serious restriction on
the class of autocorrelation functions that can be effectively
modeled [9–12]. This paper presents an alternative robust
algorithm to generate binary sequences with specified mean
and autocorrelation function. It exploits the duality between
the target binary process and the parent continuous process of
transition probabilities to restate the problem in a continuous
state space, thus allowing the application of a spectrum-
based iterative amplitude-adjusted Fourier transform (IAAFT)
method [13–15] to simulate continuous processes as a building
block of an algorithm for binary random processes.

In the following, we first recall the theoretical concepts
supporting the link between binary processes and the cor-
responding parent transition probabilities, as well as the
distributional properties of such probabilities. We therefore
use these properties to derive a simulation algorithm of
binary signals based on the generation of sequences of
parent transition probabilities defined in the continuous state
space [0,1]. Finally, we show the algorithm performance for
random processes with power-law and exponentially decaying
autocorrelation functions along with a real world application
involving the simulation of rainfall intermittency.

II. METHODOLOGY

A. Properties of binary process and parent
transition probabilities

The problem is to generate a correlated sequence of random
numbers {xj }j∈N, for simplicity {x}, taking values 1 and 0
with probability p and (1 − p), respectively. The underlying
discrete-time stochastic process Xj with state space {0,1},
where j (= 0,1,2, . . .) denotes discrete time, is specified
in terms of its mean μX = E[Xj ] = p and autocovariance
function (ACVF):

cX(τ ) = E[XjXj+τ ] − μ2
X = σ 2

XρX(τ ), (1)
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where E[·] denotes expectation (ensemble average), τ is the
time lag, σ 2

X = p(1 − p), and ρX(τ ) are the variance and
autocorrelation function (ACF) of Xj , respectively. Denoting a
generic sequence of uncorrelated values as {ε}, for continuous
processes, the well-known convolution method allows the
simulation of correlated sequences from {ε} [16].

However, the direct application of the convolution method
to {ε} cannot produce binary random numbers, because the
output of a linear filter is a nonbinary sequence even if the
input is binary [9]. To overcome this problem, we consider
the conditional probability Qj = Pr[Xj = 1|{ε}] of occurring
1 at the j th place in the target sequence {x}, given the input
{ε}. The sequence of conditional probabilities {q} is a sample
of the discrete-time and continuous-state stochastic process
Qj defined on the interval [0,1]. Given {q}, the j th element
of the sequence {x} is generated by comparing each value
qj to a random number uj sampled from a standard uniform
distribution defined in [0,1], such as

xj =
{

1 if uj < qj

0 otherwise . (2)

Therefore, a correlated binary sequence can easily be
generated if a suitable sequence of conditional probabilities
{q} is available. The algorithm proposed in this study exploits
the correspondence between these two sequences by focusing
on the simulation of the continuous process Qj rather than
the discrete one Xj , as the convolution method can be directly
applied to synthesize the former. This implies the preliminary
identification of the properties required for {q} in order to be
a sequence of conditional probabilities related to the target
sequence {x}. In particular, it can be shown that the ACVF of
the process Qj equals that of the process Xj [9,12]. Without
loss of generality, it is convenient to assume that the two
processes also have the same mean, μX = μQ, and variance,
σ 2

X = σ 2
Q.

In summary, we need to simulate a discrete-time stochastic
process Qj with prescribed ACF ρQ(τ ) = ρX(τ ) and a
continuous marginal distribution supported on the interval
[0,1] with mean μQ = p and variance σ 2

Q = p(1 − p). A
suitable model for such marginal properties is the probability
density function (pdf) of the beta distribution [17]

g(q; α,β) = qα−1(1 − q)β−1

B(α,β)
, (3)

where q ∈ [0,1], α > 0 and β > 0 are two shape parameters,
and the beta function B(α,β) is a normalizing constant of the
form

B(α,β) =
∫ 1

0
tα−1(1 − t)β−1 dt. (4)

We can express the parameters α and β of the distribution
in terms of its mean μQ and variance σ 2

Q as follows:

α = μQ

[
μQ(1 − μQ)

σ 2
Q

− 1

]

β = (1 − μQ)

[
μQ(1 − μQ)

σ 2
Q

− 1

]
. (5)

Substituting μQ = p and σ 2
Q = p(1 − p) into Eq. (5), we find

that both parameters α = β = 0 do not satisfy the condition
of strict positiveness and the function B(α,β) is undefined.
When both parameters are less than one (α,β < 1), the beta
distribution is U-shaped and approaches a two-point Bernoulli
distribution with equal probability masses 1/2 at each end of
the domain [0,1] as α,β → 0 [18]. We seek new values of
the parameters for which the continuous beta distribution of
Qj can mimic the discrete Bernoulli distribution of Xj with
probability masses p and (1 − p) at 1 and 0. Therefore, we
consider an arbitrarily small ξ > 0 such as

μQ(1 − μQ)

σ 2
Q

− 1 = ξ → 0. (6)

Substituting Eq. (6) into Eq. (5), we obtain the new parameter
set as

α = μQξ

β = (1 − μQ)ξ, (7)

implying that μQ = μX = p and σ 2
Q < p(1 − p) = σ 2

X. An
extensive numerical investigation showed that ξ = 0.05 guar-
antees a U-shaped beta distribution with σ 2

Q ≈ p(1 − p) and
optimal convergence rate for the simulation methodology
described in the following.

B. Simulation algorithm

Before describing each step of the proposed algorithm in
detail, it is worth stressing that the theoretical considerations
discussed in the previous section result in a conceptually
very simple simulation procedure. It consists of generating
a sequence of conditional probabilities {q} following the beta
distribution with parameters as in Eq. (7) and the same ACVF
as that of the target process Xj , and then applying the selection
rule in Eq. (2) to each value qj in order to transform the se-
quence of transition probabilities into binary random numbers.
The sequence {q} is simulated by setting up the IAAFT
method so that the spectral amplitudes corresponding to a
correlated signal with Gaussian marginals are combined with
the intensity of an uncorrelated sequence of values drawn
from the required beta distribution. In this way IAAFT yields
a signal with required ACF and marginal distribution. Even
though Qj is defined as a stochastic process with random
variables being conditional probabilities, the finite sequence
{q} is generated by reordering an uncorrelated time series
{ε}, and an explicit computation of conditional probabilities
is not required. Moreover, the modular structure of the
algorithm allows one to use not only IAAFT but also other
methods devised to simulate continuous processes with given
marginal distribution and ACF, such as the autoregressive-to-
anything process generator [19] or the statically transformed
autoregressive process generator [20]. This further highlights
the flexibility and generality of the proposed approach.

In more detail, the algorithm has the following steps:
(1) Begin by using the convolution method to generate a

sequence of n Gaussian random numbers {yj }n−1
j=0 with the

desired ACF (e.g., power-law decay).
(2) Store (i) the squared amplitudes of its Fourier trans-

form, S2
k = |∑n−1

j=0 yj exp(i2πkj/n)|2, (ii) the sorted sequence
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{y(j )}n−1
j=0 where y(j ) is the j th-smallest value of {yj }n−1

j=0, and

(iii) a list of values {εj }n−1
j=0 randomly drawn from the beta

distribution with parameters in Eq. (7).
(3) Start the iteration procedure by reordering {εj }n−1

j=0 to

have the same rank structure as {yj }n−1
j=0, and call the resulting

sequence {q ′(0)
j }n−1

j=0. Note that the two sequences share the
same rank correlation but not the desired linear ACF (or power
spectrum). Each iteration m (= 0,1,2, . . .) consists of two
consecutive steps:

(a) First, the power spectrum of {q ′(m)
j }n−1

j=0 is adjusted to

that of {yj }n−1
j=0 by taking the Fourier transform of {q ′(m)

j }n−1
j=0,

replacing its squared amplitudes {S2,(m)
k } by {S2

k } and then
transforming back. The phases are kept unaltered.

(b) After this first step, {q ′(m)
j }n−1

j=0 has the desired power
spectrum, but its marginal distribution has been modified.
Therefore, in the second iterative step, the marginal distribu-
tion is adjusted by ordering {εj }n−1

j=0 to have the same ranking

as {q ′(m)
j }n−1

j=0.
(4) Since the power spectrum of the resulting sequence

{q ′(m+1)
j }n−1

j=0 is again modified, both iterative steps are repeated
until a convergence threshold is achieved (here, a mean
absolute error equal to 5×10−6 for S2

k is used in the numerical
examples below).

(5) Apply the selection rule in Eq. (2) to transform the
sequence of conditional probabilities into a binary sequence.

The algorithm stops with the exact matching of the beta
marginal distribution, defined in [0,1], to properly apply the
rule in Eq. (2). This corresponds to “IAAFT-1” setup suggested
by Kugiumtzis [14] when detailed properties of the amplitude
distribution should be preserved.

The above algorithm differs from others previously pro-
posed in the literature as it focuses on the simulation of
the parent continuous-state process Qj rather than on the
target dichotomous process Xj , thus allowing for use of
classical techniques (e.g., IAAFT) as the core of the simulation
procedure. In this respect, it is worth noting that IAAFT
(covering steps 1–4) has a very specific setup in this context.
In fact, it is usually applied to obtain surrogate data preserving
both marginal distribution and autocorrelation of a reference
signal. Instead, the aim here is to combine the target marginal
distribution in Eq. (3) of a white noise {ε} with the target power
spectrum (ACF) of a Gaussian process Yj , whose realization
{y} is generated by the classical convolution method. The
resulting sequence {q ′} resembles the desired conditional
probabilities {q}, which are used to generate binary random
numbers {x} with prescribed mean and ACF. Mathematically,
there is a one-to-one correspondence between the marginal
distributions of the processes Qj and Yj such as

qj = h(yj ) = G−1(
(yj ); α,β), (8)

where G and 
 are the beta and Gaussian cumulative
distribution functions of Qj and Yj , respectively. It should
be stressed that the continuity of the state space of Qj ,
with its marginal pdf in Eq. (3) defined on the continuum
between 0 and 1, allows Eq. (8) to hold true for any arbitrary
dependence structure of Yj . On the other hand, for discrete-
type random variables such a relationship is not available [9].

This highlights the importance of moving from the binary
process Xj to the continuous one Qj for simulation purposes.

III. NUMERICAL EXAMPLES

A. Simulation of signals with exponentially
and power-law decaying ACF

The performance of the proposed algorithm is tested by
generating binary sequences with ACF corresponding to two
stationary processes of paramount importance in several ap-
plications, i.e., the Hurst-Kolomogorov (HK) and the Markov
process. The former, also known as fractional Gaussian noise,
is characterized by the following ACF:

ρX(τ ) = 1
2 (|τ + 1|2H − 2|τ |2H + |τ − 1|2H ), (9)

which exhibits a power-law decay ρX(τ ) ∝ |τ |2H−2 and
the corresponding power spectrum takes the form SX(f ) ∝
f 1−2H , with f the frequency and H ∈ (0,1) the Hurst
coefficient. This is analogous to the so-called pure power-
law noises or 1/f noises. For 0.5 < H < 1 the process is
positively correlated and exhibits long-range dependence,
while it reduces to white noise for H = 0.5. As a second
example, we consider a process with short-range Markovian
dependence, which is characterized by exponentially decaying
ACF of the form

ρX(τ ) = exp(−γ |τ |) = ρ
|τ |
1 , (10)

where 1/γ is the correlation radius and ρ1 = exp(−γ ) is the
lag-one autocorrelation coefficient. Simulations are performed
for H ∈ {0.7,0.8,0.9}, ρ1 ∈ {0.5,0.8,0.95}, p ∈ {0.01,0.1},
and sample size 220. The values of p may mimic the rate of
occurrence of rare events such as storms, floods, earthquakes,
and other geophysical hazards. The large sample size was
chosen to highlight whether the simulated samples approach
the theoretical behavior as expected when the size tends to
very large values. Results for HK and Markov processes are
illustrated in Figs. 1 and 2, respectively. Figures 1(a)–1(b) and
2(a)–2(b) compare the theoretical ACFs with their empirical
counterparts corresponding to the combinations of parameters
mentioned above. The agreement between theoretical and
simulated ACFs and the lack of scattering of the empirical
ACF values denote the effectiveness of the proposed approach
to simulate binary signals with power-law and exponential
decay as well as prescribed mean and variance.

For each model, Figs. 1(c)–1(h) and 2(c)–2(h) show some
examples of synthetic sequences of equal length. In all cases,
values 0 and 1 tend to cluster more and more as the degree or
extent of autocorrelation increase. This clustering behavior is
in agreement with previous theoretical and empirical findings
resulting from the study of extreme values of simulated and
observed processes taking real values [21–29]. In this respect,
we stress again that the simulated sequences preserve on
average not only the desired ACF but also the desired rate of
0’s and 1’s of the underlying process, thus allowing the study
of the sampling variability for finite size sequences. This is of
paramount importance to mimic and study, for instance, the
occurrence of extreme geophysical phenomena and the related
sampling uncertainty in order to provide more reliable risk
assessment.
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FIG. 1. ACFs (a, b) and sample signals (c–h) corresponding to HK processes with three different values of the characteristic parameter
H ∈ {0.7,0.8,0.9} and p ∈ {0.01,0.1}. Panels (a, b) show the analytical ACFs (—) along with the empirical ACFs of the simulated sequences
of transition probabilities {q}(◦) and binary signal {x} (•) for each of the parameter values reported in the legends. Panels (c–e) and (f–h) depict
synthetic sequences corresponding to ACFs reported in (a) and (b), respectively. The simulated sequences exhibit an increasing clustering effect
related to the increasing strength of the autocorrelation (viz., parameter values).
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FIG. 2. As in Fig. 1 but for Markov processes with parameter ρ1 ∈ {0.5,0.8,0.95}; the same caption and interpretation apply. Empirical
ACF values exhibit strong fluctuations and lose their agreement with the theoretical curves for ρX(τ ) ≈ 0.005 because of finite size effects.
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FIG. 3. Box plots showing the variability of p computed on sequences of size 103 to 104 by steps of 103 for HK processes with
H ∈ {0.7,0.8,0.9} and p ∈ {0.01,0.05,0.1}. Finite size does not introduce any bias, while the variance of p decreases as the sample size
increases.

It should be noted that the variability of the empirical
ACFs for the sample size 220 is negligible for ACF values
larger than ≈0.02. For p = 0.01, some lack of accuracy
emerges especially for low ACF values and weaker correlation
structure corresponding to H = 0.7 and ρ1 = 0.5. However,
some fluctuations are expected in this case because of the
sharpness of the beta distribution, whose probability mass
is concentrated very close to the boundaries of its domain
(zero and one), as well as finite-size effects affecting the

empirical ACF of sequences characterized by a very low rate
of occurrence p.

We further explored finite size effects by simulating binary
sequences of size 103 to 104 by steps of 103 for H ∈
{0.7,0.8,0.9}, ρ1 ∈ {0.5,0.8,0.95}, and p ∈ {0.01,0.05,0.1},
and then assessing the variability and bias of p and ACF,
as well as the behavior of the number of IAAFT iterations
required to reach convergence. For each combination of
parameters, 100 time series were generated. For HK processes,
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FIG. 4. Box plots summarizing the variability of ACF mean error computed on sequences of size 103 to 104 by steps of 103 for HK processes
with H ∈ {0.7,0.8,0.9} and p ∈ {0.01,0.05,0.1}. Finite size introduces some bias that tends to decrease as the sample size increases. Notice
that such a bias is not a limit of the proposed algorithm, but it is due to the estimation of the autocorrelation function from finite size sequences.
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FIG. 5. As in Fig. 4 but for Markov processes with ρ1 ∈ {0.5,0.8,0.95}; the same caption and interpretation apply. Notice that the
convergence to theoretical ACF is faster than in the case of HK processes (Fig. 4), as the estimation bias of the second order moments due to
finite size effects is larger for processes characterized by long-term persistence.

Fig. 3 shows that the simulated sequences exhibit unbiased p

values for each combination of the parameters, with variability
decreasing as the sample size increases. Similar results (not
shown) hold for Markov processes as expected, because the
algorithm reproduces almost exactly the Bernoulli marginal
distribution with rate of occurrence p.

For HK processes, Fig. 4 shows the mean error between
the theoretical and the empirical ACFs computed on lags from
one to 11 in order to emphasize the contribution of the larger

ACF terms. The ACF bias converges to zero as the sample
size increases. This convergence is also evident for Markov
processes (Fig. 5). It should be noted that such a bias is
not a limit of our algorithm, but it is due to the estimation
of the autocorrelation function from data. In fact, this is
characterized by negative bias, which may be very high when
the process exhibits long-term persistence (i.e., HK process)
[30,31]. This is particularly the case with binary processes that
are characterized by sequences of thousands of zero values for
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FIG. 6. Box plots showing the sampling variability of the number of IAAFT iterations required to achieve convergence for binary sequences
with HK ACF, H ∈ {0.7,0.8,0.9}, and p ∈ {0.01,0.05,0.1}. The expected number of IAAFT iterations increases with the sample size and p,
while it is almost independent of H . Similar results hold for the Markov process (not shown).
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FIG. 7. (a) Time series of rainfall depth (mm) obtained by merging October data recorded in Casigliano (central Italy) at 30-min temporal
resolution from 1995 to 2001. (b) Observed occurrence process corresponding to the rainfall records in panel (a). (c–f) Typical synthetic
time series, of equal length, generated by the proposed algorithm respectively with HK and Markov dependence structures, Bernoulli pure
randomness, and empirical ACF (surrogate sequence). Comparison with the observed occurrence process in panel (b) shows that HK and
surrogate can reproduce the typical clustering behavior (also known as overdispersion) of rainfall events, whereas Markov and Bernoulli
occurrences cover the time axis more homogeneously (indicating so-called equi- or underdispersion). (g–j) Comparison of the ACF of the
observed occurrence process and the mean ACF obtained by averaging the ACFs of 100 synthetic signals with the same size as that of the
observed sequence. The 90% confidence bands are also reported. Panels (g–i) show that the average ACF of HK sequences fits very well the
observed ACF, and sampling fluctuations fall within the confidence bands; on the other hand, Markov and Bernoulli dependence structures
clearly underestimate the observed ACF. The average ACF of surrogate series in panel (j) closely follows the empirical ACF with limited
fluctuations, as expected from the definition of surrogates.

low p values (see Figs. 1(b), 1(f)–1(h), 2(b), and 2(f)–2(h)).
The ACF bias might easily prevent the recognition of the actual
correlation structure if the sample size is not large enough. This
behavior further justifies the choice of sequences of size 220

to evaluate the actual agreement between the properties of the
simulated signals and those of the underlying processes.

For HK processes, Fig. 6 shows that the expected number
of IAAFT iterations required to achieve convergence increases
with the sample size and p, while it is almost independent of
H . Similar results hold for Markov processes (not shown). Of
course, the overall number of iterations globally increases or
decreases based on the tolerance of the convergence criterion
used in the IAAFT algorithm.

B. Simulation of rainfall intermittency

As mentioned in the introduction, binary sequences are very
common in physics and geophysics as they naturally rise when
one focuses on the occurrence or nonoccurrence (i.e., presence
or absence) of a given event and/or characteristic. A matter
of common experience is the rainfall intermittency, i.e., the
alternation of wet and dry periods. The dependence structure
of the rainfall occurrence process appears to be non-Markovian
[7], and the reproduction of the observed rate of occurrence,
p, is of paramount importance in hydrological engineering.
Therefore, a general simulation method reproducing the
moments of the occurrence process up to the second order
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is of practical interest. For the sake of illustration, we consider
a rainfall time series recorded in Casigliano (central Italy)
at 30-min temporal resolution from 1995 to 2001. As these
data belong to a wider data set of 35 time series previously
studied [32,33], we refer the reader to the literature for further
details. The rainfall process exhibits seasonal fluctuations at
sub-annual timescales, but our analysis requires homogeneous
sequences. To overcome this problem, we focused on October
data (similar results can be obtained for the other months).
Figures 7(a)–7(b) show the time series of rainfall depth and
rainfall occurrence. The estimated rate of occurrence is p̂ =
0.047. Empirical ACF was computed on the merged sample
comprising October records for the years 1995–2001, taking
care of removing the cross-products of lagged observations,
xj and xj+τ , not belonging to the same year [34]. For the sake
of comparison, the occurrence process was modeled by three
different dependence structures; namely, (i) HK [Eq. (9)] with
Ĥ = 0.84 estimated by the least squares based on variance
method [35], (ii) Markov [Eq. (10)] with ρ̂1 = 0.69, and (iii)
purely random Bernoulli (ρX(τ ) = 0). Results are shown in
Figs. 7(c)–7(j). The example time series in Figs. 7(c)–7(e)
show that both Bernoulli and Markov processes cannot
mimic the typical clustering behavior of rainfall occurrences,
which are in turn well reproduced by the HK process.
Figures 7(g)–7(i) compare the empirical ACF of the observed
process with the synthetic ACF constructed by averaging ACFs
of 100 simulated sequences with the same size as that of
the observed time series. The 90% confidence limits of the
ACF highlight that the observed ACF is compatible with
HK dependence structure once the sampling uncertainty is
taken into account, whereas pure randomness and Markovian
dependence are not well suited for the data at hand. Moreover,
the larger width of HK confidence bands denotes higher
uncertainty, which reflects the larger variability of such a
type of strongly persistent processes. This further confirms the
importance of modeling and simulating binary signals with
prescribed mean and autocorrelation.

Describing rainfall occurrences by theoretical processes
allows for the setup of parametric models that can be used for
prediction (owing to their explanatory power), sensitivity anal-
ysis (by varying model parameters), or as modules for more
general frameworks devised for simulating the entire rainfall
process (occurrence and depth). However, for exploratory
purposes (e.g., nonlinearity testing [13–15,20]) it can be
useful to have so-called surrogate data that preserve some key
properties of the observed signals. We have therefore tested the
capability of the proposed methodology to generate surrogate

sequences preserving on average the observed p̂ and empirical
ACF. To this aim, the input Gaussian sequences required by the
simulation algorithm are generated by drawing iid sequences
from a standard Gaussian distribution and then introducing
the empirical correlation using the Cholesky decomposition of
the empirical correlation matrix. Figure 7(f) shows one of 100
surrogate series, while Fig. 7(j) shows the empirical ACF along
with the average simulation and the 90% confidence bands.
These diagrams highlight that the proposed method easily
generates accurate surrogate series preserving on average the
observed ACF with limited variability around the expected
pattern. Even though further investigation of these aspects is
required, these results confirm the flexibility, generality, and
potentialities of the algorithm introduced in this study.

IV. CONCLUSIONS

As highlighted in Ref. [12], the discrete nature of binary
signals can introduce theoretical constraints in classical simu-
lation methods, thus limiting the generation of binary signals
with prescribed autocorrelation. This apparently prevents the
use of general algorithms, which are instead available for con-
tinuous random processes. The proposed method overcomes
this limitation, focusing on the parent continuous process of
transition probabilities rather than on the target binary process.
Since the parent process is characterized by a continuous beta
marginal distribution and a given correlation structure, the
simulation problem is moved back from discrete to continuous
state space, thus allowing for use of classical convolution
techniques and the corresponding freedom in terms of desired
correlation structure. Once a sequence of correlated beta
distributed random variables is generated, the corresponding
binary sequence results from a simple acceptance or rejection
criterion. As compared with simpler methods, the proposed
approach allows one to specify and control not only the
correlation structure but also mean and variance of the binary
signal. This is a key aspect for practical applications involving,
for instance, anthropogenic and natural hazards. These extreme
events exhibit a low rate of occurrence and are usually grouped
into clusters. Reliable risk analyses should therefore require
modeling both aspects.
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