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A. V. Artemyev,1,2 A. I. Neishtadt,2,3 A. A. Vasiliev,2 and D. Mourenas4

1Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, USA
2Space Research Institute, Moscow, Russia

3Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
4CEA, DAM, DIF, Arpajon, France

(Received 21 October 2016; published 3 February 2017)

In this paper we provide a theoretical model describing the evolution of the charged-particle distribution
function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic
waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be
characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at
resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic
equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution.
In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal
operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing.
The applicability of the proposed approach for the description of space and laboratory plasma systems is also
discussed.
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I. INTRODUCTION

The relaxation of unstable plasma distributions in collision-
less space plasma systems is realized through plasma wave
generation and the following charged-particle scattering by
these waves. This is a fundamental process, responsible for
many phenomena in space and laboratory plasmas. One of the
brightest examples is electron acceleration in radiation belts,
which results in aurora formation [1,2] and represents a real
hazard for artificial satellites in activity [3]. Assuming that
the wave spectrum is wide enough and the wave intensity is
sufficiently low, one can model the wave-particle resonant
interactions using quasilinear theory [4–7] generalized for
systems with inhomogeneous magnetic field and background
plasma [8,9]. However, various recent spacecraft observations
in the near-Earth plasma environment [10–14], laboratory
experiments [15,16], and inertial confinement fusion sim-
ulations and experiments [17–19] have demonstrated that
the applicability of quasilinear theory is often questionable,
because electrons happen to interact with coherent waves
sufficiently intense to significantly influence electron motion
over long time intervals. There are two main effects of
such nonlinear wave-particle interactions: particle trapping
by the waves (phase trapping) and particle scattering (phase
bunching) with nonzero average change of particle energy
[20–22].

The theoretical description of nonlinear wave-particle in-
teraction is based on analysis of individual particle trajectories
resonating with waves [23–26] or on a dynamical system
approach [27,28]. These analyses provide all characteristics
of particle acceleration and scattering [29–31]. Currently,
results derived from this test-particle approach are widely used
for predictions of charged-particle acceleration [32–36] and
nonlinear wave generation [37–39]. However, a crucial and
still unresolved issue is how to include the characteristics of
individual short-term particle interactions with intense waves
into a kinetic equation describing the full evolution of the
particle distribution function.

Rapid particle transport in phase space via trapping by
intense waves cannot be described by differential operators.
Thus, integral operators were proposed to include them into a
kinetic equation [40–42] to take this process into account.
However, in many plasma systems with nonlinear wave-
particle interaction, trapping effects are somehow compen-
sated by effects of nonlinear scattering [35,43,44], i.e., the
rapid acceleration of a small population of trapped particles
corresponds to a slight energy decrease for a large population
of scattered particles. This fine balance may allow some intense
wave to propagate in an inhomogeneous plasma without
significant damping [22]. Therefore, effects of trapping and
scattering should be included into the kinetic equation with
a proper treatment of the relationship between these two
processes. A possible approach for constructing such a model
was proposed in Ref. [45], where a generalized Fokker-Planck
equation has been derived in a simplified but illustrative
case. This approach is based on the recognition that trapping
is a probabilistic process, i.e., that one can introduce the
probability for an individual particle to get trapped during
one passage through the resonance [46–49]. In such a case,
the probability of trapping can be shown to be directly related
to the drift in a phase space due to nonlinear scattering [45].

As a significant improvement over our previous preparatory
work [45], we consider here a complex system resembling
many realistic plasma systems—e.g., interaction of electrons
with an electrostatic whistler-mode wave [50]—and combine
several earlier results to derive a generalized kinetic Fokker-
Planck equation properly describing the dynamics of this
complex system. Namely, we apply to this system the methods
proposed in Ref. [35] to derive an analytical expression for the
drift velocity Vh due to particle nonlinear scattering and the
methods from Ref. [51] to evaluate the probability of trapping
�; the proof of the relationship between Vh and � provided in
Ref. [45] is similarly used to construct a generalized Fokker-
Planck equation for the particle-distribution function. The
combination of these three main results allows us to describe
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for the first time (to the best of our knowledge) a realistic
plasma system with nonlinear wave-particle interaction by
means of a kinetic equation. To provide a detailed description,
we first repeat some elements of previous investigations,
e.g., we demonstrate that the derived analytical equations for
trapping probability and efficiency of scattering work accu-
rately. Next, these analytical equations are used to derive the
generalized Fokker-Planck equation describing the long-term
evolution of the full particle-distribution function. Solutions of
this equation are finally shown to be in good agreement with
results of test-particle simulations.

II. HAMILTONIAN EQUATIONS

We consider nonrelativistic charged-particle motion (mass
m, charge e) in an inhomogeneous magnetic field B(s), where
s is a field-aligned coordinate. The system also contains an
electrostatic wave propagating along this magnetic field. Thus,
transverse particle motion (gyrorotation around magnetic
field) is not perturbed by the wave-field-aligned electric field,
and we can use a guiding-center approximation for the particle
Hamiltonian [52]:

H = 1

2m
p2

‖ + μB(s) + e�(s) sin φ,

where p‖ is the particle momentum conjugated to s, μ is
the magnetic moment, and wave scalar potential amplitude is
�(s) = �0u(s) (function u < 1 describing the distribution of
wave field along a magnetic field line). For a constant wave-
phase velocity, the phase φ can be written as φ = k0s − ωt

(k0 being the wave number and ω the wave frequency). Using
typical energy H0 and spatial scale of background magnetic
field variation R, we introduce dimensionless variables: p =
p‖/

√
H0m, z = s/R (thus, time is normalized to R/

√
H0/m),

H = H/H0. We normalize the magnetic field B(z) to its
minimum value B0, yielding b = B/B0. Thus, the dimen-
sionless frequency of particle oscillations along magnetic
field lines is �b = √

μB0/H0. Wave amplitude is normalized
as ε = e�0/H0. We also introduce the dimensionless wave
number k = k0R and dimensionless wave-phase velocity vφ =
ω

√
m/H0/k.

The new dimensionless Hamiltonian H describing particle
oscillations in the (z,p) plane with frequency �b and inter-
action with an electrostatic wave propagating along z with
velocity vφ = const takes the form

H = 1
2p2 + 1

2�2
bb(z) + εu(z) sin φ,

φ = k(z − vφt). (1)

We further consider a background magnetic field with a spatial
scale R much larger than the wavelength, i.e., k = k0R � 1.
We expand the dimensionless magnetic field around its
minimum value at z = 0 and keep the three first terms of
this expansion: b(z) = 1 + z2 + b0z

4/2 (see discussion for
explanations why b0 �= 0 is important). Wave amplitude is
taken as much smaller than typical particle energy ε � 1 (i.e.,
the wave field perturbs only slightly particle motion along the
almost entire particle trajectory). We also assume the following
relationship between the two small parameters ε and 1/k: ε ∼
1/k. We consider here realistic electrostatic waves generated

FIG. 1. Particle trajectory: top panel shows the long-term evolu-
tion of particle energy h, middle and bottom panels show fragments of
trajectory for scattering (left) and trapping (right). System parameters
are �b = 1, vφ = 0.5, k = 100, b̃0 = 2h0b0/�2

b = 0.1, ε = 0.05, and
initial particle energy equals h0 = √

2.

at the magnetic field minimum z = 0 and propagating along
magnetic field lines [82,88]. Therefore, the wave amplitude
∼u grows with |z|: u = (tanh(z̃) − tanh(z̃0))/2 for z � 0, with
z̃ = (z − z0)/l, z̃0 = −z0/l, z0 = 1, and l = 3 (for the sake of
simplicity, we further take u = 0 for z < 0).

Two examples of solutions of Hamiltonian equations for
Hamiltonian Eq. (1) are shown in Fig. 1. Far from the resonance
φ̇ = 0, particles move along regular closed trajectories in
the (z,p) plane. These trajectories correspond to particle
oscillations in the potential ∼�2

bb(z)/2 with frequency ∼�b.
High-frequency waves (kvφ = ω � �b) cannot disturb this
motion. However, in the vicinity of the resonance φ̇ = 0,
the wave phase φ changes at a speed comparable with
particle velocity of motion. Therefore, particle motion can
be significantly disturbed by the wave field. There are two
main effects corresponding to such a disturbance: scattering
and trapping. The left panels of Fig. 1 show examples of
scattering when particle energy is slightly changed during
the resonance crossing. This change consists of a nonzero
mean value and a stochastic part. In case of many passages
through the resonance, scattering can result in diffusive energy
variations (and/or energy drift). The right panels of Fig. 1 show
an example of particle trapping by the wave field. Trapped
particles have their characteristic motion essentially modified
and start moving with the wave (i.e., p ≈ vφ). Trapped motion
stops when a particle escapes from the resonance. During such
a trapped motion, particle energy changes regularly as z ∼ vφt
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and p ≈ vφ . To describe both scattering and trapping processes
for a larger particle ensemble, we start with the consideration
of a single particle motion near the resonance.

To study resonant effects in Hamiltonian Eq. (1), we
follow the standard procedure [54]: (1) introduce the fast
phase φ as a new variable; (2) expand the Hamiltonian
around the close vicinity of the resonance φ̇ = 0; (3) separate
the expanded Hamiltonian into two parts describing fast
oscillations of φ near the resonance and slow (z,p) change.
The analysis of the fast Hamiltonian provides us with local
system characteristics (amplitudes of scattering, probability of
trapping, etc.), whereas the analyze of the slow Hamiltonian
describes energy variation of trapped particles.

To introduce the wave phase φ as a new variable (I is the
conjugated momentum), we use the generating function W =
I (kz − ωt) + p̃z, where ω = kvφ ∼ k � 1 and (p̃,z̃) are new
variables:

p = ∂W

∂z
= p̃ + kI, z = ∂W

∂p̃
= z̃.

The corresponding new Hamiltonian H̃ = H + ∂W/∂t takes
the form

H̃ = −ωI + 1
2 (p̃ + kI )2 + 1

2�2
bb(z̃) + εu(z̃) sin φ. (2)

We omit tildes in p̃ and z̃ and write the equations of motion:

i̇ = −k
∂H̃

∂φ
= −kεu(z) cos φ,

φ̇ = ∂H̃

∂I
= −ω + k(p + i),

(3)

ṗ = −∂H̃

∂z
= −1

2
�2

bb
′(z) − εu′(z) sin φ,

ż = ∂H̃

∂p
= p + i,

where i = kI . Equations (3) show that φ changes much faster
than (z,p,i) (because φ̇ ∼ k). The resonant condition −ω +
k(p + i) = 0 gives the resonant iR = vφ − p. We expand
Hamiltonian H̃ around the resonant surface IR = iR(z,p)/k:

H̃ ≈ 	(z,p) + 1
2g(z,p)(I − IR)2 + εu(z) sin φ, (4)

where

	(z,p) = −vφiR + 1
2 (p + iR)2 + 1

2�2
bb(z)

= vφp + 1
2�2

bb(z) − 1
2v2

φ, (5)

and g = ∂2H̃ /∂I 2 is evaluated at I = iR/k (g = k2). We
introduce a new momentum K = I − IR with the generating
function W1 = p̄z + (K + IR)φ (where (z̄,p̄) are new vari-
ables):

H̄ ≈ 	(z̄,p̄) + 1

2
k2K2 + εu(z̄) sin φ + {IR,	}φ

= 	(z̄,p̄) + 1

2
k2K2 + 1

2
�2

b

b′(z̄)

k
φ + εu(z̄) sin φ. (6)

We introduce the Hamiltonian F = H̄ − 	 and omit bars in
(z̄,p̄):

H̄ = 	(z,p) + F,
(7)

F = 1

2
k2K2 + 1

2
�2

b

b′(z)

k
φ + εu(z) sin φ,

FIG. 2. Phase portrait of system Eq. (7).

where kε ∼ 1. The Hamiltonian F describes fast (φ̇ ∼ k)
oscillations of wave phase φ, whereas the Hamiltonian 	(z,p)
describes slow variation of (z,p). For �2

bb
′(z) < 2kεu(z)

there is a region in the phase plane (φ,K) filled with closed
trajectories (see Fig. 2). The corresponding area of this region
is

S = 2
∫ φmax

φ1

Kdφ

=
√

8

k3

∫ φmax

φ1

√
kFs − 1

2
�2

bb
′φ − kεu sin φdφ

=
√

4�2
bb

′

k3

∫ φmax

φ1

√
φmax − φ + a(sin φmax − sin φ)dφ

= R(z)

k3/2
, (8)

where Fs is the value of F at the saddle point (see Fig. 2),
φ1 and φmax are shown in Fig. 2, and a = 2kεu(z)/�2

bb
′(z).

Particles moving along closed trajectories oscillate around
the resonance φ̇ = 0. Such trapped particles propagate with
the wave. In contrast, transient particles moving along open
trajectories cross the resonance in a short time interval and
can merely be scattered by waves. To characterize resonant
interaction of a wave with a particle ensemble, we should
describe the evolution of the energy of trapped particles, the
energy variation of transient particles, as well as the transitions
between transient and trapped populations. These transitions
correspond to a transient particle getting trapped into reso-
nance and a trapped particle escaping from the resonance.
During trapped particle motion, its phase φ and corresponding
conjugated moment K oscillate much faster than (z,p) change.
Thus, the area Iφ surrounded by a closed trajectory in (φ,K)
plane can be considered as an adiabatic invariant [53]. This
invariant is equal to the area S at the moment of capture into
trapping. Conservation of Iφ guarantees that trapped particle
escapes from the resonance when a decreasing S returns to
a value equal to Iφ , i.e., equal to the value at the moment of
trapping. Therefore, particle escape from the resonance can
be described using the time profile S(z,p) = S(t) along the
resonant trajectory, i.e., when (z,p) evolution is described by
the Hamiltonian 	. Trapping into resonance also depends on
the S(t) profile: to be trapped, a particle should approach
the resonance when S increases. We describe the process
of trapping-escape and corresponding energy variations in
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FIG. 3. Probability of trapping: numerical (dots) and analytical (curves) results. System parameters are �b = 1, vφ = 0.5, b̃0 = 0.1.
Different panels show result for different k: (a) k = 100, (b) k = 250, (c) k = 500.

Sec. II A, whereas Sec. II B is devoted to energy variation
for transient particles scattered in the resonance.

A. Trapping

The number of transient particles crossing the separatrix
and becoming trapped during a short time interval 
t equals
to the product of 
t and Ṡ. The ratio of 
tṠ to the total phase
space volume passing through the resonance 
tẆ with W =
| ∫ 2π

0 Kdφ| can be defined as a probability of trapping � [47].
This probability is equal to the relative number of particles that
will get trapped during one passage through the resonance. The
area S depends only on z, thus we have Ṡ = ż(∂S/∂z), where
ż = vφ at resonance. The phase space flux Ẇ = | ∫ 2π

0 K̇dφ|
can be calculated as

Ẇ =
∣∣∣∣
∫ 2π

0
K̇dφ

∣∣∣∣ = π�2
b

|b′(z)|
k

, (9)

where we take into account the Hamiltonian equation for
K from Hamiltonian Eq. (7). Therefore, we can write the
following expression for � = Ṡ/Ẇ:

� = 1

π

kvφ

�2
b|b′(z)|

∂S

∂z
= 1

π

vφ

�2
b|b′(z)|√k

∂R(z)

∂z
. (10)

Equation (10) should be evaluated at the resonant value of
z = zR:

zR =

√√√√−1 +
√

1 + 2b0�
−2
b

(
2h − v2

φ

)
b0

, (11)

where h is the particle energy Eq. (1) before resonant
interaction with the wave. Substituting Eq. (11) into Eq. (10),
we obtain � = �(h). Thus, for each given set of parameters
vφ , k, �b, and ε, we can evaluate the analytical � and compare
it with numerical calculations. We calculate the numerical
probability of trapping as the ratio of particles trapped during
one passage through the resonance to the total number of
resonant particles (we integrate numerically 106 trajectories).
Figure 3 shows that Eq. (10) describes the probability of
trapping quite well.

As trapped particles move with the wave (p ≈ vφ), they
gain energy. Then, after some time, trapped particles escape
from the resonance (see Fig. 1). To calculate the amount of en-
ergy gained by trapped particles before their escape from reso-
nance, one should consider the evolution of S along the trapped
particle trajectory. The coordinate corresponding to particle
escape from resonance zesc can be found from the equation

S(zesc) = S(ztrap), ∂S/∂z|z=zesc < 0, (12)

where ztrap is the coordinate at the time of trapping. Knowing
zesc, one can calculate the energy gained by particles:


h = 1
2v2

φ + 1
2�2

bb(zesc) − h = 1
2�2

b[b(zesc) − b(ztrap)],

(13)

where h is the particle energy before resonant interaction with
the wave. We have calculated the energy gain given by Eq. (13)
and compared it with numerical results. Figure 4 shows that
particle acceleration is correctly described by Eq. (13).
Therefore, we can calculate analytically both the number of
trapped particles and the energy that these particles can gain.

FIG. 4. Energies gained by trapped particles: numerical (dots) and analytical (curves) results. System parameters are �b = 1, vφ = 0.5,
b̃0 = 0.1. Different panels show result for different k: (a) k = 100, (b) k = 250, (c) k = 500.
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FIG. 5. Three profiles of Q(θ,a) function.

B. Scattering

In this subsection, we consider the scattering of resonant
particles (see one example of a scattered particle trajectory in
Fig. 1, left panel). Passage through the resonance results in
variation of momentum I [see Eqs. (3)]:


I = 2
∫ t∗

−∞
İ dt = −2εu(z)

∫ φ∗

−∞

cos φ

φ̇
dφ

= −
√

2εu(z)k2

√
k

∫ φ∗

−∞

cos φdφ√
Fk − �2

bb
′φ/2 − kεu(z) sin φ

= −
√

2εu(z)k
∫ φ∗

−∞

a1/2 cos φ√
2πθ − φ − a sin φ

dφ

=
√

2εu(z)kQ(θ,a), (14)

where a = 2kεu(zR)/�2
bb

′(zR), 2θ = kF/�2
bb

′(zR), and
φ∗ = φ∗(θ,a) is the solution of equation 2πθ − φ − a sin φ =
0 (φ∗ is the value of φ at time t∗ when the particle crosses the
resonance φ̇ = 0). The profile of function Q(θ,a) is displayed
in Fig. 5. Function Q is periodic over θ with period 1. The
resonant phase φ∗ depends on initial phase value far from the
resonance. The phase φ changes fast far from φ̇ = 0 and even
a small change of the initial phase can significantly change
φ∗. Therefore, it is reasonable to consider the average 
I .
Averaging should be performed over θ :

〈
I 〉 =
√

2εuk〈Q〉θ ,
(15)

Var(
I ) = 2εuk2
(〈Q2〉θ − 〈Q〉2

θ

) = 2εuk2Var(Q),

where z is evaluated at resonance. Figure 6 shows both
functions 〈Q〉θ and Var(Q). The average value 〈Q〉θ is equal
to zero for a < 1, i.e., for small wave amplitude we have only
a diffusive scattering without any drift in I space.

The jump 
I is related to the jump of energy [−ωI + h =
const, see Eqs. (1), (2)]:


I = 
h/ω = 
h/(kvφ). (16)

Thus, we can write

〈
h〉 =
√

2εv2
φu〈Q〉θ , Var(
h) = 2εv2

φuVar(Q), (17)

where u and Q are evaluated at z = zR . We calculate analytical
changes of energy due to scattering Eq. (17) and numerical
changes. Figure 7 shows that both drift 〈
h〉 and variance

FIG. 6. Profiles of 〈Q〉θ and Var(Q).

Var(
h) given by Eq. (17) describe numerical results rather
well.

III. EVOLUTION OF THE DISTRIBUTION FUNCTION

Equations derived in Secs. II A and II B provide all the
necessary information for modeling the evolution of a large
particle ensemble. Now, we introduce the distribution function
of particle moment f (I ). For a system with trapping and
scattering, the kinetic equation for this function was derived
in Ref. [45]:

∂f

∂t
= ∂

∂I

(
DII

∂f

∂I

)
− VI

∂f

∂I
− dVI

dI
(f − f∗)(I ), (18)

where DII = 〈
I 2〉/2τ0 (where 〈
I 2〉 = Var(
I ) + 〈
I 〉2),
VI = 〈
I 〉/τ0, (I ) is equal to one for I with � = 0 and to
zero for I with � > 0. The function f∗ is equal to f (I∗) where
I∗ is the value that a particle should have when it gets trapped in
order to escape from the resonance with I . Equation (18) was
derived for constant period of particle oscillations between two
passages of resonances τ0 = const and should be generalized
for our system with τ0(I ). Equation (18) describes the
evolution of the distribution f (I ) on a time scale much larger
than τ0, where τ0(I ) is the time between two successive
resonant interactions. The first two terms in Eq. (18) describe
particle scattering by an intense wave. If the wave amplitude
is not sufficiently large to provide a > 1, the drift velocity VI

drops to zero (see Fig. 6) and only the diffusion term ∼DII

provides some variation of the particle distribution f (I ). The
last term in Eq. (18) describes particle transport in I space
due to trapping. To write this term in the present form, we
employ the useful equality derived in [45]: � = −dVI /dI .
This equality describes the relation between probability of
trapping and drift velocity and it is based on a very important
property of the integral Eq. (14): 〈
I 〉θ = −sign(a)S/2π

[54,55]. The term ∼(f − f∗) is nonlocal, because it describes
the change of particle distribution at I as a function of the
particle distribution at I∗. Thus, Eq. (18) describes the nonlocal
probabilistic process of particle trapping and transport in I

space.
We start with a generalization of Eq. (18) for systems with

τ0 = τ0(I ) and then rewrite it for a distribution function of
energy h. The definition of the diffusion term allows us to keep
the first term in Eq. (18) with DII = 〈
I 2〉/2τ0(I ). However,
nonlinear terms ∼VI , ∼dVI /dI should be rewritten. Omitting
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FIG. 7. Energies gained by scattered particles: numerical (dots) and analytical (curves) results. System parameters are �b = 1, vφ = 0.5,
b̃0 = 0.1. Different panels show result for different k, ε: (a) k = 100 and ε = 0.05, (b) k = 250 and ε = 0.05, (c) k = 500 and ε = 0.02.

terms ∼dlnτ0/dI (τ (I ) changes insignificantly in our system;
see Fig. 8, left panel), we can rewrite Eq. (18) as

∂f

∂t
= ∂

∂I

(
DII

∂f

∂I

)
− VI

∂f

∂I
− dVI

dI

(
f − f∗

τ0

τ ∗
0

)
(I ),

(19)

where τ0 = τ0(I ), VI = 〈
I 〉/τ0(I ), τ ∗
0 = τ0(I∗).

Equation (19) can finally be rewritten as

∂f

∂t
= ∂

∂h

(
Dhh

∂f

∂h

)
− Vh

∂f

∂h
− dVh

dh

(
f − f∗

τ0

τ ∗
0

)
(h),

(20)

where we use the relation Eq. (16). For a given particle of
energy h, two successive resonant interactions are separated
by a time interval τ0(h) = (2π/�b)T (h), with

T (h) = 1

π

∫ z+

z−

�bdz√
2h − �2

bb(z)

= 1

π

∫ y+

y−

dy√
1 − y2 − b̃0y4/2

, (21)

where b̃0 = 2hb0/�2
b and y± are solutions of equation

1 − y2 − b̃0y
4/2 = 0. Figure 8 (left panel) shows the variation

of T (b̃0) with h.
Thus, Dhh and Vh are equal to the ratio of DII , VI , and

τ0(h). We use Eq. (11) for the resonant coordinate zR and plot
Dhh, Vh, dVh/dh in Fig. 8 (center panel). To define h(h∗),

we solve the equation h∗ + 
h(h∗) = h with 
h given by
Eq. (13). We also plot h(h∗) in Fig. 8 (right panel).

Using the functions from Fig. 8, we next solve Eq. (20)
numerically for three systems with different initial distribu-
tions f0(h) and parameters. To check these model solutions,
we numerically integrate 106 test-particle trajectories and plot
the corresponding distributions. The comparison of solutions
of Eq. (20) with results of fully numerical tracing demonstrates
that Eq. (20) describes well the evolution of the particle
distribution (see Fig. 9). It is worth noting that the first
numerical verification of Eq. (18) was done in Ref. [45]
for a very simplified (toy) system: model time functions
for coefficients in Hamiltonian Eq. (7), symmetric space
h∗ = h0 − h with Vh(h) = Vh(h0 − h) and uniform motion
τ0(h) = const. Figure 9 demonstrates the first results for a
realistic plasma system.

Figure 9 (left column) shows the evolution of the distribu-
tion f (h) in the system with k = 100, ε = 0.05. The initial
distribution f0(h) is localized at small energies h ∈ [0.5,1]
where the probability of trapping is positive (see Fig. 3).
Therefore, after only a short time interval, some particle
population is already transported to the high energy region
(h > 1.5), whereas the peak of the distribution drifts to
smaller energies due to the negative V < 0 (see Fig. 7).
Particle transport via trapping is very fast and efficient,
because the initial distribution has a maximum around the
peak value of probability. As a result, after only 10 bounce
periods (∼2π/�b) the distribution function already fills all
the available energy range and reaches an almost stationary
solution when in Eq. (20) both terms ∂f/∂h and ∼(f − f∗)

FIG. 8. The period T given by Eq. (21) is shown in the left panel; coefficients of Eq. (20) are displayed in the center panel; the function
h(h∗) is shown in the right panel. System parameters are �b = 1, vφ = 0.5, k = 100, b̃0 = 0.1, ε = 0.05.

023204-6



PROBABILISTIC APPROACH TO NONLINEAR WAVE- . . . PHYSICAL REVIEW E 95, 023204 (2017)

FIG. 9. Particle distributions obtained as a solution of Eq. (20) are shown in black, whereas results of test particle simulations are shown in
red. The initial distribution is shown in gray. Time evolution from top to bottom. System parameters are: �b = 1, vφ = 0.5, b̃0 = 0.1, ε = 0.05.
Different panels show result for different k and initial distributions: (a) run #1 with k = 100, (b) run #2 with k = 250, (c) run #3 with k = 100.
Four time moments are displayed: t�b = {1,3,5,10} for runs #1 and #2 and t�b = {3,5,10,25} for run #3.

tend to zero. Such an evolution of the particle distribution
corresponds to growth of the average particle energy 〈h〉 =∫

hf (h)dh/
∫

f (h)dh (see Fig. 10, run #1). For 10 periods
〈h〉 increases about three times and then saturates.

A similar evolution of the particle energy distribution can
be found in Fig. 9 (middle column), where solutions of Eq. (20)
are displayed for system parameters k = 250, ε = 0.05. The
larger effective wave amplitude ∼kε corresponds to a wider
energy range filled by trapped particles (h reaches ∼15; see

Fig. 3, right panel). Saturation of energy growth occurs at the
same time (about 10 bounce periods) as for the previous system
(compare runs #1 and #2 in Fig. 10).

In contrast to results shown in Figs. 9 (left and middle
column), the initial distribution for the run shown in Fig. 9
(right column) is localized at high energy h ∼ 3.5. For system
parameters k = 100, ε = 0.05, trapping is impossible in the
high energy range (see Fig. 3). Thus, particles start drifting
to small energies and the average energy 〈h〉 decreases (see
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FIG. 10. Average energy 〈h〉 for three runs from Fig. 9.

Fig. 9 (right column) and Fig. 10, run #3). Only when particles
reach sufficiently small energies (h < 1), does trapping start
to transport particles back to the high energy region and the
average energy 〈h〉 increases again (see time larger than 15
bounce periods). Energy saturation occurs only around 25
bounce periods, when the distribution function reaches an
almost flat shape.

IV. CONCLUSIONS

Equation (20) describes the long-term evolution of the
particle distribution in a system with nonlinear wave-particle
interaction. This equation can be applied to systems where
Landau resonance with electrostatic waves plays an important
role. There are several plasma systems in the near-Earth space
where such conditions are realized.

First of all, electron acceleration by parallel electric fields
of strong kinetic Alfven waves is believed to be responsible
for the formation of hot electron field-aligned distributions
in the aurora and the equatorial magnetosphere [56,57].
Corresponding wave-particle resonant interaction includes
both trapping and scattering [58] and, thus, can be modeled
by Eq. (20). A second good opportunity for applying the
proposed model concerns electron resonant interactions with
whistler-mode waves propagating in a quasielectrostatic mode
in the inner magnetosphere [10,13] as well as in related
laboratory experiments [15]. Observed wave amplitudes are
strong enough to provide electron trapping and acceleration
in the inhomogeneous dipolar magnetic field of the Earth
[50,59]. Third, spacecraft recently detected very intense bursts
of parallel electric fields in the equatorial inner magnetosphere
[60–62], magnetophause [63,64], and magnetotail [65,66] re-
gions. These bursts represent electrostatic solitary waves [44]
and can effectively trap and scatter electrons up to relativistic
energies [67–69]. Other possible applications correspond to
strong Langmuir waves observed in solar wind [70,71] and
intense kinetic Alfven waves predicted in solar corona [72]
and solar wind [73].

Finally, inertial confinement fusion experiments at the
National Ignition Facility (NIF) involving intense laser-plasma
interaction have demonstrated the presence of strong levels
of reflectivity due to backward stimulated Raman scattering
[74], driving forward-propagating high amplitude Langmuir
waves [17]. Such waves can in turn produce a significant
population of suprathermal electrons that may modify Raman

scattering but also penetrate inside the capsule and preheat
the fuel, reducing its compression and compromising ignition
[18,19]. Accurately determining this high-energy electron
tail is therefore crucial for both direct and indirect drive
laser fusion, and our proposed approach could allow a fast
exploration of this effect over a wide range of parameters
without resorting to time-consuming particle simulations or
experiments.

Figure 10 demonstrates an interesting effect of nonlinear
wave-particle interactions: both the growth and decrease of
average energy of a charged particle ensemble depend on the
initial distribution function and wave characteristics. If the
majority of the resonant particles can be trapped by the waves,
then the average energy increases significantly. In the opposite
situation when the majority of particles can be scattered
without trapping, the average energy decreases. Therefore,
there are some initial distributions for which the average
energy does not change, whereas for other distributions,
particle trapping generates a high-energy tail population. In
the presence of permanent particle sources and losses, such a
system can be balanced and provide acceleration of a small
particle population at the cost of slightly energy decrease of a
much larger particle population.

There are two important conditions (assumptions) which
should be satisfied. First of all, particle motion should be
sufficiently stochastic, to exclude correlations between phase
values φ which a particle has at two successive resonant
interactions. Second, the variable θ in Eq. (14) should be
distributed uniformly within the range θ ∈ [0,1]. The first
condition is satisfied due to magnetic field inhomogeneity b(z),
which leads to a dependence of the particle bounce period
given by Eq. (21) on energy. In this case, a small change
of energy in the resonance results in a change of bounce
period δT and, thus, a phase change δφ ∼ ωδT between
two resonant interactions. This removes from the system
any possible correlation between resonant phase values (see,
e.g., corresponding estimates in Refs. [75,76]). This effect of
resonant particle chaotic motion in inhomogeneous magnetic
field has been checked in [40,77–79]. The satisfaction of
the second condition was checked numerically in Ref. [80].
Moreover, Fig. 7 demonstrates that Eq. (14) is accurate enough.

We consider a simplified system with the harmonic wave
∼ sin φ and stationary background magnetic field. For more
realistic situations, both wave amplitude modulation (i.e.,
propagation of localized wave packets) and external noise of
magnetic field can be present in the system. Effect of wave
modulation reduces the probability of trapping [81,82] and
can be included into Eq. (20) through the multiplication factors
for Vh. High-frequency nonresonant fluctuations of magnetic
field (magnetic field noise) result in destruction of the invariant∫

Kdφ of trapped particle motion. This effect reduces the
time which particles spend in trapping region [83,84]. The
corresponding reduction of 
h (i.e., a modification of the
function h∗(h)) can be evaluated using approach proposed in
Refs. [84,85].

Equation (20) contains terms of the order of ∼ε (diffusion
coefficient) and ∼√

ε (drift velocity). Because ε � 1, terms
∼√

ε dominate the f (h) evolution and mask effects of slow
diffusion ∼ε. For a small wave amplitude, a < 1, only the term
∼ε is left and the f (h) evolution becomes much slower. As a
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result, Eq. (20) mainly pretends to describe the f (h) evolution
with an accuracy ∼√

ε. To increase the level of accuracy,
one should calculate the second order correction to Vh (i.e., a
term ∼ε).

The nonlocal term dVh/dh(f − f∗)(h) in Eq. (20) can be
written in the presented form only in systems where particle
transport due to trapping is defined by a single-valued mapping
h∗(h), i.e., when for each h∗ there exists only one h solution of
the equation h + 
h(h) = h∗. In the more general case, when
transport to h∗ is possible for different h, the nonlocal term
should be written in the form of an integral.

Equation (20) is written for a simple system comprising
only one intense wave. Averaging over a wave ensemble
requires that all waves be well separated in wave phase velocity
space to exclude overlapping of resonances (otherwise, non-
linear effects stop working and quasilinear theory should be
applied [86,87]). For a system with intense wave ensemble, one
needs to average the diffusion coefficient Dhh and drift velocity
Vh over wave characteristics. However, direct averaging
cannot be applied for the nonlocal term dVh/dh(f − f∗)(h),
because for each wave the mapping h(h∗) should be defined
separately. Instead of such an averaging, one should rather con-
sider the sum of nonlocal terms calculated for different waves
of the ensemble and take them into account with weighting
factors corresponding to the relative occurrence of each wave.

We have considered here a plasma system with Landau
wave-particle resonance, such that the change of adiabatic
invariant 
I directly corresponds to an energy change 
h.

In the more general case of cyclotron resonance, I depends
on both energy h and particle pitch-angle α. Thus, the change
of I should be written as 
I = (∂I/∂h)
h + (∂I/∂α)
α.
Using this equation and the conservation of energy H̃ from
Eq. (2), one can obtain both 
h and 
α. The corresponding
kinetic Eq. (18) will be two-dimensional with f = f (h,α),
i.e., particle trapping and particle drift will transport particles
in a 2D space. The corresponding expressions for trapping
probabilities and drift velocity in a system with cyclotron
resonances have already been derived in Refs. [22,51,89].

To conclude, we have described the nonlinear wave-particle
interaction using appropriate models of particle trapping and
nonlinear scattering. To provide equations describing the
probability of trapping and drift velocity of particles, we use
an analysis of particle trajectories expanded around wave-
particle resonance. We have used the derived expressions for
probability, drift velocity, and diffusion coefficient to construct
a generalized Fokker-Planck equation including the effects of
fast transport in phase space. Solutions of this equation have
been validated by results of test particle numerical simulations.
This new approach for the description of a large particle
ensemble in a system with intense waves can be applied to
many space and laboratory plasma systems.
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