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Universal modeling of weak antilocalization corrections in quasi-two-dimensional electron systems
using predetermined return orbitals
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We have developed a method to calculate the weak localization and antilocalization corrections based on
the real-space simulation, where we provide 147 885 predetermined return orbitals of quasi-two-dimensional
electrons with up to 5000 scattering events that are repeatedly used. Our model subsumes that of Golub
[L. E. Golub, Phys. Rev. B 71, 235310 (2005)] when the Rashba spin-orbit interaction (SOI) is assumed.
Our computation is very simple, fast, and versatile, where the numerical results, obtained all at once, cover
wide ranges of the magnetic field under various one-electron interactions H ′ exactly. Thus, it has straightforward
extensibility to incorporate interactions other than the Rashba SOI, such as the linear and cubic Dresselhaus SOIs,
Zeeman effect, and even interactions relevant to the valley and pseudo spin degrees of freedom, which should
provide a unique tool to study new classes of materials like emerging 2D materials. Using our computation, we
also demonstrate the robustness of a persistent spin helix state against the cubic Dresselhaus SOI.
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I. INTRODUCTION

It is well-recognized that the weak localization-
antilocalization (WL-WAL) effect [1–4] provides a useful
tool to study the phase relaxation time and the spin-orbit
interaction (SOI) in quasi-two-dimensional electron systems
(2DESs) [3,5]. For example, quantitative deductions of the
Rashba SOI were performed on 2DESs of III-V com-
pounds [6–8], strained-Ge/SiGe semiconductors [9], and HgTe
quantum wells [10] and at the interface or surface of perovskite
oxides [11]. The WAL effect, suggesting the existence of
the SOI with reasonable strength, has also been observed
in graphene [12,13], transition metal dichalcogenides [14],
and others [15,16]. Additionally, the SOI provides a key
for understanding the novel functionalities in the new class
of materials like halide-based perovskite [17] and multifer-
roics [18,19], where the study of the WL-WAL effect may
shed a light on the fundamental understanding of the pertinent
materials.

To date, the most “useful” WL-WAL models use the
“diffusion approximation” [20,21], which both simplifies
the theoretical procedures in k space and provides simple
analytical formulas to fit the experimental data. However, these
formulas are valid only in small magnetic field ranges for B and
BSO, the external magnetic field perpendicular to the 2DES and
the magnetic field relevant to the SOI, respectively. In most
cases, the criteria is B,BSO < Btr/10 [22], where Btr is the
magnetic field relevant to the transport scattering time τtr. To
describe the magnetoconductivities (MCs) under strong phase
relaxation, high magnetic fields and/or high SOI strength,
WL-WAL theories beyond the diffusion approximation, based
on a ballistic or “Boltzmannian” picture [4] of electrons, are
required [23].

In early 1980s, Kawabata implemented the WL model
beyond the diffusion approximation for the first time based
on the return probability of transport carriers [24,25], which
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successfully solved the problem of the experimental deviation
from the diffusion model [25]. Some had deemed this
discrepancy a result of many-particle interactions, but such
contributions are proven to be negligible [26]. Incremental but
steady improvements have kept occurring on the WL-WAL
models beyond the diffusion approximation in the subsequent
20 yr [6,23,27–32]. In 2005, Golub worked out the WAL model
beyond the diffusion approximation analytically taking into
account the Rashba-type SOI [33], which provided reliable
solutions for the WAL corrections to MCs (�σ ) as a function
of the Rashba parameter α. However, it is, in fact, an elaborate
task to compute the Golub model numerically for �σ as a
function of the magnetic field, making this theoretical tool
very difficult to use for experimentalists to analyze their
experimental data [10].

In this report, we revisit the WAL problem beyond the
diffusion approximation from a unique perspective. By looking
at the initial development of the theory beyond the diffusion
approximation, one can notice that it is the return probability
of semiclassical electrons that is directly connected to the
WL-WAL effect beyond the diffusion approximation. We
will provide a useful set of closed-loop paths generated by
a pseudorandom-number generator assuming Boltzmannian
electrons that can be used for the calculation of �σ . We
also show a general way to incorporate various one-electron
interactions described by Hamiltonian H ′ happening in each
closed-loop path, including the SOI [34,35]. The virtue
of our approach is in its straightforward extensibility to
incorporate not only the SOI but also the Zeeman effect and
other interactions associated with valley degeneracy and/or
pseudospin [36], for example, and even multiple of these
simultaneously. In the simplest case where only the Rashba
SOI is considered, our numerical approach is proven to be
equivalent to the Golub model [33]. We have then examined the
robustness of the novel spin texture, the so-called “persistent
spin helix” (PSH) state [37], when the Rashba and linear- and
cubic-Dresselhaus SOIs coexist, as an example of exploring
new physics using the framework developed in the present
work.

2470-0045/2017/95(2)/023309(10) 023309-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.71.235310
https://doi.org/10.1103/PhysRevB.71.235310
https://doi.org/10.1103/PhysRevB.71.235310
https://doi.org/10.1103/PhysRevB.71.235310
https://doi.org/10.1103/PhysRevE.95.023309


A. SAWADA AND T. KOGA PHYSICAL REVIEW E 95, 023309 (2017)

TABLE I. Values associated with the closed loops used for the
WL-WAL calculation. The full list is provided in [38]. nscat is the
number of scatterings required for the particle to return, where the first
“count” is made when it starts the path from the origin. (See
Appendix A for the generation of the closed-loop paths using the
negative integer values seed.)

ν seed nscat S L cosϕ′

1 −12 910 811 125.767 788.021 −0.943 808
2 −16 737 4 0.072 796 1.4435 −0.856 125
...

...
...

...
...

...
147 885 −2 047 996 444 10 0.049 283 3 9.387 79 −0.594 393

II. THEORETICAL DETAILS

The 147 885 closed-loop paths (return orbitals) we will
use can be produced using the deterministic feature of a
pseudorandom generator, considering the relaxation-time-
based (dt/τtr) Monte Carlo method at constant Fermi velocity
vF up to 5000 scattering events with a mean-free-path (MFP)
value of dimensionless unity (Table I and Ref. [38]). The length
and encircling area of each closed loop can be scaled by
the actual MFP value � = vFτtr for obtaining the magnetic
field dependence of �σ . When finding the closed loops,
the judgment of “return” was made by watching it pass
through a predefined radius �r around the origin, where
�r = 2.5 × 10−5 is used in the present work (Appendix A).
The statistics showed that the relative occurrence of a loop
with n vertices (scatterings) is proportional to (n − 2)−1, as
predicted theoretically [28].

It is well known that the WL correction to the magnetocon-
ductivity is connected to the areal distribution of the closed
loops like those discussed here [2–4]. More specifically, we
suggest that F in Eq. (1) of Ref. [28],

�σ = − e2

2π2h̄
F, F = 2π�2W (0) =

Nscat∑
n=3

1

n − 2
, (1)

should be read as

F =
(

Nscat∑
n=3

1

n − 2

)
1

Norbit

Norbit∑
j=1

cos

(
2π

BSj�
2

h/2e

)
, (2)

considering the loops up to Nscat (=5000) vertices (scatter-
ings), where Norbit is the number of orbitals we pick randomly
from the predefined 147 885 orbitals (Norbit � 147 885) and Sj

(dimensionless quantity) is the encircling area of the j th orbital

(Fig. 1). We note 1
Norbit

∑Norbit
j=1 cos (2π

BSj �
2

h/2e
) = 1 for B = 0. All
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FIG. 1. Closed-loop path with nscatt = 5. This consists of line
segments �l1, �l2, �l3, �l4, and �l5. Note that the total ballistic length L

and the encircling area S of this loop are given as L = ∑nscat
i=1 |�li | and

S = |S+ − S−|, respectively, where both S+ and S− are defined to be
positive (see Ref. [35]).

the corrections required to make Eq. (1) fully equivalent
to the most updated Cooperon-based WL-WAL theories be-
yond the diffusion approximation are (1) the incorporation of
the phenomenological phase relaxation, (2) the nonbackscat-
tering correction [31,32], and (3) the incorporation of various
one-electron interactions, whose Hamiltonian is H ′

k, including
the SOI and Zeeman effect. For doing this, we put the

factor xj below in front of cos (2π
BSj �

2

h/2e
) in Eq. (2), i.e.,∑Norbit

j=1 xj cos (2π
BSj �

2

h/2e
),

xj = exp

(
−Lj

Lφ

)
×1

2
Re[Tr{U†

CCW,j UCW,j }]×(1 + cos ϕ′
j ),

(3)

where Lj , Lφ , and ϕ′
j are the total ballistic length (sum of

the line segments) for the j th loop (L in Table I), the ballistic
phase relaxation length defined by vFτφ (τφ being the phase
relaxation time) [39], and the azimuthal angle for the returning
electron, respectively (see Fig. 1). We follow Ref. [32] for the
incorporation of the nonbackscattering correction (1 + cos ϕ′

j )
[40]. The vector representations of the first and last segments
of the closed loop are �l1 = (l1 cos ϕ1, l1 sin ϕ1) and

−→
l nscat =

(lnscat cos ϕ′, lnscat sin ϕ′), respectively, where ϕ1 is set to zero
making use of the circular symmetry in the present work (see
Fig. 1).

The propagators UCW and UCCW are most generally written
as

UCW = Simp
k1,knscat

exp

(
− i

H ′
knscat

h̄
tnscat

)
· · · Simp

k3,k2
exp

(
− i

H ′
k2

h̄
t2

)
Simp

k2,k1
exp

(
− i

H ′
k1

h̄
t1

)
,

UCCW = Simp
−knscat ,−k1

exp

(
− i

H ′
−k1

h̄
t1

)
Simp

−k1,−k2
exp

(
− i

H ′
−k2

h̄
t2

)
· · · Simp

−knscat−1,−knscat
exp

(
− i

H ′
−knscat

h̄
tnscat

)
,
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where Simp
k′,k is the quantum mechanical operation associated

with the scattering of electrons from state k to state k′ and
ti is the time required for the electron to move in the ith
segment (ti = li/vF in the simplest case). We note that the
successive accumulation of the quantum mechanical phase,
exp[2iϕ(r,r ′) − 2iτS · ω(R)] in Eq. (8) of Ref. [33], leads to
both the cos term and 1

2 Re[Tr{U†
CCW,j UCW,j }], in Eqs. (2)

and (3), respectively, where Simp
k′,k is set to be a unit matrix. We

further note that the effect of spin precession is incorporated as
a constant precession angle (∝ τ ) for all segments of the elec-
tron passage in Ref. [33], whereas the spin precession angles in
the present work are proportional to the length of each segment
(∝ tn, n = 1,2,3, . . .), a clear improvement from Ref. [33]. We
also reiterate that various interactions, not only the Rashba-
Dresselhaus SOIs and the Zeeman effect, but also anisotropic
scattering, intervalley scattering, and/or interactions associated
with the pseudospin degree of freedom (as in 2D materials
including graphene) can be incorporated straightforwardly in
our scheme through 1

2 Re[Tr{U†
CCW,j UCW,j }] (see Appendix

B for the derivation), which has never been possible in the
currently available Cooperon-base formalisms [33,36]. Our
approach is similar in taste to Ref. [32], where randomly
distributed hard-core scatterers were used to generate closed-
loop paths for the calculation of WL without being able to
incorporate one electron interaction H ′

k. The distribution of
the closed-loop paths in our approach reflects exactly that
of the analytical formalism found in Refs. [24,25,28]. The
computation in our approach is also much simpler than that
in Ref. [32].

To evaluate Eq. (1) as a function of B most efficiently, we
make a histogram of counts out of the Norbit loops according
to the encircling area S (dimensionless quantity) with the
areal interval �S (�S = 0.1 in the present work). We assume
S values to be positive numbers here because only their
absolute values are important in the subsequent calculations.
The ith bin in the histogram thus created, denoted as w0[i],
contain the number of loops whose S falls in the range
(i − 0.5) < S/�S < (i + 0.5). To obtain �σ as a function
of B perpendicular to the 2DES plane, we use the standard
FFT algorithm to convert w0[i] to w0[i]FFTed [41]. We set the
array size of w0[i] to be 2N + 1 (typically N = 17) for this
purpose [42]. We also note that the correct FFT conversion here
should produce w0[0]FFTed = 147 885 or Norbit, which should
be used as a check of the FFT procedure.

We now have

�σ [i] = − e2

2π2h̄
× F0 × w0[i]FFTed

Norbit
, (4)

B[i] = i

2N
× π

�S
Btr, (5)

where Btr = h̄/2e�2, F0 = {∑Nscat
n=3 (n − 2)−1} is the theoretical

return probability considering up to Nscat scatterings [28] and
Norbit is the number of orbits used to make the histogram
w0[i]. In the present work, Nscat = 5000 (F0 = 9.0941) and
Norbit = 147 885. However, one can use any smaller numbers
of Norbit to reduce the computation time, though the statistical
reliabilities of the final results decrease (see Sec. IV) [43].
We also note that the integer i (0 � i � 2N ) connects �σ and

B. Equations (4) and (5) provide reliable numerical values
for the WL correction in a quasi-2DES for an abrupt phase
relaxation at 5000 scatterings. In order to include the correction
by Eq. (3), the ith bin of the histogram w0[i] should be replaced
with

∑Ni

j=1 xj , where j is now an index attached to a loop that
belongs to the ith histogram bin and Ni is the total number
of the closed loops in this bin. Once we set the histogram
w[0, . . . ,2N ], we can obtain �σ [0, . . . ,2N ] just in the same
way as above, where w0[i]FFTed is now replaced with w[i]FFTed,
which is the FFT of w[i] [41].

Let us now elaborate the relatively simple case where the
interaction is only spin rotation by the SOI. Any of the SOI or
Zeeman-type Hamiltonians or even arbitrary combinations of
these have the following general form.

HSOI,B = B̃(k,B) · σ . (6)

For example, B̃(k,B) = (αky, − αkx) for the Rashba Hamil-
tonian [HR = α(kyσx − kxσy)], where α is the Rashba SOI
coefficient, and B̃ = (− 1

2gμBBx, − 1
2gμBBy) for the Zeeman

Hamiltonian [HZ = − 1
2gμBB · σ ], where g and μB are the

effective g value and Bohr magneton, respectively (B ⊥ ẑ is
assumed for simplicity). The spin rotation axis ξ̂ (k,B) and
angle θ (k,B) under the Hamiltonian in Eq. (6) for an electron
traveling a distance l are given as B̃(k,B)/|B̃(k,B)| and
2|B̃(k,B)|l/h̄vF , respectively. Thus, the spin rotation operator

Rξ̂ (θ ) = I cos
θ

2
− iξ̂ (k,B) · σ sin

θ

2

=
(

cos(θ/2) −iξ− sin(θ/2)
−iξ+ sin(θ/2) cos(θ/2)

)
, (7)

where ξ± = ξx ± iξy [34], in the present case reads

Rξ̂ (θ ) =
(

cos(kαl) (k−/k) sin(kαl)
(k+/k) sin(kαl) cos(kαl)

)
. (8)

The expression of Rξ̂ (θ ) for the case of the cubic Dresselhaus
Hamiltonian is given in Appendix C . In Eq. (8), k± = kx ± iky

and kα = αm∗
h̄2 (m∗ being the effective mass). The total spin

rotation operator Rtot for a closed-loop path is then given as

Rtot = Rξ̂nscat

(
θnscat

) · · · Rξ̂ 2
(θ2)Rξ̂ 1

(θ1). (9)

1
2 Re[Tr{U†

CCW,j UCW,j }] in Eq. (3) now reduces to 1
2 Tr{R2

tot}
[35], where Tr{A} is the trace of matrix A, if Rtot has the
time-reversal symmetry as in the case of the spin rotation by
the SOI Hamiltonians only (see Appendix B).

III. RESULTS

Shown in Fig. 2(a) are the image plot of the calculated �σ

assuming the Rashba SOI and Lφ = 10 (dimensionless length
used in this simulation) [44] as a function of θR = 2kα� and the
normalized magnetic field B/Btr, where θR is the spin rotation
angle per the MFP length and Btr = h̄

2e�2 (see Appendix D for
the results with other Lφ values). It is noted that computation
time required to generate the whole data in Fig. 2(a) is on
the order of minutes using an inexpensive modern desktop
computer.
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FIG. 2. (a) Image plot of the calculated �σ as a function of the
magnetic field B and spin rotation angle per the MFP value θR. The
position of BSO ≡ θ2

RBtr/2 is indicated by the white dashed line. (b)
Cuts (cross sections) of the image plot at θR = 0, π/4, π/2, π , and
2π (red solid curves) together with the corresponding results by the
Golub model (black dashed curves) [45]. (c) θR dependence of �σ

calculated by our model (red solid curve) and the Golub model (black
dashed curve) at B = 0. All the results here [(a)–(c)] were obtained
using Lφ = 10 for the phase relaxation.

To have a closer look at Fig. 2(a), cuts (cross sections) of
the image plot at θR = 0, π/4, π/2, π , and 2π are shown in
Fig. 2(b) together with the results of the Golub model using
the same parameter values for θR and Lφ , where we see exact
agreement between the results in the present work and those
of the Golub model [45]. The result for θR = 0 denotes the
WL curve (without SOI). It is noted that the computation
time we needed to generate the five curves for the Golub
model in Fig. 2(b) was on the order of hours using the same
desktop computer as above, because the implementation of
the Golub model is so cumbersome [10]. It is also noted
that approximated formulas exist based on the Golub model
for the values of �σ at B = 0 as a function of BSO, where
BSO = θ2

RBtr/2 [see Fig. 2(c)] [33]. A very small discrepancy
seen in Fig. 2(c) around θR = 0.3π between the results of the
approximated formulas and the present results turned out to
be due to the errors in the approximated formulas, not in the
present results [46].

We now explore new physics using the method devel-
oped in this work, which had never been possible in other
frameworks of the WL-WAL theory beyond the diffusion
approximation. The coexistence of the Rashba and linear-
and cubic-Dresselhaus SOIs provides intriguing problems in
semiconductor spintronics. For example, in top-gated (001)InP
lattice-matched InGaAs quantum wells, Faniel et al. [7] found
that the Dresselhaus SOIs are essentially negligible unless
α is vanishingly small, while Yoshizumi et al. [47] recently
observed a clear separation in the WL-WAL measurements
between the two distinct PSH states [37] corresponding to
α = ±β1 (see below for the meaning of β1), despite the
existence of a finite cubic Dresselhaus SOI. In the following
investigation, we define the linear Dresselhaus Hamiltonian
as H

(1)
D = β1(kxσx − kyσy) so that the corresponding spin

rotation angle per the MFP length is θD1 = 2β1m
∗�/h̄2. The

cubic Dresselhaus SOI is discussed in Appendix C, and the
corresponding spin rotation angle per the MFP length is
denoted as θD3. Now, our Hamiltonian H ′ = HR + H

(1)
D +

H
(3)
D does not retain the circular symmetry anymore. On the

other hand, it was based on the circular symmetry that we set
ϕ1 = 0 in our computation. To resolve this problem, the kx-ky

coordinate in Hamiltonian should be rotated by an arbitrary
(random) angle in each closed loop in calculating Eq. (3). We
also fix the value of Lφ at 100 here.

Shown in Fig. 3(a) is the image plot of the WL curves
for the PSH states (θR = θD1, θD3 = 0), where the ordinate
is θR (or θD1) and the abscissa is B/Btr. All MC curves with
different θR values are identical to one another, as expected. An
intriguing question is how these PSH states would be broken
by the introduction of finite cubic Dresselhaus SOI. Shown in
Figs. 3(b) and 3(c) are the image plots of WL-WAL curves
with θR = θD1, but θD3 = π/64 and θD3 = π/16, respectively.
A surprising fact is that the larger the value of θR (or θD1), the
more robust the PSH state is against the incorporation of the
cubic Dresselhaus SOI. For example, as in Fig. 3(b), if θD3 is
as small as π/64, all MC curves remain WL-like, but the WL
curves are increasingly affected by θD3 as the value of θR is
reduced. If the value of θD3 is increased to π/16 [Fig. 3(c)], we
observe the transition from WL-like MC curves to WAL-like
MC curves as we decrease the value of θR from 10π to 0.01π ,
where its boundary is around θR = 5π .
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FIG. 3. Image plots of the calculated �σ as a function of the
magnetic field B (abscissa) and spin rotation angle per the MFP
value θR (ordinate) assuming θR = θD1, with Lφ = 100. Panel (a)
denotes the result of the persistent spin helix states (θD3 = 0). Panels
(b) and (c) denote the results for θD3 = π/64 and π/16, respectively.
In (c), Bmin (white dots) denotes the magnetic fields at which �σ (B)
becomes locally minimum.

IV. DISCUSSIONS

Let us now consider the statistical reliability of �σ in the
presence of an external magnetic field B in the present work.

The contribution to �σ from a randomly picked closed loop,
indexed by j , is given as

− e2F0

2π2h̄Norbit
× xj × cos

(
2π

BSj�
2

h/2e

)
, (10)

where the front prefactor (− e2F0
2π2h̄Norbit

) is found in Eq. (4), xj

is given in Eq. (3), and the last part is from the wave function
interference due to the vector potential responsible for B. It
is noted that BSj is the magnetic flux piercing the loop, Sj

is the encircling area of the loop j , and h/2e is a half of the
magnetic flux quantum. Calling the quantity of Eq. (10), with
removing Norbit in the denominator, as Xj (B) and changing
the index j to ν to refer to all closed loops, i.e., 1 � ν � Norbit

(as in Table I or [38]), we can now write

�σ (B) = 1

Norbit

Norbit∑
ν=1

Xν(B) ≡ 〈Xν(B)〉Norbit . (11)

The statistical deviation of �σ (B) from the true value is
assessed as

δ�σ (B) =
√

〈Xν(B)2〉Norbit − 〈Xν(B)〉2
Norbit

Norbit
. (12)

Appendix E shows that δ�σ (B) (we write this simply δ�σ

hereafter) can be evaluated using a histogram w2[i], defined
as w2[i] = ∑Ni

j=1 x2
j , where the same histogram interval as in

w[i] and xj found in Eq. (3) were used. The final result is

δ�σ [i] = e2F0

2π2h̄
√

Norbit

√
w2[0]FFTed + w2[i]FFTed

2Norbit
, (13)

0.0016

0.0012

0.0014

FIG. 4. Image plot of the estimated statistical errors for the values
of �σ in Fig. 2(a), denoted as δ�σ , as a function of θR and B. We
used Norbit = 147 885 and Lφ = 10. The position of BSO ≡ θ2

RBtr/2
is indicated by the white dashed line.

023309-5



A. SAWADA AND T. KOGA PHYSICAL REVIEW E 95, 023309 (2017)

with B[i] = i
2N × πBtr

2�S
, where w2[0, . . . ,2N ]FFTed is the FFT

of w2[0, . . . ,2N ] [41]. We note that B[i] here is different from
Eq. (5) by a factor of a half.

We show the calculated image plot of δ�σ in Fig. 4
using Norbit = 147 885 and Lφ = 10. Comparing this with
Fig. 2(a), we find that δ�σ is typically 1% or smaller of
�σ for all parameter values of θR and B. We also note
that δ�σ ∝ 1/

√
Norbit. Therefore, reducing the number of

loops to be used in the calculation from 147 885 to Norbit =
10 000 will increase the computation speed by a factor of
15, whereas the increase in δ�σ is only by a factor of 4
or less. Thus, good numerical reliability is kept even with
Norbit = 10 000 for the purpose of fitting the experimental
data.

V. CONCLUSIONS

We have developed a unique numerical method to calculate
the WAL corrections to the magnetoconductivity of 2DES be-
yond the diffusion approximation. This approach uses a single
collection of closed-loop paths, generated by a pseudorandom-
number generator. Because of the scalable nature of 2DES, the
WAL corrections of any 2DESs can be described by this single
collection of the loops provided the Boltzmannian picture is
valid to describe the given electrons. Our approach subsumes
that of Golub [33], if we consider only the Rashba spin-orbit
interaction as possible one-electron interactions in the system.
We then numerically examined the robustness of the persistent
spin helix states in degenerate semiconductor quantum wells
against the incorporation of the cubic Dresselhaus Hamiltonian
as an example of exploring new physics using the newly
developed theoretical framework in the present work. Our
approach can be extended to incorporate interactions other
than the spin-orbit interaction in a straightforward way, such
as the Zeeman effect and those associated with the valley and
pseudospin degrees of freedom. Thus, our approach should be
also useful in the research of class of emerging 2D materials.
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APPENDIX A: GENERATION OF CLOSED-LOOP
PATHS

The 147 885 closed-loop paths used in the present work
can be generated using the pseudorandom-number generator
“double ran1(int &)” defined in Ref. [48]. The source code of
“double ran1(int &)” is reproduced below for the convenience
of the readers.

double ran1(int &idum){//numerical recipe in C++

const int IA=16807, IM=2147483647, IQ=127773,

IR=2836, NTAB=32;

const int NDIV=(1+(IM-1)/NTAB);

const double EPS=3.0e-16, AM=(1.0/IM),

RNMX=(1.0-EPS);

static int iy = 0;

static int iv[NTAB];

int j, k;

double temp;

if (idum <= 0 || !iy){
if (-idum < 1) idum = 1;

else idum = -idum;

for(j=NTAB+7;j>=0;j--){
k=idum/IQ;

idum=IA*(idum-k*IQ)-IR*k;

if (idum<0) idum += IM;

if (j<NTAB) iv[j] = idum;

}
iy = iv[0];

}
k=idum/IQ;

idum=IA*(idum-k*IQ)-IR*k;

if (idum<0) idum += IM;

j = iy / NDIV;

iy = iv[j];

iv[j] = idum;

if ((temp = AM*iy) > RNMX) return (float)RNMX;

else return temp;

}
For readers to check whether this code is working exactly

in the same way as in our work, we provide the output of
the following main program. The output values are 0.464 514,
0.928 778, and 0.502 077.

#include <iostream>

using namespace std;

main(){
int i, seed=-1000;

ran1(seed); // initialization of ran1()

for(i=0;i<3;i++) cout � ran1(seed) � endl;

}
r1

10

FIG. 5. A plot of an actual orbital (closed-loop path) for
seed = −12 910.
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Then, the closed loop for ν = 1 in Table I, for example, can
be generated by the following code (based on the Monte Carlo
type 2D random walk of Boltzmannian electron).

#include <iostream>

using namespace std;

main(){
int seed = -12910, n_scat = 811, i_scat;

double x, y, length, theta ;

ran1(seed) ; //initialize ran1()

// i_scat = 1

x = 0 ; y = 0 ;

cout << x << "\t" << y << endl ;

// i_scat = 2

x = -log(ran1(seed)) ; y = 0 ;

cout << x << "\t" << y << endl ;

//i_scat >=3

for( i_scat=3 ; i_scat<=n_scat+1 ; i_scat++)

{
length = -log( ran1(seed)) ;

theta = 2.0*M_PI*ran1(seed) ;

x += length*cos(theta) ;

y += length*sin(theta) ;

cout << x << "\t" << y << endl ;

}
}

The plot of the coordinate data generated from the above
code is shown in Fig. 5, where the last point was replaced with
r1 = (0,0).

Some of the numerical data generated from the code above
are given in Table II. We note that the definition of our
return is “the electron passes by the origin with a closest
distance between them that is smaller than some predefined
�r”. We chose �r = 2.5 × 10−5 in the present work. While
the value of �r can be chosen rather arbitrarily if it is
sufficiently small, the finiteness in �r surely serves as the

TABLE II. Positions of scatterings for seed = −12 910.

iscat x y

1 0 0
2 4.437 93 0
3 4.348 36 0.643 426
4 4.343 45 0.620 36
5 5.139 98 1.152 97
6 4.182 0.830 371
7 3.874 29 1.041 73
...

...
...

807 −3.319 09 −0.579 836
808 −2.622 21 −0.350 079
809 −1.265 27 −1.284 92
810 0.632 24 −1.218 75
811(nscat) 0.238 902 −0.083 656 5
812(nscat + 1) −0.4707 0.164 902

source of errors to the final results. These errors are almost
exclusively caused by (1) the multiple returns of the particle
from the same initial condition within 5000 scatterings (or
Nscat) and (2) the nonrigorous definition of the “return”
condition. The quantitative corrections to these errors were
considered elsewhere [49]. With such error corrections, we
can obtain almost error-free final results with �r values even
as large as 5 × 10−2.

APPENDIX B: DERIVATION OF THE ONE-ELECTRON
INTERACTION CORRECTION WITHOUT

TIME-REVERSAL SYMMETRY

Let us write the scattering sequence of a closed-loop path in
the clockwise (CW) and counterclockwise (CCW) directions
as

CW : r1
k1−→ r2

k2−→ · · · kn−1−−→ rn

kn−→ r1,

CCW : r1
−kn−−→ rn

−kn−1−−−→ · · · −k2−−→ r2
−k1−−→ r1.

Let UCW and UCCW be the one-electron interaction propagator
associated with the closed loops of the Boltzmannian electron
in the CW and CCW directions, respectively. Here, we do
not assume UCW = U−1

CCW = U†
CW because the time-reversal

symmetry is not taken for granted.
We consider the amplitude of the wave function

interference (for example, spin interference) using the
wave functions ψCW = exp(2iπ BS

h/e
)UCW|i〉 and ψCCW =

exp(−2iπ BS
h/e

)UCCW|i〉, where |i〉 is the initial electronic state
at r1 including multiple degrees of freedom reflecting various
one-electron interactions including spin,∣∣∣∣ 1√

2
(ψCW + ψCCW)

∣∣∣∣
2

= 1

2
{|ψCW|2 + |ψCCW|2 + ψ

†
CCWψCW + ψ

†
CWψCCW}

= 1 + 1

2

{(
e
−2πi BS

h/e UCCW|i〉)†(e2πi BS
h/e UCW|i〉)

+ (
e

2πi BS
h/e UCW|i〉)†(e−2πi BS

h/e UCCW|i〉)}
= 1 + 1

2

{
e

2πi BS
h/2e 〈i | U†

CCWUCW | i〉

+ e
−2πi BS

h/2e 〈i | U†
CWUCCW | i〉}

= 1 + Re
{
e

2πi BS
h/2e 〈i | U†

CCWUCW | i〉}
= 1 + cos

(
2π

BS

h/2e

)
Re{〈i | U†

CCWUCW | i〉}

− sin

(
2π

BS

h/2e

)
Im{〈i | U†

CCWUCW | i〉},

where we neglect the last term since it will be averaged out
by taking into account contributions from all closed loops
and letting the encircling area S now have a sign (not always

positive). We also let |i〉 = (e
−iφ/2 cos θ

2
eiφ/2 sin θ

2
), UCW = (UCW,00 UCW,01

UCW,10 UCW,11
),

and UCCW = (UCCW,00 UCCW,01
UCCW,10 UCCW,11

) considering only the spin degree
of freedom.
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Then,

〈i | U†
CCWUCW | i〉

= cos2 θ

2
(U ∗

CCW,00UCW,00 + U ∗
CCW,10UCW,10)

+1

2
eiφ/2 sin θ (U ∗

CCW,00UCW,01 + U ∗
CCW,10UCW,11)

+ sin2 θ

2
(U ∗

CCW,01UCW,01 + U ∗
CCW,11UCW,11).

If we calculate the average value of 〈i | U†
CCWUCW | i〉, letting

|i〉 span all points on the Bloch sphere, the second term in
the above equation becomes zero. We also have 〈cos2 θ/2〉ave,
〈cos2 θ/2〉ave = 1/2. Then,

〈i | U†
CCWUCW | i〉ave

= 1
2 (U ∗

CCW,00UCW,00 + U ∗
CCW,10UCW,10)

+ 1
2 (U ∗

CCW,01UCW,01 + U ∗
CCW,11UCW,11)

= 1
2 Tr{U†

CCWUCW}
and ∣∣∣∣ 1√

2
(ψCW + ψCCW)

∣∣∣∣
2

ave

= 1 + 1

2
Re[Tr{U†

CCWUCW}] cos

(
2π

BS

h/2e

)
.

Under the time-reversal symmetry, UCW = U−1
CCW = U†

CCW.
Therefore, U†

CCWUCW = U2
CW. In the case of spin rotation by

the SOI, two elements in the diagonal positions of U2
CW are

complex conjugate to each other. Therefore,
1
2 Re

[
Tr

{
U2

CW

}] = 1
2 Tr

{
U2

CW

}
.

APPENDIX C: EXPRESSION OF Rξ̂ (θ ) FOR THE CUBIC
DRESSELHAUS

Let us consider the spin rotation by the cubic Dresselhaus
Hamiltonian H

(3)
D = β3k

3{σx cos (3ϕ) + σy sin (3ϕ)}. This can
be understood as B̃ = (β3k

3 cos(3ϕ), β3k
3 sin(3ϕ)), with k =

(k cos ϕ, k sin ϕ). We obtain ξ̂ = ( cos(3ϕ), sin(3ϕ)) and θ =
2β3k

3l/h̄vF = 4β3(m∗)2EFl/h̄
4, where l is the length of the

electron passage (segment) in the predetermined return orbitals
(already scaled by the actual mean-free-path value �).

The expression of the spin rotation operator for the cubic
Dresselhaus Hamiltonian then becomes

Rξ̂ (θ )

=
⎛
⎝ cos

[ 2β3(m∗)2EFl

h̄4

] −ie−3iϕ sin
[ 2β3(m∗)2EFl

h̄4

]
−ie3iϕ sin

[ 2β3(m∗)2EFl

h̄4

]
cos

[ 2β3(m∗)2EFl

h̄4

]
⎞
⎠.

APPENDIX D: CALCULATED RESULTS OF �σ UNDER
THE RASHBA SOI FOR Lφ = 100 AND 1000

In Fig. 6, we show image plots of the calculated �σ and
the estimated statistical errors for it, δ�σ , as a function of
the magnetic field B and spin rotation angle per the MFP
value θR, with Lφ = 100 and 1000. We also show cuts of

0.1 1 10
B / Btr

BSO

Lφ = 1000

0.0020

0.0025

0.0030

     0.01

2π
π
π / 2
π / 4

0.01

0.1

1

10

θ R
 / 
π

0.01 0.1 1
B / Btr

BSO
Lφ = 1000

0.0
0.3

-0.3

-0.6

10     

0.01

0.1

1

10

θ R
 / 
π

0.4-0.9

BSO

Δσ / (2e2
/h)

Lφ = 100

0.0
0.2

-0.2
-0.4

-0.6

0.00350

BSO

δΔσ / (2e2
/h)

Lφ = 100

0.0018

0.0021
0.0024

0.0027

π
2π

π / 2
π / 4

(a)

(b)

FIG. 6. (a), (b) Image plots of the calculated �σ (left) and the
estimated statistical errors of �σ , denoted as δ�σ (right) as a function
of the magnetic field B (abscissa) and spin rotation angle per the MFP
value θR (ordinate). (a) Lφ = 100; (b) Lφ = 1000.

the image plots at θR = 0, π/4, π/2, π , and 2π , as well as
B = 0, to compare with the corresponding results by the Golub
model [45] (Fig. 7).

0.01 0.1 1 10
θR / π

Lφ = 1000
B = 0

     0.01

Lφ = 100
B = 0

(a)

(b)
-0.8

-0.4

0.0

0.4

Δσ
 / 

(2
e2 /h

)

θR = 2π
π

π / 2

0
π / 4 Lφ = 100

-1.0

-0.5

0.0

0.5

Δσ
 / 

(2
e2 /h

)

0.01 0.1 1
B / Btr

θR = 2π
π

π / 2

0
π / 4
Lφ = 1000

10     

FIG. 7. (a), (b) (Left) Cuts (cross sections) of the image plot
of �σ in Fig. 6 at θR = 0, π/4, π/2, π , and 2π (red solid curves)
together with the corresponding results by the Golub model [45]
(black dashed curves). (a), (b) (Right) θR dependence of �σ

calculated by our model (red solid curve) and the Golub model (black
dashed curve) at B = 0. (a) Lφ = 100; (b) Lφ = 1000.
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APPENDIX E: DERIVATION OF δ�σ [i] VS B[i]

We can estimate the statistical deviation of �σ , which is denoted as δ�σ , from the variance of Xν(B) as

δ�σ (B) = 1√
Norbit

√
〈[Xν(B)]2〉Norbit − 〈Xν(B)〉2

Norbit

<
1√

Norbit

√
〈[Xν(B)]2〉Norbit

= e2F0

2π2h̄
√

Norbit

√√√√∑Norbit
ν=1

[
xν cos

(
2π BSν�

2

h/2e

)]2

Norbit

= e2F0

2π2h̄
√

Norbit

√∑Norbit
ν=1 x2

ν

[
1 + cos

(
4π BSν�2

h/2e

)]
2Norbit

= e2F0

2π2h̄
√

Norbit

√∑Norbit
ν=1 x2

ν + ∑Norbit
ν=1 x2

ν cos
(
2π B ′Sν�2

h/2e

)
2Norbit

,

where B ′ = 2B. Letting w2[0, . . . ,2N ] be the histogram of x2
ν (w2[i] = ∑Ni

j=1 x2
j ), where Ni is the number of loops belonging to

the ith bin of the histogram, we find
∑Norbit

ν=1 x2
ν = w2[0]FFTed and

∑Norbit
ν=1 x2

ν cos (2π B ′[i]Sν

h/2e
) = w2[i]FFTed, with B ′[i] = i

2N × πBtr
�S

.
Finally, we have

δ�σ [i] = e2F0

2π2h̄
√

Norbit

√
w2[0]FFTed + w2[i]FFTed

2Norbit
,

with

B[i] = B ′[i]
2

= i

2N
× πBtr

2�S
.
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