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Ensemble distribution for immiscible two-phase flow in porous media

Isha Savani,1,* Dick Bedeaux,2,† Signe Kjelstrup,2,‡ Morten Vassvik,1,§ Santanu Sinha,3,‖ and Alex Hansen1,¶

1Department of Physics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
2Department of Chemistry, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway

3Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China
(Received 8 June 2016; published 27 February 2017)

We construct an ensemble distribution to describe steady immiscible two-phase flow of two incompressible
fluids in a porous medium. The system is found to be ergodic. The distribution is used to compute macroscopic
flow parameters. In particular, we find an expression for the overall mobility of the system from the ensemble
distribution. The entropy production at the scale of the porous medium is shown to give the expected product of
the average flow and its driving force, obtained from a black-box description. We test numerically some of the
central theoretical results.
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I. INTRODUCTION

Multiphase flow in porous media poses interesting prob-
lems to engineers and scientists in diverse fields [1]. Un-
derstanding the nature of multiphase flow is relevant to
understand the flow of particles in bifurcating blood vessels, or
to categorizing liquid transportation through cellulose. Other
interesting areas concern spreading pollutants in soil, and the
flow of hydrocarbons and water in oil reservoirs.

It is apparent from this wide range of applications of porous
flow that the length scale of relevant processes can range from
a few nanometers to several kilometers. In geological transport
processes such as aquifers and oil reservoirs this fact is espe-
cially important, as the processes that occur at the pore scale
(micron scale) remain important in attempting to understand
the processes at the reservoir scale (kilometer scale).

When two immiscible fluids flow simultaneously in a rigid
porous medium, the state-of-the-art description is given by
the relative permeability equations, which are considered to
be the effective medium equations. The relative permeability
approach views each fluid as moving in a pore space that
is constrained by the other fluid. Hence, each fluid will
experience a lowered effective permeability since it experi-
ences a diminished pore space in which to move. The ratios
between the effective permeabilities of each fluid and the
single-fluid permeability of the porous medium are the relative
permeabilities. The relative permeabilities are thought only
to depend on the fluid saturations (which are the volumes
of each fluid relative to the pore volume). In addition to the
relative permeabilities, a capillary pressure field that models
the interfacial tension between the two fluids is introduced [2].

The concept of relative permeability is simple. However,
different laboratory methods, e.g., the Penn State or the Hassler
method [3], yield different results for the measurement of
relative permeability. This signals that the relative permeability
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equations do not offer a complete description of the problem.
These weaknesses have been known for a long time and it is not
controversial to state that the relative permeability approach
should and probably will be replaced by a better framework.
Several attempts have been made to replace this framework;
see, e.g., Refs. [4–24].

Techniques for recording and reconstructing the pore
structure of porous media have developed tremendously over
the last years [25]. It is now possible to render detailed maps
of the structure of porous media at the subpore level.

Numerical techniques to calculate the flow properties have
also developed and branched out over the years. There are
several approaches. Bryant and Blunt [26] were the first
to calculate relative permeabilities from a detailed network
model. Aker et al. [27,28] developed a network model which
was extended to include film flow by Tørå et al. [29].
The model is today being combined with a Monte Carlo
technique [30] to speed up the calculations considerably.
A recent review summarizes the status of this class of
models; see Ref. [31]. A very different approach is the lattice
Boltzmann method [32,33]; see also Refs. [34,35]. Whereas
the network models are ideal for large networks without
detailed knowledge of the precise shape of each pore, the lattice
Boltzmann method has the opposite strength. It goes well with
the detailed pore spaces that are now being reconstructed, but
is less useful in large networks. Other methods than the lattice
Boltzmann one, which resolve the flow at the pore level, are,
e.g., smoothed particle hydrodynamics [36–38] and density
functional hydrodynamics [39].

The goal of any theory of immiscible two-phase flow in
porous media must be to bind together the physics at the pore
level with a description at scales where the porous medium may
be seen as a continuum. We illustrate this viewpoint through the
relative permeability equations that attempt to do exactly this:

�νw = − K

μw

kr,w
�∇Pw (1)

and

�νn = − K

μn

kr,n
�∇Pn. (2)

Here �νw and �νn are the Darcy velocities of the wetting and
nonwetting fluids, μw and μn are the viscosities of the wetting
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and nonwetting fluids, K is the permeability of the porous
medium, kr,w(s) and kr,n(s) are the relative permeabilities of
the wetting and nonwetting fluids, and s is the nonwetting
saturation. One distinguishes between the pressure in the
wetting fluid, Pw, and that in the nonwetting fluid, Pn. They
are related through the capillary pressure Pc(s) by

Pn − Pw = Pc. (3)

The relative permeabilities and the capillary pressure are
assumed to be functions of the nonwetting fluid saturation
s alone. These equations treat the porous medium as a
continuum. There are three functions entering these three
equations that are determined by the physics at the pore level:
kr,w(s), kr,n(s), and Pc(s).

An alternate recent theory [24] based on thermodynam-
ics [40,41] proposes the relations

d�ν
ds

= �νn − �νw (4)

and

s
d�νn

ds
+ (1 − s)

d�νw

ds
= 0, (5)

where �ν = s�νn + (1 − s)�νw is the saturation-weighted average
Darcy velocity. The pore-level physics enters the picture
through the constitutive equation �ν = �ν(s, �∇P ), where P is
the pressure.

The functions kr,w(s), kr,n(s), and Pc(s), or in the last case
�ν = �ν(s, �∇P ) are macroscopic functions; they are defined at
the continuum level. Other theories will have other macro-
scopic functions that connect the pore-level physics to the
continuum level. Such functions are the results of the collective
behavior of the fluids in vast numbers of pores. To be able to
calculate the precise behavior of the fluids in a small number
of pores as is done using the lattice Boltzmann method is not
enough to determine fully the physics at large scales. This
is well known in other fields such as statistical mechanics
where long-range correlations that are generated by the short-
range interactions between the microscopic components may
dominate the behavior.

It is therefore tempting to develop a statistical mechanics
for immiscible two-phase flow in porous media. The goal
of statistical mechanics is precisely to bind the microscopic
and the macroscopic worlds together, and it has been very
successful in this in the past. We in this paper attempt to take
the first steps in this direction.

In the 1950s through the 1960s, work was done on a statisti-
cal description of flow in porous media [42–45]. Since the late
1980s, a theory of two-phase flow using a thermodynamic ap-
proach has been developed and employed by Hassanizadeh and
Gray [5,6,9,11]. More recently, Valavanides and Daras [22]
employed tools from statistical mechanics to describe flow.
Hansen and Ramstad [16] proposed to develop a thermody-
namical description of immiscible two-phase flow in porous
media based on the configurations of the fluid interfaces, an
approach that is related to that of Valavanides and Daras.

In the spirit of Hansen and Ramstad [16], we aim to
develop a statistical description of the flow of two immiscible
fluids through a two-dimensional network by constructing a
macroscopic description that applies to the ensemble-averaged

behavior of all connected links. Sinha et al. [46] derived a
statistical description of steady-state two-phase flow in a single
capillary tube. They showed that the well-known Washburn
equation could be derived from the entropy production in
the tube. They verified that the system was ergodic and
derived an analytical expression for the ensemble distribution.
The ensemble distribution is the probability distribution of
finding the center of mass of a bubble of the nonwetting
liquid at a particular position in the tube. The ensemble
distribution in the one-dimensional case was found to be
inversely proportional to the velocity of the nonwetting bubble.
Given that a slow bubble stays proportionally longer in
a link, this velocity dependence is self-evident. This idea
was developed further, by demonstrating in Ref. [30] that
the probability for a given configuration of interfaces in a
network, not just a one-dimensional one, is proportional to the
inverse of the total flow through the network. This probability
distribution was then used to form the basis for a Markov-chain
Monte Carlo method for sampling configurations in a network
model.

Whereas the configurational probability distribution that
was derived by Savani et al. [30] gave the probability
density for the interfaces between the fluids forming a given
configuration in the entire network, we here construct an
ensemble distribution for the individual links. That is, we
derive the joint probability density for any link in the network
to have a given saturation, that the nonwetting fluid it contains
will have its center of mass at a given position and that its
radius will have a given value.

We consider here for concreteness a network of pores each
characterized by a length and a radius. We define flow velocity
and saturations for each link and set up the joint statistical
distribution between these and the radius distribution. We
assume that the porous medium—the network of pores—is
homogeneous. This implies that if there are two statistically
similar networks, the combined system will have the same
properties as the separate systems.

The paper is organized as follows. In Sec. II we describe the
porous medium model we use for the theoretical derivations.
We use a biperiodic square lattice where the links model
the pores. This simplifies the theoretical discussion while
retaining the complexity of the flow. Section III introduces
the ensemble distribution that provides the joint probability
distribution for pore radius, pore saturation, and the position of
bubbles in the pores. The first of these variables characterizes
the porous medium whereas the other two characterize the
flow. We go on to demonstrate that the ensemble distribution
is inversely proportional to the volume flow through the links.
We also demonstrate that the system is ergodic. Section IV
connects the ensemble distribution with different macroscopic
quantities, namely, the fractional volume flow, the saturation,
the pressure difference, and the entropy production. In Sec. V
we test numerically some of the central results of the previous
sections. Our conclusions are given in Sec. VI.

II. DEFINING THE VARIABLES CHARACTERIZING THE
FLOW AND THE POROUS MEDIUM

In the same way as Bakke and Øren [47,48] extracted a
network from the pore space of a porous medium, we replace
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FIG. 1. Our network model, which is described in detail in the
Appendix, consists of a square lattice oriented at 45◦ with respect to
the vertical direction; see arrow. The network is periodic in both the
vertical and horizontal directions. Hence, fluids that leave the network
along the upper border reappear at the bottom border, and fluids that
leave along the left border enter at the right border and vice versa.
The links are filled with an immiscible mixture of wetting (white)
and nonwetting (red) fluids. A pressure difference �P = P1 − P2

between the upper and lower borders drives the flow Q in the vertical
direction. The nonwetting fluids form channels that span the network
once the flow has reached steady state as shown in the figure. Steady-
state flow means that the average flow parameters such as Q fluctuate
around well-defined constant average values, whereas, at the level of
the links, the interfaces between the immiscible fluids move,resulting
in fluid clusters constantly merging and breaking up.

the original porous medium by a network representing its pore
space. All our variables aredefined with reference to the links
in this network.

In this paper, however, we go one step further and consider
a lattice in the form of a square grid. This is of course a
considerable and unrealistic simplification compared to the
topology of a real pore network. However, as the goal of this
work is not to consider a given structure but to develop a
general theory, it is convenient to use the square network.
It simplifies the discussion while retaining the important
subtleties. The square lattice is periodic in both directions.
We orient it so that the main axes form 45◦ with the average
flow direction; see Fig. 1. There are L × L distinct links in
the lattice. This means that there are L distinct layers of links;
see Fig. 1. For a square lattice, the total number of nodes is
then L2/2 and a link between two neighboring nodes i and j

is denoted by ij where i,j ∈ [0,L2/2].
We assume that all links in the network have the same length

l. The radius r0,ij varies from link to link and is drawn from a
spatially uncorrelated distribution fr (r0,ij ).

A volume flow Q across the network in the verti-
cal direction generates a pressure difference across one
layer �P/L depending on s in the opposite direction; see
Fig. 1.

We define the nonwetting saturation sij in link ij as

sij ≡ vn,ij

vij

, (6)

where vn,ij refers to the volume of nonwetting fluid in the link
and vij is the total volume of the link.

We assume that the wetting fluid does not wet the pores
completely so that it does not form films. The nonwetting fluid
will form bubbles that fill the cross-sectional area of the links.
We characterize their motion through the time derivative of
one position variable xb,ij which signifies, e.g., the position of
their center of mass measured along the link of length l; hence,
0 � xb,ij � l.

We consider steady-state flow [49]. Experimentally, this
is attained when the two immiscible fluids are injected
simultaneously into the porous medium with all control
parameters kept constant, and all measured macroscopic
quantities fluctuate around well-defined and constant averages.
In our square lattice, the steady state is attained when the
fluids are allowed to circulate long enough in the biperiodic
network. The steady state does not imply that the interfaces
at the pore level are static. Rather, �P may be so high that
all interfaces move and the system would still be in the steady
state.

III. ENSEMBLE DISTRIBUTION

At a given moment in time, there is a certain configuration
of the two fluids in the network. The ensemble distribution
is derived from this snapshot and is considered to be a
time-independent probability distribution of the two fluids
over the ensemble of links since the flow appears under
steady-state conditions. The exact nature of the ensemble
distribution is still unknown, however. The aim of this work
is to derive some of its properties. Such knowledge will
enable the integration across the network for determining
various properties of interest. For instance, we are interested
in the average pressure difference and the fractional volume
flow of the wetting and the nonwetting fluids when the total
volume flow Q and s are imposed. In particular we are
interested in the total volume flows of each of the single fluids.
Thermodynamics on the macroscopic level has recently been
used to relate these quantities [24]; however, this approach is
entirely macroscopic. Using an ensemble distribution, we can
build a bridge between the properties of a single link and the
overall performance of the network. We aim to develop a new
method that can solve the up-scaling problem in the context of
immiscible multiphase flow in porous media.

The ensemble distribution we develop in the following is at
the indivual link level. That is, we pick a link in the network
at random. What is the joint probability density that this link
has a given radius, saturation, and center-of-mass position of
the nonwetting bubbles in it?

As was stated in the introduction, this is different from the
configurational probability distribution; that is, the probability
density for the interfaces between the two fluids takes on a
given configuration in the network, which was derived by
Savani et al. [30] and used to construct a Markov-chain Monte
Carlo algorithm for sampling configurations in network
models.

A. The one-dimensional distribution

Working towards the goal to determine the ensemble
distribution beyond one dimension, we start by rederiving the
distribution for a link [30,46]. The time average of any function

023116-3



ISHA SAVANI et al. PHYSICAL REVIEW E 95, 023116 (2017)

g = g(xb) is g, where

g = 1

τ

∫ τ

0
dtg(xb(t))

=
∫ l

0
dxb

g(xb)

τdxb/dt
=

∫ l

0
dxb�(xb)g(xb). (7)

This allows us to extract the ensemble distribution

�(xb) = 1

τ

1

dxb/dt
= 1

l

〈q〉
q(xb)

for 0 < xb < l, (8)

where τ = πr0
2l/〈q〉 is the average time the bubble takes to

move from one end of the link to the other end, and 〈q〉 is
the ensemble average volume flow. �(xb) is the ensemble
distribution since it gives the probability density for xb. This is
a general result that is valid even if the velocity dxb/dt is not
constant. For a detailed discussion see Ref. [30]. By definition
we have that ∫ l

0
dxb�(xb)g(xb) = 〈g〉. (9)

Hence, combining this expression with Eq. (7) gives

g = 〈g〉, (10)

demonstrating that the system by construction is ergodic [46].

B. Ensemble distribution in higher dimensions

In higher dimensions, at any instance, the state of a link can
be characterized by the center-of-mass position of the bubbles
in it, xb,ij , the saturation sij , and the radius r0,ij of the link.
In the course of time, a single link will see the passage of
many bubbles with different sizes. One may calculate the time
average of qij for each individual link.

A subsequent average over the radii of the links returns
the average volume flow 〈q〉 in the links. A fast bubble
will spend proportionally less time in a given link than a
slow bubble. This is true whether the link is part of a one-
dimensional or a multidimensional network. This suggests that
also in the multidimensional case, the ensemble distribution,
�(xb,ij ,sij ,r0,ij ), will be inversely proportional to the volume
flow |qij (xb,ij ,sij ,r0,ij )|. By the same argument that led to
Eq. (10) and, hence, ergodicity, the multidimensional system
must be ergodic.

A general form of the ensemble distribution is

�(xb,ij ,sij ,r0,ij ) = 〈|q|〉
|qij (xb,ij ,sij ,r0,ij )|f (xb,ij ,sij ,r0,ij )

for 0 < xb,ij < l and 0 < sij < 1, (11)

where f (xb,ij ,sij ,r0,ij ) is assumed to be normalized. The
distribution f (xb,ij ,sij ,r0,ij ) may, in principle, depend on the
volume flow qij (xb,ij ,sij ,r0,ij ).

IV. FROM ENSEMBLE DISTRIBUTION
TO MACROSCOPIC QUANTITIES

The aim of this section is to calculate the fractional volume
flow of the nonwetting fluid, the saturation, the pressure drop,
and the entropy production, all macroscopic variables, from
the ensemble distribution.

A. Average absolute volume and fractional volume flows

The average absolute volume flow is given by

〈|q|〉 =
∫ ∞

0
dr0,ij

∫ 1

0
dsij

∫ l

0
dxb,ij�(xb,ij ,sij ,r0,ij )|

× qij (xb,ij ,sij ,r0,ij )|. (12)

This form can be verified by introducing the general ensemble
distribution in Eq. (11), and using that f is normalized. It
turns out that the form of the general ensemble distribution in
Eq. (11) is sufficient to obtain this result.

The total absolute volume flow in the direction of the
pressure difference through one layer (see Fig. 1) is equal
to

|Q′| ≡
∑
ij

|qij (xb,ij ,sij ,r0,ij )|, (13)

where the summation is over all the links ij in that particular
layer.

The total absolute volume flow through the cross section
or through each layer is the same for incompressible fluids;
hence, |Q′| = |Q|. The average is equal to

〈|Q|〉 = L〈|q|〉, (14)

where L is the number of links in a layer. The last equality
expresses the fact that the links in a layer form an ensemble of
links with the ensemble distribution given in Eq. (11).

We proceed to calculate the absolute fractional flow through
the system. The average of the total absolute volume flow of
the nonwetting fluid in the direction of the overall pressure
difference is equal to

〈|Qn|〉 ≡ L〈|qn,ij (xb,ij ,sij ,r0,ij )|〉
= L〈sij |qij (xb,ij ,sij ,r0,ij )|〉. (15)

With the help of the ensemble distribution, the absolute flow
of the nonwetting fluid equals

〈|Qn|〉 = L

∫ ∞

0
dr0,ij

∫ 1

0
dsij

∫ l

0
dxb,ij

×�(xb,ij ,sij ,r0,ij )sij |qij (xb,ij ,sij ,r0,ij )|

= L〈|q|〉
∫ ∞

0
dr0,ij

∫ 1

0
dsij

∫ l

0
dxb,ij

×sij f (xb,ij ,sij ,r0,ij )

= L〈|q|〉〈s〉. (16)

The nonwetting fraction of the absolute volume flow is then
equal to

F ≡ 〈|Qn|〉
〈|Q|〉 =

∫ ∞

0
dr0,ij

∫ 1

0
dsij

∫ l

0
dxb,ij sij f (xb,ij ,sij ,r0,ij )

= 〈s〉. (17)

The fraction of the total absolute nonwetting volume flow
is therefore equal to the ensemble average of the degree
of saturation. Again, the form of the general ensemble
distribution equation, Eq. (11), is sufficient to obtain this result.
The relation can be tested numerically and experimentally with
information of the distributions. We show that it is obeyed for
a particular network in the end of the paper.
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Equation (17) is at a first glance surprising, but it should be
remembered that the average saturation is per link and not per
volume. We test Eq. (17) in Fig. 7.

B. Average saturation

The volume average of the saturation of the links in any
layer is given by

s ≡ Vn

V
=

∑
j vij sij∑

j vij

=
∫ ∞

0 dr0,ij

∫ 1
0 dsij

∫ l

0 dxb,ij vij sij�(xb,ij ,sij ,r0,ij )∫ ∞
0 dr0,ij

∫ 1
0 dsij

∫ l

0 dxb,ij vij�(xb,ij ,sij ,r0,ij )

= 〈vs〉
〈v〉 . (18)

In the one-dimensional sequence of links, all the links have
the same volume vij = πlr2

0,ij , so that 〈s〉 = s. This implies
that the fraction of the total absolute nonwetting volume flow
is given by F = s. This is generally not the case in multidi-
mensional systems, except when there are no capillary forces.

An interesting observation is that when the distribution of
the saturation and the radius are not correlated, it follows that

f (sij ,r0,ij ) ≡
∫ l

0
dxb,ij f (xb,ij ,sij ,r0,ij ) = fs(sij )fr (r0,ij ).

(19)

This implies that

F = 〈s〉 = s. (20)

At high capillary numbers, one has that F = s since the
capillary forces play no role. This implies Eq. (20) is valid
in the high-capillary-number regime. In Fig. 8 we plot F vs
s for Ca = 0.01 and 0.1. For the lower capillary number, we
see a nontrivial dependence of F on s. However, for the larger
capillary number, we see F being close to s signaling that sij

and rij decorrelate and Eq. (20) ensues.

C. Average pressure difference

In experiments or simulations in which the volume flow
is controlled, the pressure difference cannot be fixed. The
fluctuating driving force follows from Eq. (A2):

�pij (xb,ij ,sij ,r0,ij ) − pc,ij (xb,ij ,sij ,r0,ij )

= −8μav,ij (sij )

πr4
0,ij

qij (xb,ij ,sij ,r0,ij ), (21)

where pc,ij (xb,ij ,sij ,r0,ij ) is the capillary pressure drop due to
interfaces in the link and �p(xb,ij ,sij ,r0,ij ) is the pressure
drop across the link and μav,ij = sijμn + (1 − sij )μw is
the volume-weighted average viscosity. Using the ensemble
distribution, the absolute average driving force is given by

〈|�p − pc,ij |〉 = 8

π

∫ ∞

0
dr0,ij

∫ 1

0
dsij

∫ l

0
dxb,ij

×�(xb,ij ,sij ,r0,ij )
μav,ij (sij )

r4
0,ij

|

× qij (xb,ij ,sij ,r0,ij )|. (22)

By introducing Eq, (11) for the ensemble distribution, we
obtain

〈|�p − pc,ij |〉 = 8

π
〈|q|〉

∫ 1

0
dsij

∫ ∞

0
dr0,ij

× μav,ij (sij )

r4
0,ij

f (sij ,r0,ij ). (23)

Using this expression, one can find the overall mobility M
of the fluids in the network,

M = 〈|q|〉
〈|�p − pc,ij |〉

= π

8

[∫ 1

0
dsij

∫ ∞

0
dr0,ij

μav,ij (sij )

r4
0,ij

f (sij ,r0,ij )

]−1

, (24)

which corresponds to Darcy’s law for the system.

D. The entropy production

In nonequilibrium thermodynamics, the second law is
formulated in terms of the entropy production in the sys-
tem [40,41]. The entropy production quantifies the energy
dissipated in the form of heat in the surroundings. In the present
case, this amounts to the viscous dissipation. According to the
second law, the dissipation is always positive. The expression
for the entropy production in terms of the ensemble distribution
must obey this condition at a local level, i.e., at the scale of
a single link. For the whole system, we can find the average
entropy production using Eq. (11):

T

〈
dSirr

dt

〉
= −

∫ ∞

0
dr0,ij

∫ 1

0
dsij

∫ l

0
dxb,ij

×�(xb,ij ,sij ,r0,ij )qij (xb,ij ,sij ,r0,ij )

× [�pij − pc,ij (xb,ij ,sij ,r0,ij )]

= 〈|q|〉
∫ ∞

0
dr0,ij

∫ 1

0
dsij

∫ l

0
dxb,ij

× f (xb,ij ,sij ,r0,ij )|�pij − pc,ij (xb,ij ,sij ,r0,ij )|
= 〈|q|〉〈|�p − pc,ij |〉. (25)

In the second equality we used that qij and (�p − pc,ij )
have opposite signs in accordance with the second law
of thermodynamics. We see that the local as well as the
global entropy production have the correct bilinear form. This
confirms that the ensemble distribution given in Eq. (11) is the
correct choice.

V. NUMERICAL VERIFICATION

We test and develop numerically some of the main results
of the previous sections using the network model described in
the Appendix.

The network was initialized with a random configuration of
bubbles for a desired saturation s. Measurements were started
only after the system had reached steady state.

We used a spatially uncorrelated uniform distribution on
the interval [0.1,0.4] mm for the radii. The length of the links
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FIG. 2. Joint histogram Ns,r for r0,ij and sij for the given ranges of qij for Ca = 0.01 and s = 0.2.

was 1 mm. The nonwetting and wetting model fluids were
given the same viscosity, μ = 0.1 Pa s. The surface tension γ

between the fluids was set to 30 mN/m.
The simulations were performed for two different volume

flows that were kept constant throughout the simulations, Q =
26 and Q = 260 mm3/s. They corresponded to a capillary
number, defined as

Ca ≡ Qμ

Aγ
, (26)

where A is defined as the cross section of the network given
by

∑
ij πr2

0,ij where the sum runs over a layer. The capillary
numbers were Ca = 0.01 and 0.1. The system size was
L × L = 40 × 40 except in Figs. 4, 5, and 6, where also L ×
L = 20 × 20 was used. Results are averaged over ten samples
for each series of measurements with different capillary
number.

In Eq. (11) we give the general form of the configurational
probability. In Fig. 2, we show histograms Ns,r proportional
to the joint probability distribution for sij and r0,ij when
only those links which fall within a narrow range of volume
flows are counted. That is, we record only those links for
which (a) 1 < qij < 2 mm3/s, (b) 2 < qij < 3 mm3/s, (c)
3 < qij < 4mm3/s, and (d) 4 < qij < 5 mm3/s. The volume
flows qij ranged roughly between −2.5 and 7.5 mm3/s. If
f (xb,ij ,sij ,r0,ij ) = f (sij ,r0,ij ), i.e., if xb,ij was uncorrelated
with sij and r0,ij , then the histograms in the four figures
should be identical. We see that, even though the features
are similar, they are not. Hence, there is an xb,ij dependence
in f (xb,ij ,sij ,r0,ij ) for Ca = 0.01.

We may transform the distribution in Eq. (11) from a
distribution in xb,ij to a distribution in |qij |:

�q(|qij |,sij ,r0,ij ) = 〈|q|〉
|qij | f (xb,ij (|qij |,sij ,r0,ij ),sij ,r0,ij )

×
[

∂

∂|qij |
]
xb,ij (|qij |,sij ,r0,ij ). (27)

We show in Fig. 3 the cloud of values measured in the system
for Ca = 0.01 and s = 0.5. It is this cloud that Eq. (27)
describes.

We show in Fig. 4 histograms Nq proportional to �q

for Ca = 0.1 and for two different system sizes, L × L =
20 × 20 and L × L = 40 × 40. The volume flows Q have

FIG. 3. A cloud plot of |qij |, sij , and r0,ij for Ca = 0.01 and
s = 0.5.
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FIG. 4. Histogram Nq (|q|) of volume flow in links when 0.4 < sij < 0.5 and 0.2 < r0,ij < 0.3 mm for Ca = 0.1 and (a) s = 0.3 or (b)
s = 0.4.

been adjusted so that the capillary numbers are the same for
the two system sizes. Only those links with values of the other
two parameters, sij and r0,ij , within a truncated range have
been recorded. In Figs. 5 and 6 we show the corresponding
histograms for Ca = 0.01. The histograms for Ca = 0.1 show
a gap for small values of 1/|qij |, and for increasing values
of 1/|qij | a somewhat linear region before an essentially flat
region occurs. It is not possible from the results for the two
system sizes to infer a clear trend that could make it possible to
extrapolate the result to infinite system size. The corresponding
histograms for the Ca = 0.01 case are in Figs. 5 and 6. They
are qualitatively different from the histograms for Ca = 0.1,
Fig. 4. There is still a gap for small values of 1/|qij |, but
from a smallest value, 1/|q0,ij | = 1/| maxij qij |, the histogram
raises linearly. We also note that the L = 40 data give a
straighter line than the L = 20 data. Since the volume flow
Q is kept fixed, there is a largest possible link volume flow
in the system: maxij |qij | = |Q|. This would occur if Q in its
entirety passed through one link, a possibility that would be
more and more likely the smaller the capillary number due to
capillary blocking. Hence, for Ca = 0.01, �q(|qij |) takes the
form

�q(|qij |) = g(sij ,r0,ij )

[
1

|qij | − 1

|Q|
]
, (28)

FIG. 5. Histogram Nq (|q|) of volume flow in links when 0.3 <

sij < 0.4 and 0.2 < r0,ij < 0.3 mm for Ca = 0.01 and s = 0.3.

where

g(sij ,r0,ij ) = 〈|q|〉f (xb,ij (|qij |,sij ,r0,ij ),sij ,r0,ij )

[
∂

∂|qij |
]

× xb,ij (|qij |,sij ,r0,ij ). (29)

The |Q| dependence in Eq. (28) comes from the use of the
constant-Q ensemble. If each run had been done with �P ,
the pressure drop across the network, kept constant, the 1/|Q|
term may have vanished. It was shown by Batrouni et al. [50]
that the choice of ensemble, constant Q or constant �P , had
a profound influence on the high-current end of the current
histogram in the random resistor network, a system that shares
some similarity to the present one.

It should be noted that the immiscible two-phase-flow
problem undergoes a phase transition when the saturation
is tuned [51]. For the square lattice, they found the critical
saturation to be sc = a + b log10 Ca, where a = 0.8 and b =
0.063. For Ca = 0.01, this places the critical point at around
sc ≈ 0.67. In analogy with the random resistor network at
the percolation threshold, we expect �q(|qij |) to have a much
more complex form than suggested in Eq. (29) [52,53], namely
that of a multifractal. This has recently been suggested in
connection with immiscible two-phase counterflow in porous
media [54].

FIG. 6. Histogram Nq (|q|) of volume flow in links when 0.4 <

sij < 0.5 and 0.2 < r0,ij < 0.3 mm for Ca = 0.01 and s = 0.5.
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FIG. 7. The nonwetting fractional flow defined in Eq. (17) F vs the saturation averaged over the links, 〈s〉 for (a) Ca = 0.1 and (b)
Ca = 0.01. According to this equation, we expect F = 〈s〉. This is also what we observe.

In Sec. IV it was shown that F = 〈s〉, Eq. (17), even if
capillary forces are important. We demonstrate by calculation
the validity of this relation in Fig. 7. In Fig. 8 we show F

as a function of volume-weighted average of the saturation
s. As expected, we see that F is a nontrivial function of
s. However, for larger capillary numbers, F is closer to the
diagonal compared to smaller capillary numbers: compare
Fig. 8(a) with Fig. 8(b). For the higher capillary number, sij

and rij are only weakly correlated.
Last, we check Eq. (25) in Sec. IV D in Fig. 9. That is,

we plot −〈qij (�pij − pc,ij )〉 and 〈|qij |〉〈|(�pij − pc,ij )|〉 as
a function of the saturation s. The prediction of Eq. (25) is
that the two quantities should be the equal. For both capillary
numbers this works well.

VI. CONCLUSION AND PERSPECTIVE

We have presented a statistical mechanical analysis of im-
miscible two-phase flow in porous media through the introduc-
tion and analysis of the ensemble distribution �(xb,ij ,sij ,r0,ij )
which gives the joint probability density between center-of-
mass position of the bubbles, the saturation, and the radius of
any link in the network that models the porous medium. With
the ensemble distribution, any quantity that does not require
the relative positions of the links to be taken into account
may be calculated. We have presented a few examples in

Sec. IV, among them the fractional flow, the average satu-
ration, the average pressure difference leading to the effective
mobility, and finally the entropy production or dissipation.
Questions that cannot be answered within this approach are,
e.g., the relative statistical weight of a given configuration
of interfaces within the system which, e.g., comes up in
connection with the construction of the Markov-chain Monte
Carlo method for sampling fluid configurations. For such
questions, the configurational probability density is necessary
[30].

The ensemble distribution �(xb,ij ,sij ,r0,ij ) introduced here
relates the dynamics of the system to a probability distribution
that does not contain time. This is possible due to the
ergodicity of the system; see Sec. III. However, since the
probability distribution does not contain time, it cannot answer
questions that have to do with time explicitly; e.g., questions
concerning correlation time is outside the realm of this
approach.

The ensemble distribution may be transformed into the
link volume flow distribution �q(|qij |,sij ,r0,ij ). This has a
surprisingly simple form for moderate capillary numbers; see
Eq. (28). This probability distribution is a close relative of the
current distribution function in the random resistor network
that was extensively studied and shown to be multifractal in
the 1980s [52,53]. We expect to find similar complications in
the present system when the saturation is at the critical point
studied by Ramstad et al. [51].

FIG. 8. The nonwetting fractional flow defined in Eq. (17) F vs the volume averaged saturation s defined in Eq. (18) for (a) Ca = 0.1 and
(b) Ca = 0.01.
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FIG. 9. The dissipation −〈qij (�pij − pc,ij )〉 and 〈|q|〉〈|�p − pc,ij |〉 plotted against the nonwetting saturation for (a) Ca = 0.1 and (b)
Ca = 0.01. Equation (25) predicts that the two data sets should be equal. The system size was 20 × 20.
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APPENDIX: NETWORK MODEL

We use the network model shown in Fig. 1 [27,28] to test
some of the central ideas presented in this work. The links
represent cylindrical tubes of varying average radii, containing
the volume of both the pores and the pore throats of the porous
medium. Each link is hourglass shaped so that the capillary
pressure due to an interface at position 0 � x � l in the link
is given by

|pc,ij (x)| = 2γ cos θ

r0

[
1 − cos

(
2πx

l

)]
, (A1)

where γ is the surface tension. The volume flow in each link
is related to the pressure difference across it by the Washburn

equation

qij = − πr4
0,ij

8μav,ij

(�pij − pc,ij ), (A2)

where �pij is the pressure difference across the link and pc,ij

is the sum of the capillary pressure contribution from all the
interfaces in the link. For a link with a single bubble with
center-of-mass position xb,ij and saturation sij , and surface
tension γ , the capillary pressure on the bubble is given by
[46]

pc,ij (xb,ij ,sij ,r0,ij ) = 4γ

r0,ij

sin(πsij ) sin

(
2πxb,ij

l

)
. (A3)

At each node volume flow is conserved. This implies that
the sum of the contributions from Eq. (A2) are conserved at the
nodes. This results in a matrix equation for the pressure field.
After solving this equation we can use Eq. (A2) to calculate
the flow in each link. From the flow, we can calculate the
velocity uij = qij /πr2

0,ij of the fluids. We then move every
bubble an amount �xij = uij�t , where the time step �t is
chosen such that no bubble moves more than 10% of the link
length.

When the fluid reaches the end of a link, it is redistributed
into connected links in proportion to the local flow. If at any
given point there are more than three bubbles present in a link,
the closest two are merged such that the center of mass of the
merged bubbles is conserved. Further details can be found in
Refs. [27,28].
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