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A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of
hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization
(CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are
taken into consideration self-consistently. When compared with other models, which are applied in the literature
for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the
proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite
different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums
sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model
and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to
1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree
is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with
the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and
shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

DOI: 10.1103/PhysRevE.95.023208

I. INTRODUCTION

Detailed information of ionization distributions of solid-
density plasmas is important to a number of high-energy-
density physics studies, such as laser-driven heavy-ion accel-
erations [1] and intense laser-solid interactions [2]. In general,
ionization dynamics determine the density of the involved
plasmas, one of the most important parameters in plasmas
physics research. Particularly, for laser driven heavy-ion
accelerations, the accurate calculations of charge-to-mass ratio
(q/m) of heavy ions will directly influence their acceleration
efficiencies. In the intense laser-solid interaction regime, the
generation of resistive magnetic fields will effectively guide the
propagation of electrons beams. The reasonable predictions of
the so-called resistive magnetic fields are, in fact, significantly
determined by the underlying ionization calculations.

At present, two widely applied models that predict an
average ionization degree of atoms are Thomas-Fermi model
[3] and Saha [4] ionization model. Both of the models,
however, assume that plasma conditions are near thermal equi-
librium. For laser-produced plasmas and intense beam-solid
interactions, where many of the involved physical processes
take place at the subpicosecond or picosecond scales [2,5–11],
the equilibrium assumption is no longer correct. To account for
the temporal evolution of the plasma ionization, an impact (col-
lision) ionization (CI) model based on electron-ion collisional
cross sections has been explored [12–14], which allows us to
calculate ionization values in a much more natural manner
than equilibrium models. This model directly describes the
interparticle interactions in the plasmas and, thus, accounts for
the multiparticle nature of real plasmas. Although the CI model
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allows improvements in dealing with nonequilibrium plasmas,
it is still not complete since it does not account for the inverse
process, i.e., electron-ion recombinations (RE) [15–18]. Be-
sides, the ionization potential depression (IPD) should be taken
into account when dealing with dense plasmas [19–25]; how-
ever, it is also ignored in the considered models [12–14,26].

The main challenge to understanding the ionization of solid-
density plasmas (matter) is to incorporate self-consistently
the nonlinear behavior in such strongly coupled dynamical
systems, i.e., the matter’s response to the surrounding plasmas
and plasmas’ response to the matter through CI, RE, and IPD
processes. To describe the ionization dynamics of solid-density
plasmas more systematically, we here propose and analyze a
Monte Carlo approach that can be configured and embedded
into existing particle-in-cell (PIC) simulation codes. In this
approach, we use a collection of macroparticles to describe a
plasma or matter of finite ion density. Here, a macroparticle
can be regarded as the ensemble of real particles, i.e., a group
of particles with “same” mass, charge state, position, and
momentum. The electrons are classified, moreover, into bound
and free ones, where the former are regarded as part of ions or
atoms, and the latter are isolated as the surrounding plasmas.
Since we consider a collection of a large number of particles
and a picosecond temporal evolution of the system, the fine
structures, such as subshell configurations, excitations and
their inverse processes, are ignored in the present model. Only
the dominant physical processes are taken into account, such as
CI and RE. Furthermore, the IDP by the surrounding plasmas
should also be taken into consideration. This is because it will
lower the bounding energy of ions or atoms, which will then,
in turn, affect both CI and RE processes.

The paper is organized as follows. The physical model
concerning CI, RE, and IPD are introduced in Sec. II. In
Sec. III, the model is embedded into a PIC simulation code.
Comparisons between the full model and model without IPD
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or RE are performed and analyzed. Dependence of averaged
ionization degree on thermal equilibrium temperatures is
obtained by the PIC code. Comparisons with results generated
from Saha-Boltzmann model and/or FLYCHK code are made.
Summary and discussion are given in Sec. IV.

II. PHYSICAL MODEL

When temperature of plasma is high with the kinetic energy
of free electrons exceeding the ionization potential of ions or
atoms, there exists a possibility that the ion or atom will lose a
bound electron by the colliding with energetic free electrons.
Simultaneously, free electrons and charged ions also have
the tendency to recombine together. Different from isolated
atom or ion, the screening of plasmas would dramatically
influence the atomic structure of ions or atoms that embedded
in, resulting in the lowering of their bounding energies. The
above three processes, CI, RE, and IPD, are usually ignored
in high-temperature and low-density plasmas. While when
dealing with solid-density plasmas, these processes should be
self-consistently taken into account. In this section, a CI model
based on electron-ion collisional cross sections, a RE model
based on three-body-recombination, and an IPD model based
on the pioneering works of Stewart and Pyatt are explored and
implemented into an existing PIC simulation code.

A. Impact ionization

Generally, a cross section of ionization can be derived by
establishing an electron-ion (or atom) collisional pair and
taking into account the energy of the incoming electron as
well as the ionization state of the ion. The pioneering work
was done by Lotz [27], with the formula of the total cross
section as follows:

σ ci =
N∑

i=1

aiqi

ln (E/Pi)

EPi

{1 − bi exp[−ci(E/Pi − 1)]}, (1)

where E is the energy of impact electron, Pi is the binding
energy of electron in the ith sub-shell, qi is the number
of equivalent electron in the ith subshell, and ai , of unit
10−14 cm2eV2, bi , and ci are individual constants, which
are determined by experiment measurements or theoretical
predictions. Reference [27] also tabulates these constants
of ionization cross sections, and this table is applied in
our computations below. Furthermore, following Eq. (1), the
ionization cross section among neighboring levels, such as,
Al-II to Al-III, can be formulated as follows:

σ ci
i = aiqi

ln (E/Pi)

EPi

{1 − bi exp[−ci(E/Pi − 1)]}, (2)

with E � Pi , where Pi is the ionization potential from i to
i+1 charge state, such as Al2+ to Al3+. Let us note, however,
the fine structure levels are ignored in Lotz’s model, for
which the ionization stage is treated as from the ground state
to the next ground state. This assumption here is reasonable, as
the fine structure levels are averaged out by the collection of
large number of particles. Furthermore, the electron impact
ionization cross section can also be calculated using the
relativistic multiconfiguration flexible atomic code (FAC) [28].

The impact ionization rate of ion or atom is

νci
i =

∫ ∞

Pi

veσ
ci
i (E)fe(E)dE, (3)

where E, ve, and fe are energy, velocity, and density of
surrounding electrons with energy between E and E + dE.
In PIC simulations, the integral perform a summation over
all electrons that reside within the same cell as the given
ion of interest. The expression for νi in this form can be
time-consuming as it requires a double loops over all ions
and electrons in the cell. The idea presented in Ref. [13]
takes advantage of the specific scaling of the ionization cross
section and electron velocity with energy, i.e., ln(E)/E and√

E, respectively, whose product is not sensitive to E and
can be taken outside the integration. When replaced by their
averaged values, the impact ionization rate takes the form

νci
i = σ ci

i (Ē)v̄ne (s−1), (4)

where Ē, v̄, and ne are the averaged energy, velocity, and
density of electrons in a cell. However, we have found
that the above method tend to underestimate the ionization
degree. When Ē < Pi , ionization cannot take place at all,
as those energetic electrons, which play an important role
in impact ionization, are averaged out in the above method.
To improve the above method and simultaneously overtake
the time-consuming double loops, our idea is as follows: (i)
a loop over electrons generates the average electron energy
Ē; (ii) preparing three arrays, Ēm, n̄em, and v̄m containing the
averaged energy, density, and velocity of electrons with their
energies spanned by Ēm and Ēm + dE (the array step and
maximal energy are assumed to be 0.25 × Ē and 5 × Ē); (iii)
a loop over electrons is performed again to fulfill the arrays;
(iv) ionization rate for each ion in a cell is calculated by the
following formula,

νci
i =

20∑
m=0

σ ci
i (Ēm)v̄mn̄em (s−1). (5)

The ionization probability of the ion of interest is pci
i =

1 − exp(−νci
i δt), where δt is the time step of PIC simulation.

We increase the ionization degree by one unit for each
ion and simultaneously put in an electron with the same
position, velocity, and weight as its host ion, when condition
r > pci

i is satisfied, where r is the computer-generated random
number. To ensure that the energy remains conserved in the
computations, we reduce local kinetic energy by distributing a
momentum reduction to all local electrons, which is equivalent
to the ionization energy.

B. Electron-ion recombination

Usually, the ionization balance of a plasma is determined
by the competing processes of CI and RE, as well as
various excitation and de-excitation processes. In particular,
the recombination of electrons and ions takes place mainly
by three different reaction modes, the dielectronic (D-RE),
radiative (R-RE), and three-body recombinations (TB-RE),
respectively [15]. As we have analyzed, in our model only
ground state of ions and atoms are concerned, and the
contributions of D-RE are averaged out. Note that, R-RE is
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TABLE I. Ionization potential of aluminium atom and ions from NIST [29] as implemented in our model.

Al 1 2 3 4 5 6 7 8 9 10 11 12 13

eV 5.980 18.80 28.40 119.9 153.8 190.4 241.4 284.5 330.1 398.5 441.9 2085. 2300.

the inverse process of direct photoionization, while TB-RE is
the inverse process of electron impact ionization. R-RE process
is known to predominantly fill the low-lying Redberg states,
while TB-RE is mainly responsible in rapidly bringing the high
Rydberg states into equilibrium [15]. Thus, the contributions
of recombinations in our cases mainly arise from the TB-RE
process, with e + e′ + AZ → AZM + e′′, where ZM = Z − 1
with Z of the ion charge state. In the TB-RE, the excess energy
released by the recombining electron is carried away by the
outgoing electron e′′, so that the TB-RE does not involve any
emission of photons.

Expression of TB-RE rate formula has a strong dependence
on the relying impact ionization formula. Let us consider the
detailed balance equation of species with ionization charge
state i and i+1,

∂ni

∂t
= νre

i+1ni+1 − νci
i ni, (6)

where ni is the density of ions, νre
i+1 is the three-body

recombination rate, and νci
i is impact ionization rate. In

order to relate these rate coefficients, one observes that at
the recombination-ionization equilibrium, we have νre

i+1ni+1 =
νci

i ni . As the ionization equilibrium can be well described by
the Saha-Boltzmann equation [15],

neni+1

ni

= gegi+1

gi

(
2πmekBTe

h2

)3/2

× exp

(
− Pi

kBTe

)
, (7)

one can obtain

νre
i+1 = gi

gegi+1
(λe)3ne × exp

(
Pi

kBTe

)
× νci

i , (8)

where λe =
√

h2/2πmekTe is the thermal electronic de
Broglie wavelength, ge and gi are the statistical weights, and
νci

i is the ionization rate as shown in Eq. (5). In Eq. (8), Te

is temperature of plasmas, which is a quantity that can only
be obtained at thermal equilibriums. In the PIC calculations,
the quantity Te is replaced with the averaged electron kinetic
energy, which can be calculated at any time, regardless of
thermal equilibriums.

According to Eq. (8), the recombination rate is increased
dramatically in low-temperature and high-density plasma
environment. Note that all the TB-RE formulas [16–18]
exhibit this behavior, except for the slightly different numerical
factors. In PIC simulations, the electron temperature Te and
electron density ne can be generated by a loop over the
electrons in each computational cell at every time step. Then
Eq. (8) is applied for each ion resides in the same cell. The
recombination probability is pre

i = 1 − exp(−νre
i δt), where δt

is the simulation time step. We decrease ionization degree by
one unit for each ion whenever the random number r satisfies
r > pre

i . Again, to ensure that the energy remains conserved,
the local kinetic energy, equivalent to the ionization energy, is
increased, through a similar way as we have done in impact

ionizations, by distributing a momentum modification to all
local electrons. To ensure the conservation of remaining parti-
cles, the local plasma density, equivalent to recombinations, is
reduced by distributing a weight modification to all local free
electrons.

C. IPD by surrounding plasmas

The calculation of both impact ionization and electron-ion
recombination requires values of ionization potentials, which,
in principle, can be generated or obtained from data bases of
National Institute of Standard and Technology (NIST). The
ionization potential of aluminium atom (Al I) and ions are
listed in Table I, which are calculated based on the isolated
atom or ion model. However, in a plasma of finite density
and temperature, the ionization potential of a given ion is
influenced not only by its own bound electrons but also by the
surrounding free electrons, which, in turn, will affect both
impact ionization and recombination processes. Therefore,
the phenomenon of ionization-potential depression for ions
embedded in the plasma are of crucial importance for modeling
atomic processes within dense plasmas. We here refer to
the theory of IPD as introduced by Stewart and Pyatt [20],
which is widely used in literatures of plasma and atomic
physics calculations, including FLYCHK [30,31] code. The
model yields ion-sphere and Debye-Huckel potential models
as approximate limiting cases and could provide results over
essentially the entire range of temperature and densities of
plasmas. Let us here consider an ion (or atom), i, fixed in
a sea of free electrons and ions at kinetic temperature Te.
The free electrons are described by relativistic Fermi-Dirac
statistics and the ions by nonrelativistic Maxwell-Boltzmann
statistics. For such a distribution of plasma electrons, the
average electrostatic potential near i can be evaluated by
Poisson equations. It is this potential that causes the IDP of the
ion. The contributions of bound electrons to IPD are excluded,
since they are already present in the isolated ion.

Following the work of Stewart and Pyatt [20], the lowering
of ionization potential is described by

�P = 3(Z + 1)e2

2Ri

{[
1 +

(
λd

Ri

)3]2/3

−
(

λd

Ri

)2}
, (9)

where λd is the Debye length λd = √
Te/4πZne with Te of the

free electrons (plasmas) temperature, and the ion-sphere radius
is defined by 4πniR

3
i /3 = 1, with ni the ion number density.

For large λd/Ri values, according to Eq. (9), �P is reduced
to (Z + 1)e2/λd , which is the limit of Debye-Huckel model.
When λd/Ri is small, �P equals to 3(Z + 1)e2/2Ri , which
is the limit of ion-sphere model. For high-density plasmas, the
IDP would have a significant effect on lowing of ionization
potential. For example, �P of Al VII (with the isolated
ionization potential 240 eV) can be as large as 100 eV for bulk
aluminium (2.7 g/cm3) with temperature Te below 300 eV. For
going beyond such a semiempirical treatment, a rigorous way

023208-3



D. WU, X. T. HE, W. YU, AND S. FRITZSCHE PHYSICAL REVIEW E 95, 023208 (2017)

of dealing with IDP is through multibody quantum-mechanical
methods [21,22]. We have compared the values generated
from Stewart and Pyatt’s formula with that from references
[21,22]. Results indicate that both calculation methods exhibit
similar behavior, though with slightly different numerical
values. In PIC simulations, ion density, electron density ne,
and temperature Te can be generated by a loop over electrons
in each computational cell, attached to which the Debye length
λd is evaluated. Using Eq. (9) and isolated ionization potential
value from NIST data bases, the modified ionization potential,
i.e., P − �P , is updated for each ion at every computational
cell per time step.

III. APPLICATIONS

The above three processes are embedded in a recently
extended version of PIC code based on LAPINE [32]. This
is a parallel high-order-scheme PIC code written in C++
language, capable of performing 1D, 2D, and 3D simulations,
with which the tunneling ionization [10], relativistic binary
collisions [33], radiation reaction and photon emission in
quantum electrodynamics regime [34] have already been
implemented in by one of us. In this section, we will
present several case studies of the ionization dynamics of
bulk aluminium (single) and aluminium carbide (alloy). Let
us note that the initially assumed charge state does not depend
on the initial temperature in the following calculations, and that
the free electron temperature is taken from a reasonable guess.
The dependence of averaged ionization degrees on tempera-
tures can only be established at (final) thermal equilibrium,
after a reasonable relaxation time.

The density of bulk aluminium in our case studies is
2.7 g/cm3, thus, the aluminium ion density is 6.6 × 1022/cm3.
The initial aluminium charge state is assumed to be 4+, and
the initial free-electron temperature is set to 150 eV. As a
benchmark of the ionization dynamics, we consider only a
few computational cells, connected by periodic boundaries
conditions, with each cell contains 200 ion macroparticles
and 200 electron macroparticles initially. The grid size of
PIC simulation is 0.01 μm and time step is set to 0.02
fs. In the simulations, we have also taken into account the
collision effects [33]. To figure out the influence of IPD and
RE, three sets of simulations are run simultaneously. PIC
simulations with full model (CI+IPD+RE), model without
IPD, and model without RE are present in Figs. 1(a)–1(c),
respectively. Figure 1(a) shows the total plasma energy (A.U.),
with the full model by summarizing over all free electrons
within a computational cell, as a function of time. Figures 1(b)
and 1(c) are the same as shown in 1(a), but with the model
excluding IPD and RE, respectively. Following the energy
history, at initial time, the CI rate of aluminium is larger
than RE. The former one would reduce the plasma energy
and increase the averaged ionization degree as a function
of time. Compared with Fig. 1(a), we found that after 6-ps
relaxation, the averaged ionization degree is lowered when
excluding the IPD, which is Z̄ = 5.82 with Te = 74 eV (a)
versus Z̄ = 5.05 with Te = 77 eV (b). From the comparison
of Figs. 1(a) and 1(c), we found that after 6-ps relaxation, the
averaged ionization degree is significantly overestimated when
excluding the RE process. Note that Fig. 1(c) also, in principle,
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FIG. 1. (a) The total plasma energy (A.U.), with the full model
by summarizing over all free electrons within a computational cell,
as a function of time, with initial plasma temperature 150 eV and
predefined charge state 4+. (b) The same as shown in panel (a), but
with the model excluding IPD. (c) The same as shown in panel (a), but
with the model excluding RE. The inlets over panels (a), (b), and (c)
are the corresponding final ionization distributions of aluminium after
3-ps relaxation. The red line covered on the inlets are the ionization
distributions of aluminium calculated by Saha-Boltzmann equation
with defined temperature (a) Te = 74 eV and (b) Te = 77 eV also
excluding IPD.

represent the results of existing PIC code [12–14,26], with
which only CI is taken into account. As presented in Eq. (8),
RE would become a dominant process for ions embedded in
plasmas of high density and moderate temperatures.

Our model is general and can be applied for both single
elements and alloys with quite different compositions. The
aluminium carbide, chemical formula Al4C3, is a carbide of
aluminium with density 2.36 g/cm3. The simulation set is
the same as shown in Fig. 1, but with an additional species
carbon. Figure 2 shows the total plasma energy (A.U.), with
the full model by summarizing over all free electrons within
a computational cell, as a function of time, with the initial
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FIG. 2. The total plasma energy (A.U.), with the full model by
summarizing over all free electrons within a computational cell, as a
function of time, with the initial temperature of aluminium carbide
100 eV and predefined charge states of 11+ for aluminium and 6+
for carbon. The inlet is the final ionization distributions of aluminium
and carbon after 15-ps relaxation.

temperature of aluminium carbide 100 eV and predefined
charge states of 11+ for aluminium and 6+ for carbon. As
shown in Fig. 2, thermal equilibrium is reached after 15-ps
relaxation. The inlet is the final ionization distributions of
aluminium and carbon with thermal equilibrium temperature
160 eV.

In our model, different strategies were used to ensure that
the total number of particles remain conserved. The reduction
of electrons due to recombination is through distributing
a weight modification to all local free electrons, which
does not change the number of macroparticles. While the
increase of electron due to impact ionization is through
placing new macroparticles to the cell of interest. The major
computational effort in the simulation arises from the number
of macroparticles. To solve this problem, a particle-merging
technique is configured and applied. Considering two electrons
with position ra and rb, momentum pa and pb, γ factors γa

and γb, as well as weights wa and wb, we have the merging
weight as w = wa + wb, merging position as r = (wa ra +
wbrb)/w, merging γ factor as γ = (waγa + wbγb)/w, and the
merging momentum as p = (wa pa + wb pb)/w. In practice,
the equation, γ =

√
p2 + 1, is not always satisfied for the

merged particles. To solve this problem, a coefficient of
η =

√
(γ 2 − 1)/p2 is multiplied to replace the old merging

momentum, with p = η p. The case shown in Fig. 1(a) is rerun
by including the merging-particle technique. Figure 3(a) shows
how the total plasma energy evolves in time, while Fig. 3(b)
displays the corresponding number of macroparticles. Both
the energy evolution and final equilibrium shown in Fig. 3(a)
is exactly the same as shown in Fig. 1(a). In simulations,
merging can be set to take place at predefined times when
satisfying predefined conditions. In the case simulation shown
in Fig. 3, merging is set to take place at every 100 time steps
when number of macroparticles in a cell exceeding 1000 (200
macroparticles are placed in a cell initially). To make this
technique numerical stable, we would suggest the threshold
of merging to be set to 3 ∼ 5 times the initial number of
macroparticles in a cell. As we can see, the dropping of the

FIG. 3. (a) The total plasma energy (A.U.), with the full model
and merging particle technique by summarizing over all free electrons
within a computational cell, as a function of time, with initial
plasma temperature 150 eV and predefined charge state 4+. (b) The
corresponding temporal fluctuation of the number of macroparticles.

total number of macro particles does not affect the energy
evolution or final equilibrium. By using this technique, the
simulation burden can be dramatically released.

At present, we have compared with model calculation
with and without the IPD and RE, a comparison that refers
to the PIC code itself. In this section, a direct comparison
with equilibrium models is made. As we have mentioned, the
ionization equilibrium is described by the Saha-Boltzmann
equation, with neni+1/ni = (gegi+1/gi)(2πmekBTe/h

2)3/2 ×
exp (−Pi/kBTe), where ne (ni), ge (gi), Pi , and Te are electron
(ion) density, statistical weights, ionization potential, and
thermal equilibrium temperatures. Note that Pi can be obtained
from the NIST database [29]. While in dense plasma regime,
as we have analyzed, Pi should be corrected by taking into
account IPD, which can be calculated by Stewart and Pyatt’s
formula. To solve the above Saha-Boltzmann equation, a
natural way is to (i) normalize the above equation by ne,
ñi = ni/ne, (ii) establish an iterative scheme, (iii) guess a
initial values of ñ1, ñ2, ñ3 . . . , and (iv) loop the iterative
scheme until the required resolution is satisfied. Results of
solving Saha-Boltzmann equation by this method are shown
in Fig. 4(a). The solid lines show the averaged ionization of
aluminium as functions of electron density and temperatures,
whereas the black, red, and green lines represent the ones
with electron densities fixed at 1020 cm−3, 1022 cm−3, and
1024 cm−3, respectively. In Fig. 4(a), we also present results
obtained from FLYCHK, with which the ionization calculation
is also based on the Saha-Boltzmann equation. Both methods
indicate that for fixed electron density at 1020 cm−3, averaged
ionization degree is close to zero in low-temperature limit,
while it becomes 1+ or 3+ when electron density is fixed
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FIG. 4. The averaged ionization degree of bulk aluminium as a
function of plasma temperature. (a) Blue, red, and green lines (square)
are the results calculated by Saha-Boltzmann equation (FLYCHK
code), with fixed electron density of 1020 cm−3, 1022 cm−3, and
1024 cm−3. (b) Red and green lines are the results calculated by
Saha-Boltzmann equation with updated numerical scheme, including
IPD and excluding IPD, with fixed aluminium density 2.7 g/cm3.
Furthermore, solid red line is with the SP model of IPD, while dashed
red line is with EK model of IPD. Black square is picked up from the
equilibrium states calculated by our PIC code with full model.

at 1022 cm−3 or 1024 cm−3. Actually, this nonzero averaged
ionization degree is due to IPD. At high-density and low-
temperature limit, the value of IPD can be even larger than the
isolated ionization potential, which will free the 3p1 (and 3s2)
electron.

It is hard for us to accurately predict the averaged ionization
degree of a bulk aluminium without knowing both the plasma
density and temperature in advance. This difficulty comes from
the numerical scheme in solving the Saha-Boltzmann equation.
In the first step of the numerical scheme, we normalize ni by
ne. Although it is a quite natural way of doing so, in real
situations, nAl is fixed instead of ne. Here we update the
numerical scheme, with (i) normalizing ni by nAl, ñi = ni/nAl

and (ii) adding a new constraint condition
∑i=13

i=0 ñi = 1.
For aluminium of fixed density nAl = 6.7 × 1022 cm−3, the
averaged ionization degree as a function of temperature is
present in Fig. 4(b). Red and blue lines correspond to the
cases including and excluding IPD. Results indicate that the
averaged ionization degree when including IPD effect is indeed
higher than excluding this effect. The averaged ionization
degree is of Z̄ = 3 at low temperature limit. In addition, in
Fig. 4(b) we also present the averaged ionization degree with
Saha-Boltzmann equation and Ecker-Kroll (EK) model (refer
to Appendix for detail). It is shown that in averaged ionization
calculation, the difference between SP (solid red line) and EK
(dashed red line) models is small.

In Figs. 1(a) and 1(b), the ionization distributions calculated
by Saha-Boltzmann equation with updated numerical scheme
is present in the red curves covered on the inlets, showing good
consistence with the PIC calculations. Furthermore, following
the same routine as introduced by Fig. 1, the dependence of
averaged ionization degree on thermal equilibrium tempera-
tures covering a large variation is obtained by the PIC code,
as shown in black squares in Fig. 4(b), also showing good
consistence with results from Saha-Boltzmann equation.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, a physical model based on Monte Carlo
approach is proposed to calculate the ionization dynamics
of solid-density plasmas within PIC simulations, where
CI, RE, and IPD by surrounding plasmas are taken into
consideration self-consistently. When compared with other
models, which are applied in the literature for plasmas near
thermal equilibrium, the temporal relaxation of ionization
dynamics can also be simulated by the proposed model. The
proposed model is implemented into a PIC code, with (final)
ionization equilibriums sustained by competitions between CI
and RE. Comparisons between the full model and model
without IPD or RE are performed. Results indicate that
for bulk aluminium in the solid-density plasma regime, (i)
the averaged ionization degree when including IPD effect
would be higher than excluding this effect; and (ii) the
averaged ionization degree is significantly overestimated when
excluding RE effect. As a direct comparison with the existing
models, dependence of averaged ionization degree on thermal
equilibrium temperatures is obtained by the PIC code, showing
good agreements with that generated from Saha-Boltzmann
model and/or FLYCHK code.

The explicit RE formula is determined by the relying
impact ionization formula and Saha-Boltzmann equation. The
good agreements between values from PIC simulation at
(final) thermal equilibrium and results from Saha-Boltzmann
equation are thus guaranteed by the proposed model. However,
let us note that the PIC code is a tool originally designed
to describe high-temperature and low-density plasmas that
are dominated by electromagnetic fields. The Fermi energy
of aluminum, for example, is around 11 eV. Therefore, the
methods and algorithms applied here only are suited to
weakly coupled nondegenerate systems or “hot” plasmas with
Te � 11 eV. An accurate description of states of matters in
which Fermi statistics and strong correlations dominate [35]
is at present beyond the state-of-the-art PIC simulations.
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APPENDIX: ECKER-KROLL MODEL

The Ecker-Kroll (EK) [19,21,24] model assumes two
functional forms for the IPD, depending on whether the
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particle density (i.e., that of both the electrons and ions) under
investigation is above or below a critical density value, given
by the expression nc = (3/4π )(Te/Z

2
Ae2)3, with ZA = 13 for

Al. For density below nc, Debye-Huckel formula holds, i.e.,
�P = (Z + 1)e2/λd , while for density above nc, the EK
model of the IPD is given by �P = C(Z + 1)e2/REK, where

R3
EK = R3

i /(Z + 1) [refer to Eq. (9) for meaning of Ri] and
C is a multiplication factor. The constant C is determined
in the EK model by imposing that the IPD given by two
functional forms equal with each other at the critical density,
with C = (REK/λd )nc

. The simulation of LCLS experiments,
however, assumed C = 1 in the modified EK model [36].

[1] J. Braenzel, A. A. Andreev, K. Platonov, M. Klingsporn, L.
Ehrentraut, W. Sandner, and M. Schnurer, Phys. Rev. Lett. 114,
124801 (2015).

[2] P. Leblanc and Y. Sentoku, Phys. Rev. E 89, 023109 (2014).
[3] D. Salzmann, Atomic Physics in Hot Plasmas (Oxford Univer-

sity Press, Oxford, 1998), pp. 27–28.
[4] I. H. Hutchinson, Principles of Plasma Diagnostics (Cambridge

University Press, Cambridge, 1987).
[5] D. Wu, C. Y. Zheng, C. T. Zhou, X. Q. Yan, M. Y. Yu, and X. T.

He, Phys. Plasmas 20, 023102 (2013).
[6] D. Wu, C. Y. Zheng, B. Qiao, C. T. Zhou, X. Q. Yan, M. Y. Yu,

and X. T. He, Phys. Rev. E 90, 023101 (2014).
[7] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks,

J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason,
Phys. Plasmas 1, 1626 (1994).

[8] D. Wu, C. Y. Zheng, and X. T. He, Phys. Plasmas 20, 063106
(2013).

[9] D. Wu, S. I. Krasheninnikov, S. X. Luan, and W. Yu, Nucl.
Fusion 57, 016007 (2017).

[10] D. Wu, B. Qiao, C. McGuffey, X. T. He, and F. N. Beg, Phys.
Plasmas 21, 123118 (2014).

[11] D. Wu, S. I. Krasheninnikov, S. X. Luan, and W. Yu, Phys.
Plasmas 23, 123116 (2016).

[12] Andreas J. Kemp, Robert E. W. Pfund, and Jurgen Meyer-ter-
Vehn, Phys. Plasmas 11, 5648 (2004).

[13] G. M. Petrov, J. Davis, and Tz. Petrova, Phys. Phys. Control.
Fusion 51, 095005 (2009).

[14] R. Mishra, P. Leblanc, Y. Sentoku, M. S. Wei, and F. N. Beg,
Phys. Plasmas 20, 072704 (2013).

[15] Yukap Hahn, Phys. Lett. A 231, 82 (1997).
[16] Y. Hahn and J. Li, Z. Phy. D 36, 85 (1996).
[17] P. Mansbach and J. Keck, Phys. Rev. 181, 275 (1969).
[18] B. Makin and J. C. Keck, Phys. Rev. Lett. 11, 281

(1963).
[19] G. Ecker and W. Kroll, The Phys. Fluids 6, 62 (1963).

[20] John C. Stewart and Kedar D. Pyatt, JR Astr. Phys. J. 144, 1203
(1966).

[21] M. Stransky, Phys. Plasmas 23, 012708 (2016).
[22] Carlos A. Iglesias, High Energy Density Phys. 12, 5 (2014).
[23] Sang-Kil Son, Robert Thiele, Zoltan Jurek, Beata Ziaja, and

Robin Santra, Phys. Rev. X 4, 031004 (2014).
[24] Carlos A. Iglesias and Philip A. Sterne, High Energy Density

Phys. 9, 103 (2013).
[25] Thomas R. Preston, Sam M. Vinko, Orlando Ciricosta, Hyun-

Kyung Chung, Richard W. Lee, and Justin S. Wark, High Energy
Density Phys. 9, 258 (2013).

[26] F. Perez, L. Gremillet, A. Decoster, M. Drouin, and E. Lefebvre,
Phys. Plasmas 19, 083104 (2012).

[27] Wolfgang Lotz, Z. Physik 232, 101 (1970).
[28] M. F. Gu, Astr. Phys. J. 582, 1241 (2003).
[29] Refer to http://physics.nist.gov/PhysRefData/ASD/ for ioniza-

tion energy data.
[30] H. K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and

R. W. Lee, High Energy Density Physics 1, 3 (2005).
[31] Refer to https://www-amdis.iaea.org/FLYCHK/ for online com-

puting.
[32] H. Xu, W. W. Chang, H. B. Zhuo, L. H. Cao, and Z. W. Yue,

Chin. J. Comput. Phys. 19, 305 (2002).
[33] D. Wu, X. T. He, W. Yu, and S. Fritzsche, Phys. Rev. E 95,

023207 (2017).
[34] D. Wu, B. Qiao, and X. T. He, Phys. Plasmas 22, 093108 (2015).
[35] Vojtech Vlcek, Nico de Koker, and Gerd Steinle-Neumann,

Phys. Rev. B 85, 184201 (2012).
[36] S. M. Vinko, O. Ciricosta, B. I. Cho, K. Engelhorn, H.-K. Chung,

C. R. D. Brown, T. Burian, J. Chalupsky, R. W. Falcone, C.
Graves, V. Hajkova, A. Higginbotham, L. Juha, J. Krzywinski,
H. J. Lee, M. Messerschmidt, C. D. Murphy, Y. Ping, A. Scherz,
W. Schlotter, S. Toleikis, J. J. Turner, L. Vysin, T. Wang, B. Wu,
U. Zastrau, D. Zhu, R. W. Lee, P. A. Heimann, B. Naglerand
J. S. Wark, Nature 482, 59 (2012).

023208-7

https://doi.org/10.1103/PhysRevLett.114.124801
https://doi.org/10.1103/PhysRevLett.114.124801
https://doi.org/10.1103/PhysRevLett.114.124801
https://doi.org/10.1103/PhysRevLett.114.124801
https://doi.org/10.1103/PhysRevE.89.023109
https://doi.org/10.1103/PhysRevE.89.023109
https://doi.org/10.1103/PhysRevE.89.023109
https://doi.org/10.1103/PhysRevE.89.023109
https://doi.org/10.1063/1.4791654
https://doi.org/10.1063/1.4791654
https://doi.org/10.1063/1.4791654
https://doi.org/10.1063/1.4791654
https://doi.org/10.1103/PhysRevE.90.023101
https://doi.org/10.1103/PhysRevE.90.023101
https://doi.org/10.1103/PhysRevE.90.023101
https://doi.org/10.1103/PhysRevE.90.023101
https://doi.org/10.1063/1.870664
https://doi.org/10.1063/1.870664
https://doi.org/10.1063/1.870664
https://doi.org/10.1063/1.870664
https://doi.org/10.1063/1.4812450
https://doi.org/10.1063/1.4812450
https://doi.org/10.1063/1.4812450
https://doi.org/10.1063/1.4812450
https://doi.org/10.1088/0029-5515/57/1/016007
https://doi.org/10.1088/0029-5515/57/1/016007
https://doi.org/10.1088/0029-5515/57/1/016007
https://doi.org/10.1088/0029-5515/57/1/016007
https://doi.org/10.1063/1.4904402
https://doi.org/10.1063/1.4904402
https://doi.org/10.1063/1.4904402
https://doi.org/10.1063/1.4904402
https://doi.org/10.1063/1.4972539
https://doi.org/10.1063/1.4972539
https://doi.org/10.1063/1.4972539
https://doi.org/10.1063/1.4972539
https://doi.org/10.1063/1.1814367
https://doi.org/10.1063/1.1814367
https://doi.org/10.1063/1.1814367
https://doi.org/10.1063/1.1814367
https://doi.org/10.1088/0741-3335/51/9/095005
https://doi.org/10.1088/0741-3335/51/9/095005
https://doi.org/10.1088/0741-3335/51/9/095005
https://doi.org/10.1088/0741-3335/51/9/095005
https://doi.org/10.1063/1.4812701
https://doi.org/10.1063/1.4812701
https://doi.org/10.1063/1.4812701
https://doi.org/10.1063/1.4812701
https://doi.org/10.1016/S0375-9601(97)00287-9
https://doi.org/10.1016/S0375-9601(97)00287-9
https://doi.org/10.1016/S0375-9601(97)00287-9
https://doi.org/10.1016/S0375-9601(97)00287-9
https://doi.org/10.1007/BF01426621
https://doi.org/10.1007/BF01426621
https://doi.org/10.1007/BF01426621
https://doi.org/10.1007/BF01426621
https://doi.org/10.1103/PhysRev.181.275
https://doi.org/10.1103/PhysRev.181.275
https://doi.org/10.1103/PhysRev.181.275
https://doi.org/10.1103/PhysRev.181.275
https://doi.org/10.1103/PhysRevLett.11.281
https://doi.org/10.1103/PhysRevLett.11.281
https://doi.org/10.1103/PhysRevLett.11.281
https://doi.org/10.1103/PhysRevLett.11.281
https://doi.org/10.1063/1.1724509
https://doi.org/10.1063/1.1724509
https://doi.org/10.1063/1.1724509
https://doi.org/10.1063/1.1724509
https://doi.org/10.1086/148714
https://doi.org/10.1086/148714
https://doi.org/10.1086/148714
https://doi.org/10.1086/148714
https://doi.org/10.1063/1.4940313
https://doi.org/10.1063/1.4940313
https://doi.org/10.1063/1.4940313
https://doi.org/10.1063/1.4940313
https://doi.org/10.1016/j.hedp.2014.04.002
https://doi.org/10.1016/j.hedp.2014.04.002
https://doi.org/10.1016/j.hedp.2014.04.002
https://doi.org/10.1016/j.hedp.2014.04.002
https://doi.org/10.1103/PhysRevX.4.031004
https://doi.org/10.1103/PhysRevX.4.031004
https://doi.org/10.1103/PhysRevX.4.031004
https://doi.org/10.1103/PhysRevX.4.031004
https://doi.org/10.1016/j.hedp.2012.11.007
https://doi.org/10.1016/j.hedp.2012.11.007
https://doi.org/10.1016/j.hedp.2012.11.007
https://doi.org/10.1016/j.hedp.2012.11.007
https://doi.org/10.1016/j.hedp.2012.12.014
https://doi.org/10.1016/j.hedp.2012.12.014
https://doi.org/10.1016/j.hedp.2012.12.014
https://doi.org/10.1016/j.hedp.2012.12.014
https://doi.org/10.1063/1.4742167
https://doi.org/10.1063/1.4742167
https://doi.org/10.1063/1.4742167
https://doi.org/10.1063/1.4742167
https://doi.org/10.1007/BF01393132
https://doi.org/10.1007/BF01393132
https://doi.org/10.1007/BF01393132
https://doi.org/10.1007/BF01393132
https://doi.org/10.1086/344745
https://doi.org/10.1086/344745
https://doi.org/10.1086/344745
https://doi.org/10.1086/344745
http://physics.nist.gov/PhysRefData/ASD/
https://doi.org/10.1016/j.hedp.2005.07.001
https://doi.org/10.1016/j.hedp.2005.07.001
https://doi.org/10.1016/j.hedp.2005.07.001
https://doi.org/10.1016/j.hedp.2005.07.001
https://www-amdis.iaea.org/FLYCHK/
https://doi.org/10.1103/PhysRevE.95.023207
https://doi.org/10.1103/PhysRevE.95.023207
https://doi.org/10.1103/PhysRevE.95.023207
https://doi.org/10.1103/PhysRevE.95.023207
https://doi.org/10.1063/1.4930111
https://doi.org/10.1063/1.4930111
https://doi.org/10.1063/1.4930111
https://doi.org/10.1063/1.4930111
https://doi.org/10.1103/PhysRevB.85.184201
https://doi.org/10.1103/PhysRevB.85.184201
https://doi.org/10.1103/PhysRevB.85.184201
https://doi.org/10.1103/PhysRevB.85.184201
https://doi.org/10.1038/nature10746
https://doi.org/10.1038/nature10746
https://doi.org/10.1038/nature10746
https://doi.org/10.1038/nature10746



