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Electron Weibel instability in relativistic counterstreaming plasmas with flow-aligned
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The Weibel instability driven by two symmetric counterstreaming relativistic electron plasmas, also referred to
as current-filamentation instability, is studied in a constant and uniform external magnetic field aligned with the
plasma flows. Both the linear and nonlinear stages of the instability are investigated using analytical modeling and
particle-in-cell simulations. While previous studies have already described the stabilizing effect of the magnetic
field, we show here that the saturation stage is only weakly affected. The different mechanisms responsible for
the saturation are discussed in detail in the relativistic cold fluid framework considering a single unstable mode.
The application of an external field leads to a slight increase of the saturation level for large wavelengths, while
it does not affect the small wavelengths. Multimode and temperature effects are then investigated. While at high
temperature the saturation level is independent of the external magnetic field, at low but finite temperature the
competition between different modes in the presence of an external magnetic field leads to a saturation level
lower with respect to the unmagnetized case.
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I. INTRODUCTION

The Weibel or current-filamentation instability has attracted
extensive attention from both the astrophysics and laser-
plasma communities. In astrophysics, it is believed to be
the mechanism driving strong collisionless shocks in several
astrophysical scenarios, from γ -ray bursts and their afterglows,
to the interaction of relativistic jets with the interstellar
medium close to active galactic nuclei, or in supernova
remnants, etc. [1–5]. In the study of cosmic ray production,
the Weibel instability is often quoted as the mechanism able
to provide the intense magnetic field at the origin of charged
particle scattering and their subsequent acceleration via the
second-order Fermi mechanism [6,7]. Lately, laser-plasma
experiments have been able to identify the Weibel instability
driven by two counterstreaming high-energy flows [8,9]. In
this context, several numerical studies based on first-principle
simulations have been developed to study the physics of the
Weibel instability [10] and of the Weibel-mediated shock in
both astrophysics [5,11] and laser-plasma experiments [12,13].

Understanding the instability evolution in both its linear
and nonlinear phases and the prediction of the amplitude of
the Weibel-generated magnetic fields are therefore of primary
importance for a deeper insight into various astrophysical
events, as well as for laser-plasma related studies.

The Weibel instability has an electromagnetic nature and
it can be triggered by small amplitude electromagnetic fluc-
tuations. As charged particles get deflected by any fluctuation
of the magnetic field perpendicular to their initial velocity,
particles initially moving in opposite directions will concen-
trate in spatially separated current filaments hence amplifying
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the initial magnetic field perturbation (linear phase). As the
self-generated magnetic field amplitude grows, the particle
dynamics is strongly modified by the fields (nonlinear phase),
and various saturation mechanisms may set in. On a longer
timescale, filaments of parallel currents tend to attract each
other and merge, forming larger filaments (late merging phase).

A Weibel unstable initial condition requires an anisotropy
in the distribution function, which can be produced by a strong
temperature anisotropy (the scenario originally envisioned by
Weibel [14]) or by counterstreaming flows (driving the then so-
called current-filamentation instability). In both situations the
instability transfers energy from the particles to the magnetic
field and tends to isotropize the particle distribution function.

This instability has been at the center of several recent
works and different configurations have been investigated for
unmagnetized plasmas [15–17]. However, background mag-
netic fields are present in various astrophysical environments
where the instability is most likely to develop or have been
proposed in laser-plasma experiments as a way to control
and/or direct the high-energy plasma flows. Present studies
[18–20] related to the magnetized scenarios leave many open
questions, in particular regarding the saturation mechanisms
at play.

In order to clarify some of these issues, this paper studies
the case of a constant and uniform external magnetic field
aligned with two counterstreaming relativistic electron flows in
a neutralizing immobile ion background. Using both analytic
modeling and particle-in-cell (PIC) simulations, we highlight
the effect of the external magnetic field on the linear and
nonlinear phases of the instability. In particular we show that
the well-known result [18–21] that the growth rate of the
instability is reduced in the presence of a flow-aligned external
magnetic field does not imply that the latter has a stabilizing
effect in the nonlinear phase. Furthermore, we generalize
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previously proposed saturation mechanisms to account for
the presence of an external magnetic field. We show that the
magnetic field strength at saturation for a given wave number
is weakly affected by the external magnetic field. Temperature
and multimode effects are then investigated by seeding the
instability from the electromagnetic fluctuations of a thermal
plasma. At large temperatures we confirm that the saturation
level is unaffected by the presence of the external magnetic
field, while at lower (but finite) temperatures the external
magnetic field mitigates the redistribution of the magnetic
energy toward small wave numbers, resulting in a saturation
field somewhat smaller than without the external field.

The paper is structured as follows. Section II considers the
evolution of a single-mode with the cold relativistic plasma
model. The linear phase is first considered analytically in
Sec. II A 1. Theoretical predictions are compared with 1D3V
PIC simulations in Sec. II A 2. The various mechanisms
responsible for the saturation of the instability are studied
analytically in Sec. II B 1 and tested against simulations
in Sec. II B 2. Temperature and multimode effects are then
investigated in Sec. III. The linear phase is described within the
framework of the relativistic warm fluid theory in Sec. III A 1
and theoretical predictions for the growth rate are compared to
PIC simulations in Sec. III A 2. Sections III B and III C discuss
by means of PIC simulations of the nonlinear phase, saturation,
and late merging phase, respectively. Finally, Sec. IV presents
our conclusions.

II. COLD RELATIVISTIC PLASMA: SINGLE-MODE
THEORY AND PIC SIMULATIONS

A. Linear phase

1. Relativistic cold fluid theory

We will start first by an analytical description of the linear
phase of the Weibel instability. It can be studied by taking
ions at rest, providing a uniform neutralizing background for
the two counterstreaming electron species (with respective
densities n0/2 and drift velocities v0 = ±v0ẑ), modeled using
a relativistic cold-fluid model [22]. We consider a uniform
external magnetic field B0 = B0ẑ parallel to the initial electron
plasma drift velocity. Linearizing the governing equations and
considering all space- and time-dependent physical quantities
φ(t,x) � φ0 exp[−i(ωt − k⊥ · x)], where ⊥ refers to the direc-
tion perpendicular to the flow, we obtain the dispersion relation
for the purely transverse modes [18,19],

ω2
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where ω and k⊥ are the frequency and wave vector of
the considered modes, ωp =

√
4πe2n0/me is the plasma

frequency associated with the total density n0, and �0 =
−eB0/(γ0mec) is the cyclotron frequency of an electron in
the external magnetic field B0. Gaussian-CGS units will be
used throughout the paper.

The growth rate of the instability is found from the
dispersion relation Eq. (1) where ω = i� with � > 0. One
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where k = |k⊥|.
In the limit of large wave numbers c2k2 � �2
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0 ,
the growth rate takes the maximum and asymptotic value
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and we clearly see that � is reduced by the external magnetic
field �0 > 0. Moreover, from Eq. (2) we find that, in the
presence of an external magnetic field, filaments with size
larger than λstab = 2π/kstab, with

kstab = γ −1
0

(
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�2
0

− γ0
c2

ω2
p

)−1/2

, (4)

cannot be created. Note that kstab = γ −1
0 (r2

L − d2
e )

−1/2
with

rL = v0/�0 the Larmor radius of an electron with velocity v0

transverse to the external magnetic field and de = c
√

γ0/ωp

the relativistic skin-depth. The growth rate indeed vanishes for
k � kstab and only oscillatory solutions are admitted.

From Eqs. (3) and (4), we easily find that there is a critical
value of the external magnetic field above which the instability
is quenched. The critical value is found by imposing �0 =
v0ωp/(c

√
γ0) or rL = de, for which �max goes to zero and kstab

goes to infinity. The so-called critical magnetic field is given
by

Bc = √
γ0

v0

c

meωpc

e
. (5)

The condition B0 > Bc also corresponds to the case where
the period of the electron gyration around B0 is faster than
the growth time of the instability computed in the absence
of the external magnetic field. For values of the magnetic
field 0 < B0 < Bc, the formation of the filaments is slowed
down. This can be explained considering that once a particle
is deflected in the direction perpendicular to the initial flow,
toward the center of the filament, it starts gyrating around
the external magnetic field. Similar considerations explain the
stabilization of modes with large wavelengths, Eq. (4).

Figure 1 shows the growth rate �(k) for electron flows
with velocity vz0 = ±0.9c and external magnetic field B0 =
0.0 (light green line) and B0 = 0.75 Bc (dark purple line).
For B0 = 0.75 Bc (dark purple line), no unstable solutions are
found for k < kstab � 0.33 ωp/c, as predicted by Eq. (4). We
recall that without external magnetic field (light green line), the
growth rate in the limit of small wave number k2c2 � ω2

p/γ 3
0

increases linearly as �(k) � v0γ0k.
In the rest of the paper we always consider this large value

of the external magnetic field B0 = 0.75 Bc, in order to show
that even if the growth rate is strongly reduced the saturation
is not affected significantly.
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FIG. 1. Growth rate of the instability as a function of the wave
number for the cold plasma case (zero temperature). Analytical values
for the unmagnetized (light green line) and magnetized B0 = 0.75 Bc

(dark purple line) cases are computed from Eq. (2). Circles (squares)
correspond to the growth rate measured in 1D3V PIC simulations
with a single-mode seeded perturbation and B0 = 0 (B0 = 0.75 Bc).

Notice that for a given value of the external magnetic field,
the maximum growth rate Eq. (3) still depends on the electron
drift velocity (or γ0) and is reduced in the relativistic domain
with increasing flow velocity. It takes its largest value for γ0 =
b2

0 +
√

3 + b4
0 , with b0 = eB0/(mecωp). In the unmagnetized

case b0 = 0, this corresponds to v0 � 0.82 c.
The linear theory also predicts that Ez, the inductive

component of the electric field in the flow direction is phase-
shifted with respect to the magnetic field (the maxima of
Ez being located at the nodes of By). It is proportional to
�(k)By/k and grows as fast as the magnetic field By . At this
order there is no total density perturbation, and the electric
field Ex due to charge separation appears as a second order
term.

2. Simulation set-up and comparison with theory

The analytical predictions of Sec. II A 1 for the linear
phase of the instability are confirmed by a series of 1D3V
PIC simulations. These are carried out in Cartesian geometry
[x = (x,y,z) and considering ∇ = ∂x x̂ in 1D3V] with the
PIC code SMILEI [23]. The simulations also include the
nonlinear phase, discussed in Sec. II B 2. We consider two
symmetric cold counterstreaming electron beams with initial
drift velocities v0 = ±v0ẑ with v0 = 0.9 c (γ0 � 2.3 mildly
relativistic case). Simulations with γ0 = 50 (highly relativistic
case) have also been performed, but the mildly relativistic
case is representative of both situations, unless specified. The
system has initially no net current. A population of immobile
ions is taken into account in order to neutralize the total
charge. In this 1D geometry, the Weibel instability amplifies
the perturbations with wave vector k = kx̂, magnetic field
B = By ŷ, and inductive electric field E = Ezẑ.

In this section, a single mode is seeded as initial condition.
This is done by imposing, at t = 0, a magnetic field pertur-
bation By0(x) = δ sin(kx), with δ = 0.001 and λ = 2π/k the
wavelength of the seeded mode. We consider wave numbers in
the range 0.2 < kc/ωp < 15. The extension of the simulation
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FIG. 2. (a) Evolution in time of the magnetic energy (plain
line) and energies associated with the Ez field (dash-dotted line)
and Ex field (dashed line) for the simulation with seeded mode
k = 2.0 ωp/c. Light green lines refer to B0 = 0 and dark purple lines
to B0 = 0.75 Bc. All energies are normalized to the total initial flow
energy Uk0. (b) Spatial distribution of the magnetic field By (plain
line), electric field Ez (dash-dotted line) and Ex (dashed line) for
the simulation without external magnetic field in the linear phase
t � 12 ω−1

p .

box is Lx = 10λ and periodic boundary conditions are used.
The resolution in space is �x = λ/200 and in time is set to
the 95% of the CFL condition (c�t = 0.95 �x). The number
of macroparticles-per-cell is Np = 200 for each species.

Figure 2(a) shows the evolution in time of the energy in the
magnetic field By , electric fields Ez and Ex for the simulation
initialized with k = 2.0 ωp/c. Both unmagnetized (B0 = 0,
light green lines) and magnetized (B0 = 0.75 Bc, dark purple
lines) cases are presented. The phase of linear growth of
the magnetic energy can be clearly identified in the interval
t = 10 − 18 ω−1

p (t = 15 − 28 ω−1
p ) for the unmagnetized

(magnetized) case. The values of the corresponding growth
rates are reported in Fig. 1. A very good agreement with
the theory is obtained over the whole range of investigated
k values, for both the unmagnetized and magnetized cases.
In particular, the growth rate of the instability is found to be
reduced as B0 is increased. Similar agreement has been found
for γ0 = 50 (not shown).
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Figure 2(a) also demonstrates the mainly magnetic nature
of the Weibel instability despite Ez growing as fast as the
magnetic field By [Ez ∼ �(k)By/k]. During the linear phase,
the space-charge electric field Ex appears as a second-order
quantity. Indeed, it starts growing at a later time with respect
to the magnetic component and it grows with twice the
growth rate of the instability [Fig. 2(a)]. The generation of
this electrostatic field is a nonlinear effect, the onset of its
growth corresponding to the formation of the current filaments
resulting in a charge separation [24]. The Ez component of
the electric field is in counterphase with the Weibel-generated
magnetic field, as shown in Fig. 2(b), and tends to reduce
the current of the filaments slowing the particles down, as
predicted from linear theory.

B. Nonlinear phase and saturation

1. Theoretical considerations

It has been well established in the literature [1,25,26] that,
in the absence of an external magnetic field, two different
mechanisms lead to the saturation of the Weibel instability.
At small wave number (large wavelength), saturation arises
due to the so-called Larmor-Alfvén mechanism [1], while at
large wave number (small wavelength) the so-called trapping
mechanism is responsible for saturating the instability [26].
The generalization of these mechanisms to the magnetized
plasma case is, however, not straightforward. In what follows,
a single-particle dynamics approach allows us to retrieve
the saturation level predicted in the absence of an external
magnetic field, while providing a better understanding of
how these saturation mechanisms operate, and helps us to
generalize these results to the magnetized case.

Let us consider the single-particle dynamics in the fields
developed during the linear stage of the instability. Despite the
instability having a dominantly magnetic nature in its linear
phase (see Sec. II), we will consider the electron dynamics
governed by the total magnetic field as well as by the inductive
electric field Ez,

B(t,x) = By0 sin(kx)e�t ŷ + B0ẑ, (6)

E(t,x) = −Ez0
�

ck
cos(kx)e�t ẑ, (7)

where � = �(k) and Ez0 ∼ By0. The equation of motion of
an electron in the fields given by Eqs. (6) and (7) reads

dx

dt
= γ0v0

p̂x(t)

γ (t)
, (8)

dp̂x

dt
= −v̂z(t) �y0 sin(kx)e�t + v̂y(t)�0, (9)

dp̂y

dt
= −v̂x(t) �0, (10)

dp̂z

dt
= +v̂x(t) �y0 sin(kx)e�t + Ez0 cos(kx)e�t , (11)

where �y0 = −eBy0/(γ0mec), Ez0 = eEz0 �/(mecγ0v0k). In
this section, momentum and velocities have been normalized
such that p̂i = pi/(meγ0v0) and v̂i = vi/v0, where the velocity
v0 is by definition positive vz0 = vz(t = 0) = ±v0. No general
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FIG. 3. Typical trajectories of electrons with initial velocity v0 =
+v0ẑ (γ0 = 2.3) in the electromagnetic fields developed during the
linear stage of the instability: (a) k = 0.35 ωp/c (small k), (b) k =
2 ωp/c (large k). The trajectories are obtained numerically solving
Eqs. (8)–(11). No external magnetic field is considered (B0 = 0). In
the top panel the red-blue color map highlights the spatial distribution
of the Weibel-generated magnetic field. Blue (red) area corresponds
to regions of positive (negative) By .

analytical solution can be given for this system of equations.
Therefore, we first solve the system numerically, then we
derive analytical solutions valid under some approximations.

Typical electron trajectories obtained by numerically solv-
ing the system of Eqs. (9)–(11) are given in Fig. 3 for the
unmagnetized case γ0 = 2.3, considering two values of the
wave number k = 0.35 ωp/c [Fig. 3(a)], henceforth referred
to as the small-k case, and k = 2 ωp/c [Fig. 3(b)], henceforth
referred to as the large-k case, corresponding to two different
saturation mechanisms.

In both cases, the trajectories shown are those of electrons
with an initially positive velocity vz0 = v0 > 0, under the
effect of the fields given by Eqs. (6) and (7). These electrons
will be mainly deflected toward the magnetic node in kx = π

and form what we will refer to as “the filament,” the center of
which being located at kx = π .
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The numerical results are valid up to the saturation time
t = tsat, at which Bsat = By0e

�(k)tsat . In the figure the dashed
area corresponds to t > tsat as deduced in the following section.

The two different behaviors of the particle dynamics
depending on their k values are highlighted in Fig. 3. In the
small-k case, electrons located at the center of the filament
kx ∼ π see their longitudinal velocity vz decreased, even
vanishing then changing sign. In contrast, in the large-k case,
all particles reach the center of the filament kx = π with their
velocity along the z direction mainly unchanged vz ∼ v0.

The situation is totally symmetric if we consider particles
with initial velocity −v0, and the filaments form around kx =
0,2π .

a. Saturation mechanism in the small-k limit. In the small-
k limit, saturation will be reached because particles inside the
filament see their longitudinal velocity strongly reduced, hence
decreasing the total current in the filament. In the absence of the
external magnetic field, the saturation level can be recovered
by equating the characteristic size of a filament k−1 with the
Larmor radius rL = v0/|�y,sat| of an electron with velocity
±v0 in the Weibel-generated magnetic field. Similar estimates
have already been derived in the literature considering that
the saturation arises due to the Alfvén limitation of current
[27]. Indeed, as described in the Appendix, there exists a
maximum value of the current (Alfvén current), beyond which
the longitudinal velocity vz of a particle initially at the border of
the filament vanishes while crossing the center of the filament,
and then reverses, due to the effect of the self-generated
magnetic field. This estimate of the Alfvén limit, however, does
not account either for the fact that, in the Weibel scenario, the
magnetic fields are continuously and exponentially building
up, nor for the effect of the resulting inductive electric field.
However, by considering both these effects, we can show that
we obtain the same saturation value that the (static) Alfvén
limit. From Eq. (7), we see that the inductive electric field is
in counterphase with the Weibel-generated magnetic field and
has its maximum at the center of the filament. The dynamics
of a particle initially located at the center of the filament
kx ∼ π plays a central role in the saturation of the instability
as shown in Fig. 3. This position corresponds to a node of
the magnetic field By , so that the particle dynamics will be
marginally affected by the magnetic field. It will be governed
by the electric field Ez, leading to the reduced equation of
motion, from Eq. (11),

dp̂z

dt
= −Ez0 e�t . (12)

Solving Eq. (12) and taking for the saturation time the moment
in which the longitudinal momentum vanishes p̂z = 0, allows
one to derive the strength of the magnetic field at saturation,

Bk�
sat = γ0

v0

c

ck

ωp

meωpc

e
. (13)

This is exactly the same value as obtained from the Alfvén
current limitation or Larmor radius saturation. The single-
particle solution shows that taking into account only the
temporal growth of the magnetic field By and neglecting the
induction field Ez would overestimate the saturation level.
Indeed, Eq. (13) is valid only if one considers both the fields
By and Ez, thus finally justifying the use of the static condition.

The static Alfvén picture can be generalized to the case
with external flow-aligned magnetic field. The calculations we
performed in this configuration show that the saturation level
increases with respect to the unmagnetized case. Considering
a sinusoidal profile for the current and the magnetic field, in a
1D configuration, and calculating the field that corresponds to
p̂z = 0 for a particle moving toward the center, the predicted
saturation value is

Bk�
sat = f (A)γ0

v0

c

ck

ωp

meωpc

e
, (14)

with f (A) = [cos(π/2(1 − A))]−1 > 1 for A < 1, and
f (A) = 1 for A � 1, with A = v0/|�0x0| and x0 = λ/4 the
particle initial position. Equation (13) is recovered in the limit
A � 1. The detailed derivation is given in the Appendix.

b. Saturation mechanism in the large-k limit. Let us start
with the unmagnetized case. In the large-k limit, the particle
longitudinal velocity is mainly unchanged vz ∼ v0 and thus
the saturation follows from a different mechanism. Saturation
is expected once all the particles have been injected inside
the filament, i.e., once they have reached kx = π (Fig. 3).
Thereafter, no additional particles can be found to increase the
current and contribute to the instability growth. The current of
all the particles with velocity v0 in one filament of extension
∼λ/2 remains much smaller than the Alfvén limit. In the large-
k limit �(k)/ck � 1, the contribution of the longitudinal field
Ez can be neglected [see Eq. (7)]. Indeed, numerically solving
Eqs. (8)–(11) with or without Ez (not shown) does not affect
the particle trajectories. Neglecting the effect of the electric
field and considering vz ∼ ±v0, the system of Eqs. (9)–(11)
leads to an ordinary differential equation for the normalized
particle position ξ (t) = kx(t),

d2ξ

dτ 2
= −α sin(ξ ) exp(τ ), (15)

with τ = �t and α = sgn{vz0} v0k�y0/�2, with initial condi-
tions ξ (τ = 0) = kx(t = 0) = ξ0 and dξ/dτ |τ=0 = 0.

Considering a particle initially located at a maximum or
minimum of the magnetic field ξ±

0 = π ± π/2 leads to

ξ±(t) = ξ±
0 ∓ α [exp(τ ) − τ − 1]. (16)

The particle sees its velocity vx ∝ eτ exponentially increasing
with time, and depending on the sign of vz0, the particle will
head toward one or the other node of the magnetic field,
hence spatially segregating particles with opposite velocities
in well-separated currents of opposite directions. Taking the
limit τ � 1, one can extrapolate from this result the time
τ ∗ ∼ ln (π/|2α|), at which the particle reaches the node of the
magnetic field, and infer from this the corresponding magnetic
field amplitude at saturation Bsat = By0 exp(τ ∗), leading to

Bk�
sat = π

2

γ0�
2
0

v0k

mec

e
. (17)

Usually in the literature [26], the magnetic field strength
at saturation at large k is computed by equating the so-called
bouncing frequency ωb in the magnetic field at saturation with
the growth rate of the instability [25]. Computing the bouncing
frequency of an electron in the saturation field given by Eq. (17)
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would indeed give

ωb =
(

ev0kBk�
sat

γ0mec

)1/2

� �. (18)

While Eq. (17) leads a prediction similar to Eq. (18), it
highlights that saturation is obtained because all particles are
injected and trapped into the filament.

The criterion on the bouncing frequency can be generalized
in the presence of an external magnetic field. The bouncing
frequency in this case becomes

�b =
√

ω2
b + �2

0, (19)

with ωb defined in Eq. (18). Considering that saturation is
reached when the bouncing frequency equates the growth
rate of the instability �, the expected saturation level would
depend on the strength of the external magnetic field (see, e.g.,
Ref. [20]).

To generalize the result of Eq. (17) in the case of an external
flow-aligned magnetic field, we calculate the saturation of the
instability by considering that saturation occurs when all the
electrons participate to the current filament. As a consequence,
we can show that the saturation level of the instability is
independent of the external magnetic field. We proceed as in
the unmagnetized case: (i) we assume that the particle velocity
is not drastically reduced at saturation vz(t) ∼ ±v0, and (ii) we
neglect the effect of the longitudinal field Ez on the particle
motion, as �(k)/k � 1 in the large-k limit. Both assumptions
are found to be in good agreement with the numerical solution
of Eqs. (8)–(11), even in the presence of Ez. One can write
the equations of motion for a particle initially close to the
maximum of the magnetic field, using sin(kx) � 1, in the form

d2vx(t)

dt2
= v0��y0e

�t − �2
0vx. (20)

Looking for exponentially growing solution vx = vx0e
�t , as

inferred from the unmagnetized case, the particle displacement
δx = x − x0 reads δx = vx0e

�t/�. The saturation level is
obtained for δx(tsat) � λ/4, leading to

Bk�
sat = π

2

γ0
(
�2 + �2

0

)
v0k

mec

e
. (21)

In the limit B0 = 0, we recover the result of Eq. (17). Moreover,
Eq. (21) predicts that the saturation level does not depend
on the application of the external magnetic field for large k.
Indeed, the growth rate �(k) decreases with the application
of the external magnetic field [Eq. (3)], but this variation is
exactly compensated by the term �2

0 in Eq. (21), since the
maximum value of the growth rate is �2 ∼ �2

0 − �2
0, with �0

the growth rate in the absence of external magnetic field. This
is in contradiction with the estimate obtained considering the
bouncing frequency but it is found to be confirmed by PIC
simulations, as will be shown in Sec. II B 2.

2. Saturation phase in the PIC simulations

In this section we compare the theoretically predicted
saturation level with the 1D3V PIC simulations presented in
Sec. II A 2. The saturation levels are shown in Fig. 4 as a
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FIG. 4. Magnetic field strength at saturation. Values predicted by
the “trapping mechanism” Eq. (21) are shown as dashed line. Values
predicted by the Alfvén limitation mechanism Eq. (14) are shown as
plain lines for the unmagnetized (light green) and for the magnetized
(dark purple) cases. Circles (squares) are the values measured in
PIC simulations seeded with a single-mode perturbation and B0 = 0
(B0 = 0.75 Bc). Two initial flow velocities are considered: (a) γ0 =
2.3 (mildly relativistic case), (b) γ0 = 50 (ultrarelativistic case).

function of the wave number, for two initial velocities cor-
responding to γ0 � 2.3 (mildly relativistic case) and γ0 = 50
(ultra-relativistic case). We recall that these 1D3V simulations
account for a single mode seeded at early time. In order to
obtain the saturation level, we perform a Fourier spectrum of
By(x,t) and consider the maximum magnetic field of the given
k mode.

Each unstable mode saturates because of the mechanism
that predicts the lower saturation value. The maximum
magnetic field is found at the intersection between the
curves corresponding to the Alfvén limit Eq. (14) and the
trapping mechanism Eq. (21), respectively, k∗ � 0.63 ωp/c

and k∗
B0

� 0.60 ωp/c for the mildly relativistic case and for
the ultrarelativistic case k∗ � 0.14 ωp/c and k∗

B0
� 0.13 ωp/c.

It is clear that the Alfvén limit cannot be the dominant
saturation mechanism for large wave numbers. This can be
easily understood as the magnetic energy (increasing with
k) would exceed the total kinetic energy of the beams. The
saturation would appear for lower values due to the trapping
mechanism. Nevertheless, for the modes with small k, the

023203-6



ELECTRON WEIBEL INSTABILITY IN RELATIVISTIC . . . PHYSICAL REVIEW E 95, 023203 (2017)

Alfvén mechanism is responsible for the saturation of the
instability.

Figure 4 reports the measured saturation level for different
unstable modes, for the two initial velocities in unmagne-
tized plasma and with B0 = 0.75 Bc. The trapping saturation
mechanism is the dominant one for k > k∗. In this regime
the theoretical predictions of Eq. (21) show a very good
agreement with the simulations, confirming the independence
of the saturation level from the external magnetic field. For
wave numbers k < k∗ and B0 = 0, the Alfvén limit accurately
reproduces the data. In the magnetized case two different
behaviors are observed for highly relativistic (γ0 = 50) and
mildly relativistic (γ0 � 2.3) flows. In the first case the
saturation level is slightly increased, as predicted by the
generalized Alfvén limit in a magnetized plasma [Eq. (14)].
On the contrary, in the mildly relativistic case [Fig. 4(a)], the
saturation level decreases with the application of B0.

The discrepancy between Eq. (14) and the numerical
simulations in the mildly relativistic case is due to the fact
that the single-mode analysis does not hold anymore. With the
application of the external magnetic field, the growth rate is
decreased and increase of the time required to reach saturation
is increased. This results in the harmonics of the initial k

becoming important before the considered (seeded) mode
reaches its saturation. In particular, we observe the growth
of the third harmonic with a growth rate close to three times
the one of the seeded mode ∼3�(k). This prevents the seeded
mode reaching its own (independent) saturation level. This
effect is strongly reduced in the ultrarelativistic limit, where in
the simulations a much weaker signal for the third harmonic
is observed.

Analysis of the mildly relativistic simulations confirms that
the saturation via the Alfvén limit is not reached: the velocity
along the flow direction does not vanish. The total energy that
is expected to be transferred to the magnetic field is instead
distributed in the two modes, the seeded one with wave number
k and the harmonic at 3k.

In the presence of harmonics, the single mode saturation
criterion Eq. (14) cannot be applied. However, we can consider
that saturation is associated to a redistribution of kinetic energy
into magnetic field energy and the overall level of conversion
into one mode and its harmonics has to be roughly the same
as in the single mode case. It is then useful to calculate the
ratio of the magnetic energy density over the kinetic energy.
Indeed, the Alfvén limit Eq. (13) can also be interpreted as
an energy equipartition relation for the most unstable mode
(kc/ωp ∼ 1), the equipartition condition being defined as

B2
sat/8π

n0(γ0 − 1)mec2
= 1

2
. (22)

In reality, the saturation level of Fig. 4 gives an energy ratio
for the most unstable k saturating via the Alfvén mechanism,
Eq. (14), smaller than 15% for the mildly relativistic case and
10% for the ultrarelativistic one, roughly independent from the
external magnetic field. Similar levels of equipartition were
already observed in simulations Refs. [1,17]. The predicted
equipartition level in the mildly relativistic case for k =
0.35 ωp/c (representative of the small-k limit) is ∼2% as
calculated with Bsat from Eq. (14). This is much larger than the
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FIG. 5. Spatial distribution of the total current Jz (dashed lines)
in the initial direction of the flows, Weibel-generated magnetic field
By (plain line) and flow-aligned magnetic field Bz (dash-dotted lines)
for the mildly relativistic (γ0 = 2.3) simulation in the small-k limit
k = 0.35 ωp/c in the linear phase. (a) Unmagnetized case B0 = 0 at
t � 12.5 ω−1

p , (b) magnetized case B0 = 0.75 Bc at t � 26.5ω−1
p .

value one would obtain considering the single mode saturation
[value of Bsat as in Fig. 4(a)], but it is comparable (1.8%) if
the contributions of the two modes are considered.

Since the harmonic is weaker in the ultrarelativistic case, the
agreement with the theoretical curve is significantly improved,
Fig. 4(b). This confirms that Eq. (14) is only valid for single
mode. In the presence of higher harmonics the current filament
profile evolves from a sinusoidal shape to a double-peaked
structure, see Fig. 5(b), where current filaments are formed of
two consecutive maxima or minima. The electron density has
the same profile as the current Jz, meaning that the particles
are concentrated in the two spikes at the edge of the filament,
and the hypothesis of sinusoidal profile used to derive Eq. (14)
breaks down. The competition between different modes will
be addressed in more detail in Sec. III.

The signature of the two different saturation mechanisms
can be clearly observed in the PIC simulations. Figure 6 shows
the phase space x − pz for the simulations with γ0 = 2.3,
for a small-k mode (k = 0.35 ωp/c) and for a large one
(k = 2 ωp/c) with and without external magnetic field, at the
time corresponding to their own saturation. We chose two
modes that saturate at the same value of By but for the two
different mechanisms, the Alfvén limit for small k and the
trapping mechanism for the large k. With large wave number,
Figs. 6(c) and 6(d), the flow kinetic energy associated with the
motion along the ẑ direction is still large at saturation, and the
value of pz is close to the initial one pz(t = 0) � ±2.1mec,
typical of the trapping mechanism. In the case of small k

and B0 = 0, the particles responsible for the saturation lye
in the region pz � 0, Fig. 6(a), as expected from the Alfvén
limit. As already discussed, in the mildly relativistic case,
adding the external magnetic field, the harmonics of the seeded
mode set in before the mode saturates. These harmonics are
clearly seen in Fig. 6(b). The gain of momentum along the z

direction up to twice the initial value, observed in Fig. 6 for
all the simulations, is associated with the particles trapped in
the region occupied by the filaments flowing in the opposite
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FIG. 6. (x,pz)-phase space distribution at the saturation for the
simulations initialized with a single mode in the mildly relativistic
case γ0 = 2.3. In the small-k limit, k = 0.35 ωp/c: (a) B0 = 0,
(b) B0 = 0.75 Bc. In the large-k limit, k = 2.0 ωp/c: (c) B0 = 0,
(d) B0 = 0.75 Bc.

direction, as previously observed in Ref. [28] in the case of
counterpropagating electron-positron plasmas.

III. TEMPERATURE AND MULTIMODE EFFECTS

The introduction of an initial temperature has two effects.
On the one hand, it affects the single-mode growth rate; on
the other hand, it allows for the growth of a broad spectrum
of magnetic perturbations from the intrinsic electromagnetic
fluctuations of a thermal plasma. The modification of the
growth rate can be studied for a single mode and compared with
PIC simulations in the linear phase when all the modes grow
independently. However, saturation of the instability most
often involves multimode evolution. We present the studies
of the linear and nonlinear phases in the following sections.

A. Linear phase

1. Relativistic warm fluid theory

The effect of the temperature in the linear phase of the
instability has been investigated in the magnetized nonrela-
tivistic regime in Refs. [29,30] and in the relativistic one for
the unmagnetized case in Ref. [31]. For the sake of analytical
tractability, we use a relativistic fluid approach including the
pressure of the relativistic plasma flows,

∂tn± + ∇ · (n±v±) = 0 (23)

h(μ±)[∂tp± + (v± · ∇)p±] = −e

[
E + v±

c
× B

]
− ∇P±

n±
,

(24)

where ± denotes the electron plasmas with initial velocity
v0 = ±v0ẑ. In the following we consider symmetric counter-
propagating beams. The normalized enthalpy h(μ) depends on

μ = mec
2/T , with T the rest frame plasma temperature. The

closure of the fluid equations is done assuming an ideal gas
P = nT . For small k (k

√
T/me � �) we expect the adiabatic

(T ∝ nη−1) description to be valid, with η the adiabatic
index. As a reference we also consider the isothermal closure
(T constant), as for larger k the adiabatic closure might not
apply. Note that the enthalpy, which is often neglected, gives
an important correction for T � mec

2.
In order to properly describe a plasma with arbitrary

flow velocity and temperature, we use a Maxwell-Jüttner
distribution function defined as [32]

f±(p) = n0μ

4πγ0K2(μ)
exp

[
−μγ0

(√
1 + p2

m2
ec

2
∓ v0pz

mec2

)]
,

(25)

with Kn the modified Bessel function of the second kind.
From this we obtain the normalized enthalpy of each
beam h(μ) = K3(μ)/K2(μ) and adiabatic index η(μ) = 1 +
1/[μh(μ) − μ − 1] [33]. In the limit T � mec

2 (correspond-
ingly μ � 1) h � 1 and η � 5/3, while for T � mec

2 (μ �
1) h � 4T/(mec

2) and η � 4/3.
Assuming the enthalpy to depend on the initial rest frame

temperature only, one proceeds as in Sec. II A and obtains the
dispersion relation for the purely transverse (Weibel) modes,

ω2

c2
− k2 − ω2

p

c2γ0

(
1

γ 2
0

+ v2
0k

2

ω2 − �
2
(k)

)
= 0, (26)

where ω2
p = ω2

p/h(μ), �
2
(k) = �

2
0 + γ −1

0 η(μ)v2
thk

2, with

�
2
0 = �2

0/h2(μ) and vth = [μh(μ)]−1/2. From Eq. (26), we
derive the growth rate of the instability:

�(k) = 1√
2

⎡
⎢⎣

√√√√(
k2c2 + ω2

p

γ 3
0

− �
2
(k)

)2

+ 4
ω2

p

γ0
k2v2

0

−
(

k2c2 + ω2
p

γ 3
0

+ �
2
(k)

)]1/2

. (27)

In the limit T = 0, we recover the prediction of the cold
fluid theory, Eq (2). From Eqs. (26) and (27), we can
deduce the range of unstable wave numbers. The main effect
of the temperature is to strongly reduce the instability growth
rate at large k. The instability is completely quenched for wave
numbers larger than

c2k2
cut−off = γ0

2ηv2
th

[
ω2

pv2
0

γ0c2
− ω2

pηv2
th

γ 4
0 c2

− �
2
0

+

√√√√(
ω2

pv2
0

γ0c2
− ω2

pηv2
th

γ 4
0 c2

− �
2
0

)2

− 4
�

2
0ω

2
pηv2

th

γ 4
0 c2

⎤
⎥⎦.

(28)

Indeed, thermal motion of the particles in the direction
transverse to the flow prevents their confinement in the
filaments. Figure 7 shows the growth rate of the instability
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FIG. 7. Growth rate of the instability as a function of the
wave number. Theoretical predictions are computed from Eq. (27)
assuming isothermal closure (dashed lines) or adiabatic closure (plain
lines). (a) Quasicold B0 = 0 (light green lines) and B0 = 0.75 Bc

(dark purple lines). (b) Warm cases B0 = 0 (light green lines)
and B0 = 0.75 Bc (dark purple lines). PIC simulations with B0 = 0
(circles) and B0 = 0.75 Bc (squares).

as a function of the wave number for the two possible closures
of the fluid equations. The range of modes amplified by the
instability is clearly dependent on the temperature: the higher
the temperature, the smaller the value of kcutoff . Qualitatively,
the difference between unmagnetized and magnetized systems
can be explained considering that the growth rate of the
instability decreases with the introduction of B0. In order to
allow the instability to grow, a particle should remain in the
region where the filament forms for a time of the order of
�−1. The larger the external magnetic field, the longer the
required interval of time. Hence with equal temperatures the
small filaments are less likely to form in the magnetized case,
and the value of kcutoff decreases.

2. PIC simulation set-up and comparison with linear theory

In order to investigate the temperature effects and the
interplay between the various growing modes, we present a
series of 1D3V simulations with, at initial time, a broad spec-
trum of modes seeded exploiting the intrinsic electromagnetic
fluctuations of a finite-temperature plasma at equilibrium. The

two electron populations are uniformly distributed in space and
have a Maxwell-Jüttner distribution function in momentum
space, Eq. (25). The implementation in the PIC code of the
relativistic drifting Maxwell-Jüttner distribution follows the
algorithm presented in Ref. [34]. Two series of simulations
are carried out with temperature T � 3.2 × 10−4mec

2 [corre-
spondingly TL � 10−4(γ0 − 1)mec

2 in the laboratory frame]
and T � 0.1mec

2 [TL = 3.3 × 10−2(γ0 − 1)mec
2] referred to

in the following as quasi-cold case and warm case, respectively.
The length of the simulation box is Lx � 50c/ωp and the

cell extension is �x = λD/2, where λD is the Debye length
λD =

√
TL/(4πn0e2). The time resolution is c�t = 0.95�x.

The number of macroparticles-per-cell per species is Np =
2000.

The growth rate of different modes has been extrapolated
from PIC simulations performing a Fourier analysis and
measuring the growth of each mode independently. Results
are reported in Fig. 7 for the two temperatures (quasicold and
warm cases), with and without external magnetic field (B0 = 0
and B0 = 0.75 Bc). Theoretical predictions from Eq. (27) are
also shown considering both the adiabatic closure (solid lines)
and isothermal closure (dashed lines). A fairly good agreement
is found between PIC simulations and theory. The adiabatic
assumption is consistent with all the simulation results except
for the magnetized quasicold one, which more closely follows
the isothermal curve. The problem of closure, kinetic effects,
and the limits of fluid approach are beyond the scope of this
work and will be discussed elsewhere. Our results nevertheless
suggest that the proposed relativistic fluid approach, which
gives tractable solutions for the growth rate, is relevant to
model the Weibel instability in the regimes discussed here.

B. Nonlinear phase and saturation

Let us now study the nonlinear phase and saturation of
the instability. Figure 8(a) shows the evolution of the energy
U associated with the Weibel-generated magnetic field By

normalized to the total initial flow energy Uk0. In the quasicold
simulations (plain lines), the saturation level is modified by the
application of the external field B0. For the magnetized plasma
(dark purple line), saturation is reached at tsat,B0 � 25 ω−1

p ,
identified by the clear change in the slope in Fig. 8(a). This
stage corresponds to the saturation of the modes with large
wave numbers k � 10 ωp/c, which grow with the largest rate
Fig. 7(a) and saturate with a low level of the magnetic field as
predicted by the trapping mechanism, Fig. 4(a). Indeed, at that
time, the amplitude of the oscillations of the magnetic field,
By � 0.12 meωpc/e, is consistent with the saturation predicted
for those modes. The saturation of these modes occurs at the
same level of U for the simulation with B0 = 0 (light green
line) around t∗ � 16 ω−1

p . Note that t∗ < tsat,B0 as expected due
to the larger growth rate in the absence of an external magnetic
field.

After this first saturation stage, the magnetized and un-
magnetized cases evolve differently. In Fig. 8(a) the two plain
lines do not reach the same level. Even at later time (not shown
here) the slow rise in the magnetized curve ceases, the energy
reaches an asymptotical value lower than the unmagnetized
one and remains constant after t � 300 ω−1

p .
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FIG. 8. (a) Evolution of the magnetic energy of the field By .
(b) Spectrum of By at t = 30 ω−1

p . (c) Spectrum of By at the end
of the simulations t = 120 ω−1

p . Quasicold simulations (plain lines),
warm simulations (dashed lines), with B0 = 0.0 (light green lines)
and B0 = 0.75 Bc (dark purple lines). Spectra are shown after the
application of Savitzky-Golay filter [35] in k space to reduce the
noise.

In the unmagnetized plasma, once the large wave number
modes have reached saturation, the small-k modes keep
growing up to their own saturation level. The growth of small
k filaments involves a rearrangement in large structures of the
particles with opposite flow velocity. In the magnetized case,
in order to create filaments with small k, not only the currents
should be redistributed but also the external magnetic field
lines, which during the linear phase are compressed inside the
filaments.

This process entails a slowdown in the growth of small-k
modes, hence the very low slope in Fig. 8(a). Thus, with the
introduction of the external magnetic field the large-k modes
remain stable after their saturation and this affects the growth
of the modes not yet saturated. This is clearly shown in the
spectra of the magnetic field By reported in Fig. 8(b) for all four
simulations at t = 30 ω−1

p and at t = 120 ω−1
p . In the quasicold

magnetized case the spectrum is dominated by the large-k
modes, while in the unmagnetized case there is a dominant
mode with k � 1.2 ωp/c.

The increase of the initial temperature limits the range
of unstable wave numbers due to the temperature effect of

stabilizing the large-k modes, Fig. 7(b). In this way, the
saturation level becomes again independent from the external
magnetic field, Fig. 8(a) (dashed lines). The spectrum of
By at the saturation is peaked around k � 0.7 ωp/c for the
unmagnetized case (dashed light green line) and k � 0.9 ωp/c

for the magnetized case (dashed dark purple line). The peak
values are in good agreement with the k predicted to have the
highest saturation level in the cold single-mode simulations
k = 0.86 ωp/c, Fig. 4(a).

To summarize, the saturation level at large temperature does
not depend on the application of the external flow-aligned
magnetic field and the spectra are peaked around the optimal
value found in the cold case, while at low temperature the
energy transfer toward small-k filaments is hampered by the
magnetic field, resulting in a lower saturation amplitude and a
wider distribution in k.

C. Late merging phase

At later times, after the saturation of the instability t >

30 ω−1
p , the so-called merging or coalescence of filaments

governs the dynamics of the system. During this phase the
total energy in the magnetic field remains roughly constant;
see Fig. 8(a). The merging of two filaments is the result
of the attractive force between filaments of parallel current.
Regarding the spectrum of the Weibel-generated magnetic
field, the coalescence of filaments involves a shift toward
small wave number modes as it creates structures of increased
transverse size in the current and accordingly in the magnetic
field. Simplified models for the coalescence of filaments in
cylindrical geometry have been presented in Refs. [2,26]. In
our 1D geometry, the merging of filaments could be quite
unexpected. Indeed, in order to observe the coalescence, the
attractive force between two filaments of parallel current
should overcome the repulsive force due to the filament of
opposite current in the middle of them. Thus, a series of
equal positive and negative current filaments would produce
a stable situation, the attractive and repulsive force balancing
each other, as observed in single mode simulations. However,
in the case of a broad spectrum of unstable modes, merging
can occur as this balance is not achieved due to (i) intrinsic
irregularity in the filament spatial distribution and (ii) the effect
of the inductive electric field, as detailed below.

In Fig. 9, the evolution in time of the current Jz of the two
counterstreaming electron beams and the Weibel-generated
magnetic field are shown for the unmagnetized quasicold
simulation. At time t = 0 the total current vanishes, then
the filaments start to develop and the saturation is reached at
t � 30 ω−1

p . The magnetic energy in Fig. 8(a) remains constant
after saturation and events of coalescence are clearly shown in
Fig. 9.

Coalescence processes, even if in a 1D configuration, can
be explained as follows. In this series of simulations, the
instability starts from a broad spectrum of modes. As already
pointed out, this leads to an intrinsic irregularity (randomness)
in the filament spatial distribution. Furthermore, this entails a
difference in the spectrum of the Weibel-generated magnetic
field By and the spectrum of inductive electric field Ez, as
shown in Fig. 10. This difference in k space can be explained
considering a broad spectrum in the magnetic field By in the
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FIG. 9. (a) Evolution of the current Jz of the two counterstream-
ing beams. (b) Evolution of the Weibel-generated magnetic field By ,
for the unmagnetized quasicold case.

linear phase of the instability,

By(x,t) =
∑

n

B̃y0,n sin(knx)e�(kn)t , (29)

and using Maxwell-Faraday equation to compute the inductive
electric field Ez,

Ez(x,t) =
∑

n

B̃y0,n

�(kn)

ckn

cos(knx)e�(kn)t , (30)

the sum running over all wave numbers. We assume the
same amplitude for each mode at early time, so that B̃y0,n

is independent from kn. Due to the factor �(k)/k, considering
�(k) as calculated from Eq. (27), the inductive electric field
Ez vanishes at large k, so that its spectrum peaks at small k.

Despite that the amplitude of Ez is smaller than By , it can
play a key role due to the the different spectrum with respect
to By . Since the electric field has a peak in the spectrum at
small k, i.e., large wavelengths, it can have opposite effect on
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FIG. 10. Spectrum of By (plain line) and Ez (dashed line) in
the linear phase t = 10 ω−1

p , for the unmagnetized quasicold case.
Spectra are shown after the application of Savitzky-Golay filter [35]
in k space to reduce the noise.

two neighbor filaments with opposite current, corresponding
to a mode with large k. Ez accelerates the particles of one
filament while decelerating the other. The unbalance produced
in the current allows for the merging of the filaments. The
attractive force between two filaments of positive currents,
whose particles are accelerated by Ez, exceeds the repulsive
force due to the negative filament in the middle, for which
Ez is decelerating, resulting in the coalescence of the positive
currents. In the simulations with single-seeded mode, Ez and
By have the same periodicity, see Eqs. (6) and (7), so that
Ez tends to slow the electrons of both the counter-streaming
beams down. The filaments form a regular structure of identical
positive and negative filaments, and merging is not observed.

At saturation, in all simulations, except in the magnetized
quasicold case, the spectra of the magnetic field By have a
peak for k � ωp/c, as shown in Fig. 8(b). The corresponding
spectra at the end of the simulation t = 120 ω−1

p , show that
the peak is increased, narrower, and slightly shifted toward
a lower k. After the saturation, the energy in the magnetic
field is constant, Fig. 8(a), thus the evolution of the peak is
a signature of the merging events that transfer energy to the
modes with large wavelengths. In the quasicold simulation,
the presence of the external magnetic field produces a broad
spectrum of modes at the saturation, which remains much
broader than in the other cases, also at the end of the simulation.
The coalescence of filaments is hampered by the external
magnetic field, since an additional energy is required to move
the magnetic field lines.

IV. CONCLUSIONS

The Weibel instability driven by two symmetric counter-
streaming relativistic electron beams in the presence of a
flow-aligned magnetic field has been investigated using both
analytic modeling and 1D3V PIC simulations.

The linear stage of the instability is modeled using a
relativistic fluid approach accounting for the effect of the
electron pressure in the case of finite temperature plasma
flows. This fluid model gives tractable solutions for the growth
rate, which are found to be in good agreement with the PIC
simulations.

The saturation (nonlinear phase) of the instability has then
been investigated. Considering a single growing mode, the
mechanisms responsible for saturation in the presence of the
external magnetic field have been clarified. At small wave
number the dominant role of the Alfvén current-limitation
is highlighted. We show that the external magnetic field can
slightly increase the field amplitude at saturation. In the large
wave number limit, the trapping mechanism leads to the
saturation of the instability. The predicted saturation level
is found to be independent of the strength of the external
magnetic field, as long as the latter remains smaller than
the well-known critical field above which the instability is
quenched. These theoretical results are in good agreement
with PIC simulations seeded with a single mode.

The saturation and late merging stages have also been
investigated in PIC simulations with the instability seeded from
broadband thermal fluctuations. In a low-temperature plasma,
the average saturation level is decreased by the application of
an external magnetic field, since after the saturation of large-k
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modes the external magnetic field hinders the redistribution of
energy toward small k. Even at late times, the Weibel magnetic
field spectrum in a magnetized plasma is much broader then in
the unmagnetized case. As a consequence, filament merging
is also inhibited by the external magnetic field. Increasing
the initial flow temperature, the saturation level is found to
be independent from the external magnetic field, and the
Weibel field spectra are found to be peaked around an optimal
wave number, which value is well predicted considering the
saturation mechanisms using a single mode analysis.

Merging processes have been identified in our 1D sim-
ulations. The mechanisms that allow for this merging in
multimode simulations and not in single mode have been
explained as following from both the irregular distribution
of filaments growing from thermal fluctuations and the effect
of the small k inductive field.

The analysis of the growth and saturation of the Weibel
instability performed in this paper allow for a generalization
of the saturation mechanisms in the presence of a magnetic
field aligned with the flows and shows that the saturation stage
is only weakly affected.

Our results can be applied to astrophysical systems where
the Weibel instability is driven in magnetized plasmas (i.e.,
pulsar wind) and that are related to collisionless shock forma-
tion and particle acceleration. In the context of laser-plasma
interaction, and of relativistic laboratory astrophysics in par-
ticular, these results suggest that using a guiding external mag-
netic will not strongly modify the level of Weibel-generated
magnetic fields while helping maintain a high plasma density,
hence fastening the development of plasma instabilities and
potentially of the formation of collisionless shocks.
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APPENDIX: ALFVÈN LIMIT IN THE PRESENCE OF AN
EXTERNAL (GUIDING) MAGNETIC FIELD

The Alfvèn limit defines the maximum (critical) current
that a beam of charged particles can sustain before the particle
trajectories, in the self-generated magnetic field, start limiting
the current itself due to the reduction and/or inversion of
particle motion in the flow direction [27]. The maximum
current can be defined in different ways [27,36,37] that, within
a factor, give very similar results. In this Appendix, we follow
more closely the original approach proposed by Alfvén.

The derivation presented here considers a 1D3V geometry
and given sine profile for the current density to be consistent
with our PIC simulations. Generation to the more realistic
2D(r,z) geometry and arbitrary profile is straightforward. The
critical current for a uniform cylindrical current in 2D(r,z)
geometry is given at the end of this section.

Let us start by assuming a sinusoidal profile for the current
density Jz for −π/2 � kx � π/2,

Jz(x) = −J0 cos(kx), (A1)

and consistently with Ampère’s law the magnetic field,

By(x) = −2πI
(0)
1D

/
c sin(kx), (A2)

with I
(0)
1D = 2 J0/k the absolute value of the total (areal)

current.
Considering this magnetic field and the external (guiding)

magnetic field B0 = B0ẑ as time-independent, three con-
stants of motion allow for the description of an electron
dynamics in these fields: the electron energy (Hamiltonian)
H = mec

2
√

1 + p/(m2
ec

2), and the two components of the
electron canonical momentum � = p − eA/c lying in the
(y,z) plane. The vector potential A is computed inverting the
relation B = ∇ × A, leading to

Ay(x) = B0x, (A3)

Az(x) = 2πI
(0)
1D

/
(kc)[1 − cos(kx)], (A4)

where we have taken Ay(0) = Az(0) = 0. Considering an
electron initially located at the border of the filament x0 =
π/(2k) with initial momentum meγ0v0ẑ (correspondingly
H0 = γ0mec

2), one gets

p2
x = m2

ec
2
(
γ 2

0 − 1
) − p2

y − p2
z , (A5)

py = −eB0x0/c (1 − x/x0), (A6)

pz = meγ0v0 − 2πeI
(0)
1D

/
(kc2) cos(kx). (A7)

The critical current I (c)
1D is then defined as the minimum current

for which the longitudinal momentum Eq. (A7) vanishes,
leading to

I
(c)
1D = 1

2π

mec
2

e
min

{
γ0v0k

cos(kx)

}
. (A8)

In the absence of external magnetic field (B0=0, and py=0
at all times), this minimum is reached for x = 0, i.e., when the
electron longitudinal momentum vanishes on-axis, leading to

I
(c)
1D = 1

2π

mec
2

e
γ0v0k, (A9)

which corresponds to the magnetic field strength [By from
Eq. (A2)],

Bmax = γ0v0k
mec

e
, (A10)

given by Eq. (13).
In the presence of a guiding magnetic field (B0 �= 0), the

electron starting at the border x0 of the current may not reach
its center x = 0 before being turned back under the effect
of the guiding magnetic field. As a consequence, the critical
current Eq. (A8) has to be computed taking x = x∗ with
x∗ = 0 if the electron can reach the center of the current,
and x∗ > 0 the turning point of the electron when this one
cannot reach x = 0. For large enough external magnetic field
[B0 > (γ0v0/x0) mec/e, correspondingly A≡v0/|�0x0| < 1],
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one obtains x∗ as the point for which px = pz = 0 (all the
electron momentum is in py) leading to x∗ = x0 (1 − A). For
lower value of the external magnetic field (A � 1), the electron
will eventually reach the center of the filament so that x∗ = 0.
This leads to the critical current,

I
(c)
1D = 1

2π
f (A)

mec
2

e
γ0v0k, (A11)

with f (A) = [cos(π (1 − A)/2)]−1 for A < 1, and f (A) = 1
otherwise, corresponding to the magnetic field strength,

Bmax = f (A) γ0v0k
mec

e
, (A12)

given by Eq. (14).
A similar derivation can be done in the case of a uniform

cylindrical current (with radius R) in 2D(r,z) geometry. The
constants of motions are then given by the Hamiltonian, z

component of the canonical momentum and canonical angular

momentum. One then obtains the critical current,

I (c) = I0
γ0v0/c

1 − r∗/R
, (A13)

with I0 = mec
3/e � 17kA, and for which r∗ plays the same

role as x∗ in 1D3V and depends on the external magnetic field
as

r∗ = R

2
(
√

4 + A2 − A), (A14)

with A = v0/|�0R|. In the absence of external magnetic field
A → ∞ (r∗ = 0), one recovers the well-known result by
Alfvén.

Notice that both Eqs. (A11) and (A13) predict an increase of
the critical current with the application of a guiding magnetic
field. The possibility to exceed the Alfvén limit by applying
an external magnetic field along the flow direction was already
considered, e.g., in Ref. [38].
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