
PHYSICAL REVIEW E 95, 023205 (2017)

Electromagnetic instability in plasmas heated by a laser field
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Electromagnetic instability is investigated in homogeneous plasmas heated by a laser wave in the range
α = v2

0/v
2
t � 2, where v0 is the electron quiver velocity and vt is the thermal velocity. The anisotropic electron

distribution function that drives unstable quasistatic electromagnetic modes is calculated numerically with the
Vlasov-Landau equation in the high ion charge number approximation. A dispersion relation of electromagnetic
waves which accounts for further nonlinear terms on v2

0 from previous results is derived. In typical simulation with
ion charge number Z = 13, a temperature T = 5 keV, a density n = 9.8 × 1020 cm−3, and a laser wavelength
λlaser = 1.06 μm, growth rates larger than 1012 s−1 in the quasicollisionless wave-number range were found for
α � 1. In the same physical conditions and in the mildly collisional range a growth rate about 1011 s−1 was also
obtained. The extent of the growth wave-number region increases significantly with increasing α .

DOI: 10.1103/PhysRevE.95.023205

I. INTRODUCTION

Self-generated magnetic fields in plasmas are one of the
most active research topics in the literature [1–11]. The central
effect of the magnetic field on particles is their trapping around
the B-field lines. This effect has considerable impact on many
plasma research fields; in particular the plasma confinement
with magnetic field structures is used in many schemes in
magnetic confinement fusion such as tokamaks, etc. In addition
the presence of intense magnetic fields in plasmas leads to
the modification of their physical properties as they induce
anisotropy owing to the privileged direction of B. In particular
the magnetic field greatly alters the transport coefficients,
e.g., the inhibition of the thermal heat flux, the generation
of the transverse Righi-Leduc heat flux, etc. [12,13], and it is
responsible also for the generation of transverse waves inherent
to magnetized plasmas.

Several sources of magnetic fields are reported in the
literature. Among these sources we mention the Weibel
instability [1] which generates quasistatic magnetic modes in
two-temperature plasmas. This instability requires a kinetic
treatment in the velocity space, and the electron distribution
function (EDF) must involve the second anisotropic distri-
bution function [5,6]. Various sources for this instability are
investigated in the literature such as thermal transport [3,8],
plasma expansion [8,11], and collisional absorption of elec-
tromagnetic (EM) waves by the inverse bremsstrahlung mech-
anism [7,8]. This instability is produced through a scheme
where the current density which creates the magnetic field is
supplied in turn by the same magnetic field, leading thus to an
unstable mechanism. Thereby the magnetic field grows at the
expense of the plasma free energy.

For the EM instability source driven by the collisional
absorption of a laser wave [7] the relevant parameter is the
ratio of the square of the quiver velocity to the square of

the thermal velocity α = v2
0

v2
t

, where v0 = eE0
mω0

is the quiver

velocity; vt = √
T/m is the electron thermal velocity; e is
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the elementary charge; m is the electron mass; ω0 and E0

are, respectively, the frequency and the amplitude of the laser
wave; and T is the electron temperature in energy units. For
typical values of laser and plasma parameters considered in
this work, the ponderomotive energy 1

2mv2
0 could be of the

order of a few keV. In a previous work reported in Ref. [7]
the stability analysis of magnetic modes is investigated in
laser heated plasmas in physical conditions such that α � 1
and the results obtained have shown that moderate quasistatic
magnetic fields can be self-generated in such plasmas. In a
recent work [14] devoted to the calculation of the EDF in
homogeneous plasmas in the presence of a laser wave, the
authors calculated the EDF for moderate values α < 0.5. The
kinetic model accounts for the anisotropies of the EDF but
uses for the isotropic component a numerical fit of Matte
et al. [15] within the condition α � 1. An application to the
stability analysis of the EM modes was performed using the
dispersion relation (DR) derived in Ref. [7] (valid also only
for α � 1) with, in addition, a significant restrictive condition;
the collisions were neglected. Thus in this weakly nonlinear
regime, the result obtained in Ref. [14] provides a crude order
of magnitude for the growth rate.

The question which then arises is how this instability
evolves when the relevant parameter α is greater than the unity.
Such physical conditions can be met if the plasma temperature
is rather low, if the laser wavelength is large, and if the intensity
of the laser wave is high. Regarding the latter condition it is
well known that very high laser intensities are now valuable,
up to 1015 W/cm2 for long laser pulse of about a nanosecond.
We expect that for increasing α the nonlinear stabilizing terms
increase but the source term of the instability increases too. It is
therefore crucial to investigate the behavior of this instability in
this regime in order to estimate its growth rate and the range of
the wave-number spectrum. In this work we address this issue
investigating the EM instability in a nonlinear regime where
the quiver velocity is comparable in magnitude to the electron
thermal velocity. This requires that we first revisit the DR of
quasistatic EM modes [7] in order to take into account these
nonlinear terms on α, neglected in previous works. Second, it
is mandatory to account for the electron-electron collisions in

2470-0045/2017/95(2)/023205(7) 023205-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.023205


BENDIB, BENDIB-KALACHE, CROS, DEUTSCH, AND MAYNARD PHYSICAL REVIEW E 95, 023205 (2017)

the kinetic model and therefore the isotropic part of the EDF is
calculated on the same footing as the anisotropic one. This
second improvement needs to solve numerically nonlinear
PDE’s involving integrodifferential operators instead of linear
ODE’s as in Ref. [14].

It is important to note that the collisional absorption by
inverse bremsstrahlung represents in this work the mechanism
responsible for the excitation of EM instabilities. It competes
with anomalous heating and resonant absorption but generally
it represents the principal mechanism in laser-plasma interac-
tion. The most important works focused on nonlinear absorp-
tion where the energy absorbed by electrons is not proportional
to the wave intensity but instead it undergoes a saturation
regime. The pioneer works of Dawson and Oberman [16] and
those of Silin [17] allowed the highlighting of the reduction in
absorption rate for significant values of α. Comparatively to
the linear regime an effective electron-ion collision frequency
dependent on α is proposed. The second important contribution
in this area is that of Langdon [18] who demonstrated that
absorption can also be reduced significantly (up to a factor 2)
for α � 1 and Zα > 1, where Z is the ion charge number. This
is due to the significant deformation of the isotropic component
of the EDF by the EM field, as in this scheme electron-electron
collisions are not efficient to Maxwellianize the electrons. All
these studies were conducted in the nonrelativistic regime.
Avetissian et al. [19,20] completed these studies by extending
their range of validity for strong fields and high temperatures
in the relativistic range. With the use of quantum mechanics
treatment they calculated numerically and analytically (in
asymptotic limits) the absorption rate as a function of mv2

0
normalized to the electron rest energy or photon energy. In
Ref. [19], the low-frequency regime is investigated and in
Ref. [20], the inverse bremsstrahlung absorption of an intense
x-ray laser field was studied. Both contributions complement
each other and thus cover a wide range of applications
in classical and quantum plasmas. In particular they could
be very significant in currents experiments using ultrashort
and ultraintense laser pulses and in future inertial fusion
experiments where the temperature can be about 10–15 keV
which corresponds to mildly relativistic temperatures. Let
us specify the validity of our kinetic model. It is based on
the Fokker-Planck equation defined by the Landau collision
operator and this restricts its validity to kinetic and nonde-
generate plasmas. In addition, we assumed implicitly that
the Landau collision operator is valid in the high-frequency
spectrum [4]. We note that in dense and cold plasmas,
correlations between particles as well as plasma degeneracy
should be taken into account. In these physical conditions
the Fokker-Planck equation is no longer valid and further
models are proposed in the literature to study the collisional
absorption [21].

This work is organized as follows. Section II presents the
physical problem addressed in this work by specifying the
model equations and the approximations used. The Vlasov-
Landau equation is solved numerically, and the isotropic and
the relevant second anisotropic components of the EDF are
reported. Section III deals with the analytical derivation of the
DR for quasistatic EM modes in an arbitrary regime of α and
the numerical calculation of the instability growth rate. Finally,
we briefly summarize our results in the last section.

II. MODEL EQUATIONS FOR THE BACKGROUND
ELECTRON DISTRIBUTION FUNCTION

The largest contributions on the interaction of a laser wave
with plasmas are those performed within the condition α � 1.
In homogeneous plasmas, numerous works were reported in
the framework of this approximation as the reduction of the
inverse bremsstrahlung absorption [18] and the modification
of photoionization mechanisms [15]. Under these physical
conditions, the anisotropic part of the EDF is a small part
regarding the isotropic one. As a consequence physical
phenomena driven by mechanisms which involve the plasma
anisotropy should be weak. As far as we know, studies on the
quasistatic EM instabilities are restricted to the range α � 1
and this work constitutes an investigation of these instabilities
in a strongly nonlinear regime α > 1. The model equation
used in this work is similar to that of Ref. [14]. It is based on
the Fokker-Planck equation in homogeneous plasmas in the
presence of a laser wave assumed in the dipole approximation.
In addition, as in Ref. [14] collisions are modeled by the
Landau collision operators and to solve the kinetic equation,
the orthogonal polynomials expansion was used.

Thus the evolution of the EDF g(�v,t) in the velocity space
as a function of time t in the presence of electron-ion and
electron-electron collisions is described by

∂g

∂t
− e

m
( �Eh + �v × �Bh) · ∂g

∂�v = Cei(g) + Cee(g), (1)

where the variables used have their common meaning. We
restricted our analysis to the interaction of oscillating electric
field with homogeneous plasmas in nonrelativistic range and
typically this corresponds to laser intensity I < 1018 W/cm2

and relativistic parameters mc2/T > 100. By respecting these
two limits, it is obvious that α can take values well above 1
without thereby that the plasma is relativistic. Such plasmas
can be found in many experimental and theoretical applications
(see Ref. [15] and references therein).

The relevant mechanisms underlying this interaction are
therefore electron-ion and electron-electron collisions, and
the three-body photon-ion-electron interaction. It is supposed
that the laser electric field is linearly polarized, �Eh =
Re[E0 exp(−iω0t)�ex], where ω0 is the laser wave frequency,
�ex is a unit vector along the x axis, and ions are assumed
immobile because of their inertia. To solve Eq. (1) one assumes
that the EDF can be split into a slowly varying part and a
high-frequency part, respectively,

g(−→v, t) = F (−→v, t) + fh(�v,t), (2)

where F (−→v, t) is the homogeneous background EDF which
evolves in time on the hydrodynamic time scale, and fh(�v,t) is
the high-frequency EDF part induced by the laser field with the
same laser time dependence on exp(−iω0t). Thus the kinetic
equation can be also separated into these two time scales as it
is corroborated by numerous simulations that have shown that
the EDF is stationary on the velocity frame oscillating with
the frequency ω0. The high-frequency equation can be easily
deduced from Eqs. (1) and (2),

∂fh

∂t
− Cei(fh) = e

m
�Eh · ∂F

∂�v . (3)
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To derive Eq. (3) we have used some approximations. The
high-frequency magnetic field was neglected since Eh/Bh ∼
c, and in the high-Z limit used in this work, electron-electron
collisions smaller than the electron-ion collisions are not
considered. The right-hand side of Eq. (3) is the source term for
fh and on the left-hand side, the analysis of the strength of each
term gives ω0fh � νeifh where νei is the electron-ion collision
frequency. Within this ordering we can use the iterative method
to solve Eq. (3), considering that the first term is the leading
one and we get at the first iteration,

fh = ie

mω0
Eh

∂F

∂vx

− e

mω2
0

EhCei

(
∂F

∂vx

)
. (4)

The low-frequency kinetic equation is deduced from Eq. (1)
taking its time average over the laser cycle 2π/ω0,

∂F

∂t
+ v2

0

2

∂

∂vx

Cei

(
∂F

∂vx

)
= Cei(F ) + Cee(F ). (5)

The second term on the left-hand side of Eq. (5) accounts
for the heating term 〈 e

m
�Eh · ∂fh

∂�v 〉. Equation (5) is a nonlinear
PDE depending on the variables ( vx

v
,v,t) that we will transform

into an infinite set of equations by performing the expansion
of the EDF on the Legendre polynomials basis Pn(vx/v), i.e.,
F (−→v, t) = ∑∞

n=0 Fn(v,t)Pn(vx/v), and we get

∂F0

∂t
− Cee(F0) = v6

t

6λei

α

v2

∂

∂v

{
1

v

[
∂F0

∂v
+ 2

5v3

∂(v3F2)

∂v

]}
, (6)

∂Fl

∂t
− Cee(Fl) + l(l + 1)

v3
Fl = v2

0

2

[
l2(l − 1)

2l − 1
vl−1 ∂

∂v

(
l − 1

2l − 3

1

v4

∂

∂v

Fl−2

vl−2
+ l

2l + 1

1

v2l+3

∂

∂v
vl+1Fl

)]

+ v2
0

2

[
(l + 1)2(l + 2)

2l + 3

1

vl+2

∂

∂v

(
l + 1

2l + 1
v2l−1 ∂

∂v

Fl

vl
+ l + 2

2l + 5

1

v4

∂

∂v
vl+3Fl+2

)]
, (7)

where

Cee(F0) = 4π

Z

v4
t

λei

(
F0

v2

∫ v

0
v2F0dv + 1

3v3

∂F0

∂v

∫ v

0
v4F0dv − 1

3

∂F0

∂v

∫ v

∞
vF0dv

)
. (8)

The subscript l is an even number (l = 2,4, . . .), λei =
vt

νei
= 4πε2

0T
2

ne4Zln	
is the electron mean free path (see Ref. [17]

and references therein), n is the electron density, ε0 is the
permittivity in vacuum, and ln 	 is the Coulomb logarithm. We
assume that the stationary and the high-Z limit approximations
are fulfilled thus, Cei(Fl>0) � [ ∂Fl>0

∂t
,Cee(Fl>0)], and we can

drop the first and the second terms in Eq. (7); however,
they must be kept in Eq. (6). Equations (6) and (7) are an
infinite set of coupled integrodifferential equations for the EDF
components f2n(n = 0,1, . . .) that we solved numerically with
the standard finite difference scheme up to the order n = 20.
One has checked that this order of truncation is sufficient for
the accuracy required in this work. In addition the simulation
accounts for the conservative properties of the lower moments
of the EDF; i.e.,

∫ ∞
−∞ F0d

3v = n and
∫ ∞
−∞

1
2mv2F0d

3v =
3
2nT . For the stability analysis of the EM modes, which
constitutes the aim of this work, the second anisotropy F2(y) is
the relevant component, where y = v2/2v2

t is the normalized
square velocity. We give in Fig. 1 the numerical results for
Z = 13 and we can see that the maximum of F2(y) increases
significantly with increasing α; e.g., for α = 0.1 and α = 2
we get F2(v)

F0(v=0) = 0.018 and F2(v)
F0(v=0) = 0.24, respectively. These

results significantly improve previous results [14] limited to
the range α < 0.5. It is important to note that the inclusion of
electron-electron collisions significantly alters the result of the
anisotropic part of the EDF. To emphasize this point, we give in
Fig. 2 the symmetric function F0(v) calculated by the present
numerical simulation and the one provided by the numerical fit
of Ref. [15] for α = 2. We can see the large difference between
the two results in particular for velocities smaller than the
thermal velocity vt . As a result the present simulation shows

that the low-energy-electron population is more important.
These findings play a central role in the stability analysis of
the quasistatic EM modes addressed in the next section.

III. DISPERSION RELATION
OF QUASISTATIC EM WAVES

Let us now consider the laser heated plasmas studied in
Sec. II in the presence of a small low-frequency EM perturba-
tion defined by the electric field

−→
δE = δE�ex and

−→
δB = δB�ey

involving the geometry of the modes considered in this work.
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FIG. 1. Normalized second anisotropic distribution function
F2(y)/F0(y = 0) as a function of the normalized square velocity
y = v2/2v2

t for different values of α = v2
0/v

2
t .

023205-3



BENDIB, BENDIB-KALACHE, CROS, DEUTSCH, AND MAYNARD PHYSICAL REVIEW E 95, 023205 (2017)

0.01 0.1 1 10 100

0.00

1×10−3

0.01

0.02

0.03

0.04

0.05

Is
ot

ro
pi

c 
di

st
rib

ut
io

n 
fu

nc
tio

n

y

FIG. 2. Normalized isotropic electron distribution function
F0norm = (2π)3/2F0(y)v3

t /n as a function of the normalized square

velocity y = v2/2v2
t for α = v2

0
v2
t

= 2. The solid line is obtained from

the present numerical simulation and the dashed line corresponds to
the numerical fit of Ref. [15].

The plasma can be represented by a homogeneous unperturbed
state represented as shown in Sec. II by the EDF g(−→v, t) =
F (−→v, t) + fh(�v,t) and a time-dependent and inhomogeneous
state represented by the perturbed EDF δf (�v,�r,t). We assume
that [

−→
δE,

−→
δB,δf (�v,�r,t)] ∝ exp(−iωt + i�k · �r), where ω and �k

are the low frequency and the wave vector directed along the
direction Oz, of the EM mode. The total EDF therefore can
be written as h(�r,�v,t) = F (�v,t) + fh(�v,t) + δf (�r,�v,t) and it
obeys the following Vlasov-Landau equation:

∂h

∂t
+ �v · ∇h − e

m
(
−→
δE + �v × −→

δB) · ∂h

∂�v − e

m
�Eh · ∂h

∂�v
= Cei(h) + Cee(h). (9)

Keeping the high-frequency terms in Eq. (9) we obtain

∂fh

∂t
− e

m
(
−→
δE + �v × −→

δB) · ∂fh

∂�v − Cei(fh) = e

m
�Eh · ∂F

∂�v .

(10)

The low-frequency part is split into a leading order given
by Eq. (5) and the following perturbed equation:

−iωδf + ikvzδf − Cei(δf ) − e

m
δE

∂F

∂vx

− e

m
δB

(
vx

∂F

∂vz

− vz

∂F

∂vx

)
= SIB, (11)

where SIB = δ〈 e
m

�Eh · ∂fh

∂�v 〉 is the inverse bremsstrahlung term.
To get the explicit expression of SIB we solve Eq. (10)

iteratively with the use of the ordering ω0fh � (νeifh,ωcfh)

where ωc = eB/m is the electron cyclotron frequency,

fh = ie

mω0
Eh

∂F

∂vx

− e2

m2ω2
0

δE
∂

∂vx

(
Eh

∂F

∂vx

)

− e2

m2ω2
0

[
vxδB

∂

∂vz

(
Eh

∂F

∂vx

)
− vzδB

∂

∂vx

(
Eh

∂F

∂vx

)]

− e

mω2
0

EhCei

(
∂F

∂vx

)
, (12)

Then we deduce the inverse bremsstrahlung term taking the
time average over a laser cycle,

SIB = −v2
0

2

∂

∂vx

Cei

(
∂δf

∂vx

)
− ev2

0

2m
δE

∂3F

∂v3
x

− ev2
0

2m
δB

∂

∂vx

(
vx

∂2F

∂vx∂vz

− vz

∂2F

∂v2
x

)
, (13)

and finally, it results in the desired perturbed low-frequency
equation,

−iωδf + ikvzδf + v2
0

2

∂

∂vx

Cei

(
∂δf

∂vx

)
− Cei(δf ) = S, (14)

where the source term stands for

S = e

m
δE

∂F

∂vx

+ e

m
δB

(
vx

∂F

∂vz

− vz

∂F

∂vx

)
− ev2

0

2m
δE

∂3F

∂v3
x

− ev2
0

2m
δB

∂

∂vx

(
vx

∂2F

∂vx∂vz

− vz

∂2F

∂v2
x

)
. (15)

We can see that the third term on the left-hand side
of Eq. (14) involves a differential operator of δf . This
term considerably enhances the mathematical difficulty for
analytically solving this equation. Even though its role in the
Weibel analysis is marginal since the more unstable modes are
mainly collisionless, we first solved Eq. (14) neglecting this
differential term, and then we iteratively calculated its strength,
finding as expected a negligible contribution. In Ref. [7], the
terms proportional to v2

0 in Eq. (15) were neglected while in
Ref. [22] the lower order on α, included in the last term, was
kept as a stabilizing term. In this work we consider the full
expression (15) and make use of the results derived in Ref. [7]
to get the following growth rate:

γ (k) =
3k2c2n0

64πω2
pλeivt

2 − 12
5

√
2λeivt k

2 ∫∞
0 y9/2G W (y)dy

∫∞
0 y3H P (y)dy

,

(16)
where the functions G(y) and H (y) are continued fractions
defined in Ref. [5] and their numerical fits read

F = (1 + 2.9k2λei
2y4)

−1/2

2
,

and

G = 1 + 865k2λ2
eiy

4

6
√

1 + 2.9k2λ2
eiy

4
(
1 +

√
1 + 2.9k2λ2

eiy
4
)(

1 + 640k2λ2
eiy

4
) .
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The new source term of the EM instability and the terms generated by the electric field are derived in the Appendix where we
found

W (y) = F2 − 1

3
αy

∂2F0

∂y2
+ α

(
−5

7

∂F2

∂y
+ 5

7

F2

y
− 10

21
y

∂2F2

∂y2

)
+ α

(
−80

63

∂F4

∂y
− 20

21

F4

y
− 16

63
y

∂2F4

∂y2

)
, (17)

and

P (y) = ∂F0

∂y
+

(
3

5

F2

y
+ 2

5

∂F2

∂y

)

−α

(
1

7

F4

y2
+ 76

105

1

y

∂F4

∂y
+ 4

21

∂2F4

∂y2
− 9

35

F2

y2
+ 9

35

1

y

∂F2

∂y
+ 48

35

∂2F2

∂y2
+ 12

35
y

∂3F2

∂y3
+ 3

2

∂2F0

∂y2
+ 3

5
y

∂3F0

∂y3

)
. (18)

Thus the expression of the growth rate (16) accounts for all
the contributions generated by the electric

−→
δE and the magnetic

field
−→
δB. In addition, unlike previous works, the anisotropy of

order four is involved in the expression of the DR. One has
found also that all the other components Fn>4 do not contribute
to the growth rate.

In Fig. 3 we display the growth rate as a function of the
collisionality parameter kλei . We can see that for α = 1 and
α = 2, the quasistatic EM modes are strongly unstable. In
particular for α = 1 we obtain γmax = 5.5 × 1012 s−1 and
for α = 2, the growth rate reaches a very high value, about
γmax = 1.6 × 1013 s−1. In both cases the most unstable modes
are within the quasicollisionless range since kλei = 17 and
kλei = 27, respectively. We should remark, however, that
significant unstable modes are also driven in the collisional
part of the spectrum; e.g., for α = 2 and kλei = 0.2, growth
rates of about 1.4 × 1011 s−1 can be observed. For increasing
α, the general behavior of this instability can be summarized
as follows: the maximum growth rate increases significantly
with α, the spectrum of unstable modes becomes wider toward
both collisional and collisionless range, and the most unstable
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FIG. 3. Growth rate as a function of the dimensionless parameter
kλei . The solid lines correspond to the results with the full expressions
given by Eqs. (17) and (18); the dashed lines correspond to the results
obtained with only the first terms in Eqs. (17) and (18). The simulation
parameters are Z = 13, T = 5 keV, an electron density n = 9.8 ×
1020 cm−3, and a laser wavelength λlaser = 1.06 μm.

modes are almost collisionless. It may be noted that nonlinear
stabilizing terms significantly reduce the growth rates as shown
by the dashed curves in Fig. 3.

It was numerically checked that for α � 1, the new
stabilizing terms in Eqs. (17) and (18) are comparable in
magnitude to the terms used previously [22]; therefore this
justifies taking them into account in the stability analysis
of the EM modes. For α � 1 the stabilizing term derived
in Ref. [22] [the second term in Eq. (17)] is dominant; the
other terms proportional to αn with n > 2 are still negligible.
By increasing α, the temperature anisotropy becomes larger
and the instability driven term is, hence, more important.
However, in the same time the stabilizing terms increase but
less significantly than the source term; as a result the growth
rate finally enhances with increasing α. For high values of
α typically greater than 0.5, oscillatory electric fields may
drive strong quasistatic EM growing modes and magnetic
fluctuations present in the plasma could be amplified to the
megagauss range. In Ref. [14] only one numerical value for
the growth rate was presented. Taking the same physical
conditions (α = 0.3, T = 4 keV, and n = 9.8 × 1020 cm−3)
we obtain a growth rate about 1011 s−1 which is one order of
magnitude lower than the result obtained in Ref. [14]. This can
be explained by the fact that in Ref. [14], the kinetic model
does not include the stabilizing terms and uses a numerical fit
for the isotropic EDF F0 valid only in the range α � 1.

We can mention other saturation mechanisms of this
instability such as those displayed in Eqs. (17) and (18).
First, generally the feedback effects of the magnetic field
on the plasma should lead to a saturation of the B field
when it reaches very high intensities. In addition unstable
EM modes are generated in a wide extent of wave numbers.
For α = 2, a typical mean free path about λei ∼ 1 μm, and
growth rates greater than 109 s−1, the wave numbers range
from 104 to 4.4 × 107 m−1. For a typical Larmor radius of
about rL ∼ 1 μm, the quasilinear regime is met if roughly the
condition �krL < 1 is verified [23]. It should therefore be
expected that the EM modes in turn influence the EDF. Owing
to the quasilinear diffusion, the EDF will evolve slowly with
the time, resulting in saturated growing modes. Likewise the
energy of a strongly unstable mode can be transferred from
a part of the spectrum to another one by the mode coupling
mechanisms which have the effect of reducing the instability
efficiency. In laser-created plasmas the effects of the magnetic
field can also be moderated by the plasma inhomogeneity
responsible for the convection of the magnetic modes.

023205-5



BENDIB, BENDIB-KALACHE, CROS, DEUTSCH, AND MAYNARD PHYSICAL REVIEW E 95, 023205 (2017)

IV. SUMMARY

In this paper the stability analysis of EM modes in
plasmas heated by the inverse bremsstrahlung mechanism is
presented in the physical conditions as the electron quiver
velocity can be comparable in magnitude to the thermal
velocity (α � 2). A DR was analytically derived that takes
into account the contribution of all nonlinear terms on α

into the expression of the growth rate. Applications of our
results to typical inertial fusion plasmas have shown that
EM modes with growth rate larger than 1012 s−1 are driven
by the temperature anisotropy induced by the collisional
absorption. This result complements that of Ref. [7] where
moderate growing modes were found in the range α � 1.
Although quasilinear or nonlinear mechanisms should lead to
a saturation of the instability, strongly growing EM modes that
reach the megagauss range are expected in plasmas heated by a
laser wave in the regime α � 1. We note that in inhomogeneous
plasmas this magnetic field source must be added to other
magnetic sources (thermoelectric source, etc.) and as a result
the total self-generated magnetic field is the sum of all these
contributions. This should produce a B field that has a large
spatial scale extent ranging from the collisional to collisionless
limits. The relativistic regime as studied by Avetissian et al.
for nonlinear collisional absorption [19,20] remains an open
problem for this instability and it will be addressed in a future
work.
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APPENDIX: SOURCE AND STABILIZING TERMS
IN THE PERTURBED VLASOV-LANDAU EQUATION

In this Appendix we give the expansion of the source term
given by Eq. (15) on the Legendre polynomial basis. For the
sake of clarity we rewrite this equation below:

S = e

m
δB

(
vx

∂F

∂vz

− vz

∂F

∂vx

)
+ e

m
δE

∂F

∂vx

− ev2
0

2m
δE

∂3F

∂v3
x

− ev2
0

2m
δB

∂

∂vx

(
vx

∂2F

∂vx∂vz

− vz

∂2F

∂v2
x

)
, (A1)

where the EDF is expanded as

F (−→v, t) =
∞∑

n=0

Pn(μ)Fn(v,t),

and where

Pn(μ) = 1

2nn!

dn

dμn
[(μ2 − 1)

n
]

is the Legendre polynomial of order n. To calculate the
different terms in Eq. (A1) we will use throughout this

Appendix the standard recursive relations

(1 − μ2)P ′ = n(n + 1)

2n + 1
(Pn−1 − Pn+1), (A2)

μPn = n + 1

2n + 1
Pn+1 + n

2n + 1
Pn−1θ. (A3)

In the first step let us develop the first order derivative of
the EDF,

∂F

∂vz

=
∞∑

n=0

vz

v

(
−μP ′

n

Fn

v
+ Pn

dFn

dv

)
,

∂F

∂vx

=
∞∑

n=0

[
P ′

n(1 − μ2)
Fn

v
+ μPn

dFn

dv

]
.

We can easily express the two first terms in (A1) as

(
vx

∂F

∂vz

− vz

∂F

∂vx

)
=

∞∑
n=0

−vz

v
P ′

nFn, (A4)

and

∂F

∂vx

=
∞∑

n=0

[
(n + 1)(n + 2)

2n + 3

Fn+1

v
+ n + 1

2n + 3

dFn+1

dv

− n(n − 1)

2n − 1

Fn−1

v
+ n

2n − 1

dFn−1

dv

]
Pn. (A5)

Then to calculate the third term in (A1), we calculate the
second order derivative,

∂2F

∂v2
x

=
∞∑

n=0

CnPn,

where

Cn =
[

(n + 1)(n + 2)

2n + 3

Bn+1

v
+ n + 1

2n + 3

dBn+1

dv

− n(n − 1)

2n − 1

Bn−1

v
+ n

2n − 1

dBn−1

dv

]

and

Bn =
[

(n + 1)(n + 2)

2n + 3

Fn+1

v
+ n + 1

2n + 3

dFn+1

dv

− n(n − 1)

2n − 1

Fn−1

v
+ n

2n − 1

dFn−1

dv

]
.

In addition we calculate the third order derivative, obtaining

∂3F

∂v3
x

=
∞∑

n=0

[
(n + 1)(n + 2)

2n + 3

Cn+1

v
+ n + 1

2n + 3

dCn+1

dv

− n(n − 1)

2n − 1

Cn−1

v
+ n

2n − 1

dCn−1

dv

]
Pn. (A6)

023205-6



ELECTROMAGNETIC INSTABILITY IN PLASMAS HEATED . . . PHYSICAL REVIEW E 95, 023205 (2017)

The last term in Eq. (A1) involves two second order derivatives of the EDF that we can express in the form

∂

∂vx

(
vx

∂2F

∂vx∂vz

− vz

∂2F

∂v2
x

)
= vz

(
{(μ2 − 2)P ′

n + [2n(n + 1) + 1]μPn} 1

v2

dFn

dv
+ n(n + 1)[(1 − μ2)P ′

n − 2μPn]
Fn

v3

− (μPn + μ2P ′
n)

1

v

d2Fn

dv2

)
. (A7)

The geometry of the EM modes studied in this work
is summarized by vz

v
= cos θ and μ = sin θ cos ϕ. Thus the

perturbed EDF and the right-hand side of Eq. (14) are expanded
on the spherical harmonics basis Ym

l (θ,ϕ) and the relevant
component is δf ∓1

2 . This component is required to deduce
the low-frequency current density in the Ampere-Maxwell
equation. The result is that only the components proportional to
Y∓1

2 (θ,ϕ) in the expressions W and P in Eqs. (17) and (18) are
relevant. More precisely we keep the components proportional

to μ in Eqs. (A5) and (A6) and the components proportional to
μcosθ in Eqs. (A4) and (A7). The relevant terms in Eqs. (A5)
and (A6) are obvious and can be readily obtained. To determine
explicit terms from Eqs. (A4) and (A7) we integrate these
equations over the solid angle d� = sin(θ )dθdϕ and use the
orthonormalization condition for the spherical harmonics. We
get from (A4) the first term in Eq. (17) and from (A7) the
three terms proportional to α. The other components provided
a vanishing contribution.
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