
PHYSICAL REVIEW E 95, 023306 (2017)

Quantitative shadowgraphy and proton radiography for large intensity modulations
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Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and
engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation
is captured on a screen placed some distance away. However, retrieving quantitative information from the
shadowgrams themselves is a challenging task because of the nonlinear nature of the process. Here, we present a
method to retrieve quantitative information from shadowgrams, based on computational geometry. This process
can also be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas
and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method
can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The
method is also shown to be robust enough to process real experimental results with simple pre- and postprocessing
techniques. This adds a powerful tool for research in various fields in engineering and physics for both techniques.
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I. INTRODUCTION

Shadowgraphy is a technique to visualize modulations in
discrete objects [1,2] and is used extensively in our daily
life. For example, when the Sun’s rays propagate through a
transparent object with nonflat surface, one can readily observe
the modulation of the light intensity behind the object on a
screen placed a suitable distance away. This occurs because
when light rays propagate, different refractive indices in the
object cause the rays’ paths to be deflected, resulting in the
intensity modulation. With its simplicity, the shadowgraphy
technique has become a widely used diagnostic tool in many
different fields in physics and engineering. Examples are
diagnosing plasma wake fields [3], measuring temperatures
in combustion processes [4], and characterization of optical
systems [5]. A similar technique, that of proton radiography, is
also widely employed to diagnose the structure in laser-plasma
experiments [6–11]. In proton radiography, instead of using
light rays, a proton beam is fired into the plasma. The electric
and magnetic fields inside the plasma deflect the protons’
trajectories. Proton beams are both highly laminar and have
discrete divergence angles that allow magnification of the
object, provided that the screen is placed far enough away
from the object. By looking at the intensity modulation of the
proton beam on the screen, one can see the structure inside
the plasma with ∼μm resolution. Among the applications
of proton radiography are studies of experimental magnetic
reconnection phenomena [6,7], observing solitons [8], laser
channeling in plasmas [9,10], and the Weibel instability [11].

One emphasizes here that both the shadowgraphy and
proton radiography techniques share the same underlying
principle. Thus, one can refer to proton radiography as
shadowgraphy and vice versa, without losing generalities. We
will do this throughout this paper. By doing so, we show that
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this approach provides a powerful quantitative diagnostic tool
for high-energy-density plasma science.

Although shadowgraphy is widely used in plasma science,
in many cases it is used as a qualitative analysis tool [9,10].
There have been many efforts in the past to retrieve the quanti-
tative information from shadowgrams, but it has only been pos-
sible, so far, in limited cases where the intensity modulations
are small. This is done mainly by employing Poisson’s equa-
tion solver [1,12–14] or by using the diffusion equation [15]
for specific cases [5,16]. The equation for small intensity mod-
ulation of shadowgraphy was also obtained by Pogany et al.
[12] using phase contrast approach and Fresnel diffraction.
The nonlinear nature of shadowgraphy makes it a challenging
task for large modulation cases. Some experiments also make
use of a grid to estimate the deflection of the beam [7,17].
However, the technique depends on the grid resolution and it
becomes harder to estimate when the feature to be observed is
about the same size as the grid resolution or smaller [9,10].

In this paper a method to retrieve quantitative information
from shadowgraphic images for large intensity modulations,
without using a grid, is presented. A coherent beam for optical
shadowgraphy is also assumed throughout. By retrieving the
quantitative information one can interpret phenomena in much
greater detail, and thus provide a greater understanding of the
diagnosed system. Section II provides equations underlying
the shadowgraphy and proton radiography techniques as well
as the basic tools used in the Method section. Then the method
to retrieve the quantitative information is explained, as well as
its implementation, in Sec. III. Benchmarking with simulations
is presented in Sec. IV and tests on real experimental results
in Sec. V. Section VI concludes the paper.

II. THEORY

A. Deflectometry

If beams of light or charged particles are fired into deflecting
objects along the z0 axis, they will be deflected by an amount of

a(x0,y0) = −∇�(x0,y0), (1)
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FIG. 1. (a) An example of a case with three sites and a point A which is closest to site 1. (b) A Voronoi diagram where the plane is divided
into several regions based on which site is the closest one. (c) A power diagram with the same position of the sites as (b), but with more weight
assigned to site 1. (d)–(g) Illustration of Lloyd’s algorithm where the centroids of the regions are denoted by a plus (+) sign.

where �(x0,y0) is the deflection potential. The deflection
potentials for optical shadowgraphy and proton radiography
cases, respectively, are [13,14]

�(x0,y0) = −
∫

ln η(x0,y0,z0) dz0, (2a)

�(x0,y0) = q

2W

∫
φ(x0,y0,z0) dz0, (2b)

�(x0,y0) = − q

m

∫
A · dz0, (2c)

where η is the refractive index of the object in light shadowgra-
phy cases, φ and A respectively are the electric and magnetic
potential, q, W , and m are the charge, energy, and mass of
the particle in the beam, respectively. It is assumed that the
beam propagates in straight lines during the interaction with
the object.

With each deflection, beams at position (x0,y0) on the object
plane are mapped to position (x,y) on the screen according to
the equations below:

x = x0 + a · x̂ L, y = y0 + a · ŷ L, (3)

where L is the distance between the object and the screen.
These equations assume the beams are collimated before the
interaction with the objects. For diverging beams using the
paraxial approximation, one can simply replace x0 → x0(1 +
L/l) and y0 → y0(1 + L/l), where l is the distance from the
beam source to the object.

From the mapping equations, one can obtain the intensity
of the beam on the screen as [14]

I (x,y) = I0(x,y)∣∣ ∂(x,y)
∂(x0,y0)

∣∣ , (4)

where I0(x,y) is the beam intensity on the screen without
deflections. The term |∂(x,y)/∂(x0,y0)| is the determinant of
the Jacobian matrix of (x,y) with respect to (x0,y0). The
Jacobian in the denominator is what makes shadowgraphy
cases nonlinear for relatively large a or L. Moreover, if a or L

is large enough, it can make the determinant of the Jacobian
matrix very small, hence it causes very high intensity at some
positions on the screen. This is called caustic.

It is assumed that the object does not emit or absorb the
beam, so the total flux on the screen without the object (source
profile) is the same as the total flux on the screen with the
object (target profile). With this assumption, the problem can
be restated as the Monge transport problem [18]: how are the

particles transported from the source profile to the target profile
such that the total distance for all particles is minimized? This
can be solved using a combination of Lloyd’s algorithm [19],
Voronoi and power diagram [20], and optimization [21].

B. Voronoi and power diagram

Consider a two-dimensional (2D) plane with several sites
located on the plane. For every point on the plane, there is a site
which is closest to the corresponding point. As an example,
Fig. 1(a) shows a plane with three sites and point A. Compared
to the other sites, site 1 is the closest to point A. Therefore point
A belongs to site 1.

In the construction of a Voronoi diagram [20], the plane
is divided by some regions. All points in a region belong
to the site in the same region. Figure 1(b) is an example of a
Voronoi diagram. Mathematically, the ith site at r0i = (x0i ,y0i)
occupies a region or cell on the source plane, r0 = (x0,y0),
where for all j ,

||r0 − r0i ||2 � ||r0 − r0j ||2. (5)

The equation above applies only for a case where all sites
have the same weights. However, in some cases, this does
not apply. A site with a larger weight tends to have a larger
region compared to sites with smaller weights. A diagram
resulting from weighted sites is called a weighted Voronoi
diagram or power diagram. A region in power diagram is
called a power cell. In the power diagram with weights w,
the ith site at ri = (xi,yi) occupies a region or power cell on
plane r = (x,y) where

||r − ri ||2 − wi � ||r − rj ||2 − wj (6)

for all j . Figure 1(c) shows an example of a power diagram
with more weight on site 1. In a power diagram, it is possible
for a site to not be located inside its region or even have no
region. Setting all weights to be uniform or zero produces the
Voronoi diagram.

C. Lloyd’s algorithm

Lloyd’s algorithm is a method of dividing a bounded plane
into several regions with approximately the same area. The
algorithm starts by deploying randomly a number of sites on
a bounded plane. Then a Voronoi diagram is constructed to
divide the plane into several regions. For every region, the
algorithm calculates its centroid position. The sites are then
moved to the centroid position of its region, and constructing
the Voronoi diagram for the new positions. The process is
then repeated until any stopping conditions are reached, e.g.,
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maximum number of iterations, minimum displacement, etc.
An illustration of the algorithm can be found in Figs. 1(d)–1(g).

There are some cases where the plane is not uniform. If this
is the case, then there are several improvements that can be
made. First, the site can be deployed randomly using a simple
rejection method [22]. Positions on the plane with lower values
tend to reject a site with higher probabilities. The rejected sites
are deployed to other positions until they are accepted. Second,
the centroid can be calculated by adjusting the values on the
plane. It is similar to calculating the center of mass of a 2D
object with a nonuniform density.

III. METHOD

In order to retrieve quantitative information of the object
from the screen, one needs the beam profiles both with and
without the object in position. We refer to the beam profile
without the object as the source profile, I0, and the profile with
the object as the target profile, I .

Initially, a number of sites are deployed randomly on the
source plane profile with a simple rejection method mentioned
above. Then, Lloyd’s algorithm is applied on the source plane
profile to distribute the sites so that each site has approximately
the same flux. This produces a Voronoi diagram, or a power
diagram with weights w = 0. Once the Lloyd’s algorithm
finishes, then the algorithm performs optimization on the
weights.

Denote Vi as the ith region on the source plane and P w
i

as the ith region on the target plane as a function of all sites’
assigned weights w. Note that P 0

i = Vi . Also denote S(Vi) and
T (P w

i ) as the flux of the ith region on the source and target
planes, respectively. The objective of the algorithm is to find
the weights, such that transporting the flux from the source
plane with intensity profile I0 to the target plane produces
the same intensity profile as the target profile I and the total
distance traveled by all regions from the source plane to the
target plane is minimized. Aurenhammer [21] found that the
weights can be found in the minimum of a convex function,

f (w) = −
∑

i

[
wiS(Vi) +

∫
P w

i

(||r − r0i ||2 − wi)I (r)dr

]
,

(7)

where r0i and wi are the ith site position and the assigned
weight, respectively. It is noted that

∫
P w

i
I (r)dr = T (P w

i ). The
gradient of the function is given by

∂f (w)

∂wi

= T
(
P w

i

) − S(Vi), (8)

so any gradient based optimization methods can be employed.
Note that in the optimization process, the sites positions do
not change. It is only the assigned weights that are changed.
These equations have been employed to design surfaces of
transparent objects that produce caustic designs [23].

Once the minimum of Eq. (7) is reached, the centroid
position of each power cell in the power diagram, ri, is
computed. From the ith power cell’s centroid position on the
target plane, ri, and the site’s position on the source plane,
r0i, the displacement in the x and y directions can be obtained
by a = (ri − r0i)/L. However, the displacement from source
plane to target plane is obtained only at positions where the

ALGORITHM 1: Inverse shadowgraphy and proton radiography

1: Input: a shadowgram or a proton radiogram image
2: Output: �, the 2D deflection potential of the object
3:
4: % Initialization
5: Deploy sites randomly on the source plane, x and y
6: repeat
7: Construct the Voronoi diagram with sites at x and y on the

source plane
8: Calculate the centroid of each region, xc and yc

9: x ← xc; y ← yc

10: until any stopping conditions reached
11: Construct the Voronoi diagram with sites at x and y on the

source plane
12: Calculate S(V)
13:
14: % Gradient-based optimization
15: w ← 0
16: repeat
17: Construct the power diagram with x, y, and w on the target

plane
18: Calculate T(Pw) for each site
19: Calculate f (w) and �w = ∇wf (w)
20: Update w ← w − α�w
21: until any stopping conditions reached
22:
23: % Finalization
24: Construct the power diagram with x, y, and w on the target

plane
25: Obtain the centroid positions, xP and yP

26: Assign the displacement, xP − x and yP − y, to each site
27: Move four sites closest to the corners to the corners
28: Get the displacement of each pixel using natural neighbor

interpolation
29: Integrate the displacement in x or y axis to obtain �

sites on the source plane are located. To fill in the displacement
as a function of every position on the source plane, a(x0,y0),
sites closest to the four corners are first moved to the corners
and then the natural neighbor interpolation is used. The sites
need to be moved to the corners so that the convex hull of
the sites covers all the source plane and thus natural neighbor
interpolation can be used. This causes some distortion near
the corners, but this can be minimized by having more sites.
The result of this method is curl free at most positions, thus
the deflection potential, �(x0,y0), can then be obtained by
integrating the deflection in the x or y direction. We call this
method “the power diagram method” in the remaining sections
of this paper. The complete pseudocode of this algorithm is
given in Algorithm I where all the bold face variables show
the vectors of variables for all sites. The illustration is shown
in Fig. 2

Implementation

There are a lot of basic computational geometry algorithms
employed in the implementation of this method. First, to obtain
the power diagram of sites, algorithms that use convex hull and
transformation to dual space are employed [24]. The Voronoi
diagram can be obtained by the same algorithm by setting all
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FIG. 2. Illustration of the algorithm with 100 sites. Panel (b) shows the deployed sites in line 5 in Algorithm I. The results of Lloyd’s
algorithm from lines 6–10 is shown in (c). The same site positions are then redeployed on the target plane, as shown in (e). Panels (f) and (g)
are the results of line 17 of the algorithm on the third and 26th iterations, respectively. Panels (h) and (i) are the results of lines 25 and 26,
respectively. The interpolated displacement in line 28 is shown in (j) and (k). Last, the integration of the displacement yields the deflection
potential (l). The distortion at the corners in (l) is caused from moving four sites to the corner as in line 27 in the algorithm.

weights to zero. Bounded Voronoi and power diagrams inside
a rectangle are obtained by clipping the diagram with the
rectangle using the Sutherland-Hodgman algorithm [25]. The
Sutherland-Hodgman algorithm is employed for all polygon
clippings in the implementation, since all polygons are convex
in this case.

To calculate the function in Eq. (7), one needs to compute
the weighted area [i.e., S(Vi) and T (P w

i )], weighted centroid
position (i.e., r0i and ri), and the weighted moment of inertia
[i.e.,

∫
P w

i
||r − r0i||2I (r)dr] of each cell in the power diagram.

In order to simplify the problem, it is reasonable to pixelate the
intensity profile and assume that the intensity within one pixel
is constant. Thus, the above parameters can be computed by
splitting the cell into several polygons with uniform density
within a pixel, computing the parameters for each polygon,
and merging the parameters to give the parameters for the
given cell [26]. The area, centroid position, and moment of
inertia with respect to the origin of a 2D convex polygon with
N vertices can be shown to be

A = 1

2

N−1∑
i=0

(xi+1yi − xiyi+1), (9a)

xc = 1

6A

N−1∑
i=0

(xi + xi+1)(xi+1yi − xiyi+1), (9b)

yc = 1

6A

N−1∑
i=0

(yi + yi+1)(xi+1yi − xiyi+1), (9c)

Iz = 1

12

N−1∑
i=0

[(
x2

i + xixi+1 + x2
i+1

)
+ (

y2
i + yiyi+1 + y2

i+1

)]
(xi+1yi − xiyi+1), (9d)

where (xi,yi) is the vertex position of each polygon and
they are ordered in the clockwise direction. Note that

(xN,yN ) = (x0,y0). The cells’ centroids for Lloyd’s algorithm
are also computed by this method.

To obtain faster convergence to the global minimum
of the function in Eq. (7), one can use a quasi-Newton
gradient descent algorithm [27]. However, using a quasi-
Newton algorithm requires O(N2

s ) memory, where Ns is the
number of sites, and it can be very large computationally.
Thus, using the limited memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) algorithm [28,29] can save memory while
still achieving fast convergence. One can also use a multistage
approach to minimize Eq. (7) faster [26]. For the complete
implementation code of the algorithm on this paper, see
Ref. [30].

IV. BENCHMARK WITH SIMULATIONS

Magnetic field proton radiography

The first test for this method considers the case of a proton
beam with energy of W = 14.7 MeV propagating in the
positive z direction and going through a toroidal magnetic
field. The toroidal magnetic field around the center gives a
line-integrated magnetic field on the object plane of

−
∫

B × dz = Dm exp

(
−||r||2

2σ 2
+ 1

2

)
1

σ
r, (10)

where Dm is the maximum value of line-integrated value of
the toroidal magnetic field. This basic structure has been found
in laser-plasma experiments, such as in magnetic reconnection
experiments [6,7]. Even though only magnetic field cases are
considered here, it can be expanded into light shadowgraphy
and electric field cases using Eq. (2).

The transverse size of the toroidal magnetic field is assumed
to be σ = 30 μm. The beam is deflected by the magnetic
field and captured on the screen L = 2 cm away. The distance
from the source to the magnetic field is l = 1.3 mm, thus
giving magnification of 15. It is assumed that the magnetic
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FIG. 3. Illustration of the test case system. In (a), the proton
beam is fired through a toroidal magnetic field and the intensity
modulation is captured on the screen. Panel (b) shows the magnitude
of the line-integrated magnetic field − ∫ |B × dz| with maximum
value Dm = 97 MG μm, and its horizontal 1D cross section in (c).
The intensity modulation on the screen is shown in (d) with its 1D
cross section in (e). The intensity on the screen is augmented by
Gaussian noise with variance 10% of the average intensity value to
test robustness of the method.

field extent in the z direction is very small compared to l and
L. Visualization of the test case can be seen in Fig. 3.

The beam’s deflected velocity is vt = −e/m
∫

B × dz
where e/m is the charge-to-mass ratio of the proton beam.
Thus, the deflected angle is a = −e/

√
2mW

∫
B × dz. This

gives the deflection potential as in Eq. (2), given B = ∇ × A.
The value of Dm is varied from 10 to 340 MG μm. These

values cover the cases from small intensity modulation to the
cases where caustics are formed. Caustics start to appear on the
screen at Dm = 190 MG μm. The beam’s intensity modulation
is shown in Fig 4. Gaussian noise is added to each image with
variance of about 10% of the average intensity.

FIG. 4. The beam’s intensity modulation on the screen and its
horizontal 1D cross section at the middle position for (a) small
intensity modulation, (b) large intensity modulation, (c) a case where
caustics have formed, and (d) where the caustics already branched.
The value of Dm for cases (a)–(d) is (24,97,194,290) MG μm,
respectively.

FIG. 5. Comparison of the magnitude of the line-integrated
magnetic field between [(a), top] the original profile and [(a), middle]
the retrieved profile. The 1D cross section at the center position of
the original and the retrieved profile is given in [(a), bottom]. The
dashed green line shows the 1D cross section of the original profile
while the solid blue line shows the retrieved profile. The picture in (a)
is taken for the case with Dm = 194 MG μm, where caustics are just
formed. The quantitative comparison for the maximum value of the
line-integrated magnetic field is given in (b). The top picture in (b)
shows the maximum retrieved value of || ∫ B × dz|| using the power
diagram method [blue (dark grey)] and the Poisson’s equation solver
method [green (light grey)] compared with the original values. The
relative error between the retrieved and original values is given in
(b) (bottom). The dashed vertical lines in (b) show the value when
caustics are present. The dashed horizontal line shows the relative
error of 10%.

From each image of the intensity modulation, the deflection
potentials are retrieved using the method explained in this
paper. Then one calculates the magnitude of the line-integrated
magnetic field, || ∫ B × dz||, from the deflection potential. The
retrieved value is then compared with the original value to
benchmark the method.

The images of the retrieved line-integrated magnetic field
are shown in Fig. 5(a). Comparison between the peaks of the
retrieved values of the line-integrated magnetic field and the
original values are presented, as well as their relative errors. To
see the improved performance of the method described in this
paper, the line-integrated magnetic field profiles are retrieved
using Poisson’s equation solver and are compared. Note that no
noise has been added to the intensity images for the Poisson’s
equation solver case. These comparison results are shown in
Fig. 5(b).

It can be seen that the retrieved line integrated magnetic
field gives very good agreement with the original profile, even
when caustics are formed. The error on the retrieved value
increases just when the branches of the caustics are relatively
distinguishable. This is because in regions between the caustics
branches, the beams are coming from more than one different
position on the object plane, while this method assumes that
each region on the target plane is formed from one region on
the object plane only. However, one can still infer magnitude
of the deflection potential in this case within some error.

023306-5



MUHAMMAD FIRMANSYAH KASIM et al. PHYSICAL REVIEW E 95, 023306 (2017)

FIG. 6. Benchmark with arbitrary structures. (a) A case with four derivative Gaussian toroidal magnetic fields with different strengths and
sizes in counterclockwise direction. (b) Two toroidal magnetic fields where each potential has the form of cos2 with ellipsoidal shape. (c) Two
close ellipsoidal Gaussian toroidal magnetic fields in clockwise direction, giving focusing effect on the proton beam. (d) Gaussian toroidal
magnetic field with different directions, i.e., on the left it is counterclockwise while on the right it is clockwise. (e) A case with two coaxial
conductors with counterpropagating currents between the two conductors. In this case, the conductors obstruct the beam. Magnitude of the
magnetic field in each structure is set to form caustics on the target plane, except in (e) which shows a case with obstruction. The reconstructed
images from the retrieved fields are presented to increase the confidence of the results. Gaussian noise with variance 10% of the average
intensity is also added to the images before the magnetic field information is retrieved. The 1D cross sections are taken at the positions indicated
by dashed lines.
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A slightly higher relative error at small values of
|| ∫ B × dz|| is caused by the noise. The intensity modulation
at that point is comparable to the noise. As the intensity
modulation gets larger, the effect of noise seems to be weaker.

It is observed that this method amplifies low-frequency
components of the image and reduces the high-frequency com-
ponents. It makes the power diagram method somewhat less
robust to low-frequency noise, but robust to high-frequency
noise. This can be solved by applying a high-frequency filter
to the image before it is processed using the power diagram
method.

On the other hand, the retrieved value using the Poisson’s
equation solver deviates significantly from the original value.
The Poisson’s equation solver gives relative error of 10% when
Dm � 30 MG μm while the power diagram method gives the
same relative error when Dm � 300 MG μm. If one wants an
accuracy of less than 10%, the power diagram method gives
ten times larger working range than the Poisson’s equation
solver’s working range.

As an additional benchmark to the case described above,
we also tried retrieving quantitative information for arbitrary
magnetic field structures. Figure 6 shows the retrieval results
of the magnetic field with various structures with the same
setup as the previous case. Each image has a size of 200 × 200
pixels with depth of 16 bits. The code was run on a highly
parallel computer cluster using 32 cores. It takes around
2–3 h to process one image.

In Fig. 6, one can see that the retrieved magnetic field
structures agree very well with the original magnetic field.
It is also apparent that the retrieved magnetic field can be
different from what it seems in the proton radiography image.
Moreover, the size of the structure can also be different, as
shown in Fig. 6(e) where the structure’s size is actually smaller
than it seems in the proton radiography image.

V. TESTS WITH EXPERIMENTAL RESULTS

An analysis method will only be useful if it can be shown
to work on real experimental data and give reasonable results.
In this section, the power diagram method is used to analyze
experimental data from Sävert, et al. in cases of plasma wake-
field shadowgraphy [3]. In the experiment, a laser pulse was
fired into a plasma to generate an electron density modulation
wave associated with a laser-driven wake field. Another laser
pulse with much lower intensity was fired perpendicularly
to the wake field as a probe for the shadowgraphy method.
The electron density fluctuations of the wake field caused
local modulations of the refractive index in the plasma. The
refractive index modulation in the plasma caused the probe’s
path to bend so that some parts of the probe were brighter than
others at the detector. The refractive index of a plasma with
density profile n(x0,y0,z0) is

η(x0,y0,z0) =
√

1 − n(x0,y0,z0)e2

mε0ω2
, (11)

where ε0 is the vacuum permittivity constant, e and m are the
electron’s charge and mass, respectively, and ω is the frequency
of the light. Using Eqs. (2) and (11) with approximation
ω2

p = n0e
2/mε0 � ω2, the deflection potential for light in a

plasma is

�(x0,y0) ≈ e2

mε0ω2

∫
n(x0,y0,z0) dz. (12)

Thus, the information that can be retrieved from shadowgrams
using the power diagram method is

∫
ndz.

One of the main challenges in inverting the shadowgrams
for real experimental data is the nonuniformity of the probe’s
unmodulated intensity, i.e., the intensity profile without de-
flection from objects. This can be a big problem because the
inversion processes from shadowgrams to deflection potentials
amplify low-frequency components. Even though this can be
solved by taking the intensity profile without the object, the
data are not usually available or reliable because of shot-to-shot
variations. Therefore, a straightforward solution is to apply a
high pass filter to either the shadowgrams and/or the resulting
deflection potentials.

The pulse that drives the wake field has a wavelength
of 810 nm, duration of 35 fs, and peak intensity IL =
6 × 1018 W cm−2. The probe pulse has the same wavelength,
but with shorter duration, 5.9 fs. The shadowgrams for a
plasma with density n0 = 1.65 × 1019 cm−3 are shown in
Fig. 7(a). Using the power diagram method and Eq. (12),
it is possible to infer the line-integrated relative electron
density modulation

∫
�n/n0dz from the shadowgrams. The

inverted results from the shadowgrams are shown in Fig. 7(b),
where the grey scale shows the value of the line-integrated
relative electron density modulation,

∫
�n/n0dz, as well

as their 1D cross sections at the center of the wake field
in Fig. 7(c). The figures still show the wake-field features
with additional information of

∫
�n/n0dz. It is shown from

Fig. 7 that the power diagram method in this paper is robust
enough to analyze real experimental results with additional
preprocessing and postprocessing. It should be noted that
we have neglected relativistic effects in the plasma, e.g.,
the plasma electrons mass increase, which may occur during
their interaction with the high-intensity driver pulses. To
model this, multidimensional numerical simulations need to be
applied [31].

VI. CONCLUSIONS

We have presented a method to retrieve quantitative data
from shadowgraphic images. In the cases considered in this
paper, a beam propagates through an object, gets deflected by
it, and is then captured on a screen. The intensity modulation
on the screen acts as the input and the deflection potential of the
object is regarded as the output of this method. It assumes that
the beam propagates in straight lines while interacting with the
object. Besides shadowgraphy, the method in this paper can
also be applied to proton radiography cases.

The method has been benchmarked for a toroidal magnetic
field case, which has been found in some laser plasma exper-
iments, and a plasma wake-field shadowgraphy case. In some
test cases, the method successfully retrieved the deflection
potential profiles with relative error less than 10% for large
intensity modulation, even for cases where caustics are present.
It is also tested using arbitrary structures of the diagnosed
objects and gives very good results in retrieving structures with
their quantitative parameters. Moreover, it has been shown that
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FIG. 7. (a) Original shadowgrams of plasma wake field from Sävert et al. [3]. Images reproduced with permission. (b) The retrieved
line-integrated relative electron density modulation

∫
�n/n0dz from the shadowgrams with their 1D cross sections at the center of the wake

fields in (c). High pass filter is applied in preprocessing and postprocessing of the images. The very bright and very dark on the images are
features obtained from applying high pass filter, as well as horizontal fringes on the left and right edges.

the method is also robust to noise, especially high-frequency
noise. This extends the working range of the Poisson’s solver
equation by an order of magnitude. It is also shown that the
method can be applied to real experimental results, with some
additional preprocessing and postprocessing. By applying
this method, one can infer quantitative information from
shadowgraphy images with high accuracy. This opens up a
dimension of research in a wide range of areas in engineering
and physics.
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