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Fractally Fourier decimated homogeneous turbulent shear flow in noninteger dimensions
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Time evolution of the fully resolved incompressible homogeneous turbulent shear flow in noninteger Fourier
dimensions is numerically investigated. The Fourier dimension of the flow field is extended from the integer value
3 to the noninteger values by projecting the Navier-Stokes equation on the fractal set of the active Fourier modes
with dimensions 2.7 � d � 3.0. The results of this study revealed that the dynamics of both large and small scale
structures are nontrivially influenced by changing the Fourier dimension d . While both turbulent production and
dissipation are significantly hampered as d decreases, the evolution of their ratio is almost independent of the
Fourier dimension. The mechanism of the energy distribution among different spatial directions is also impeded
by decreasing d . Due to this deficient energy distribution, turbulent field shows a higher level of the large-scale
anisotropy in lower Fourier dimensions. In addition, the persistence of the vortex stretching mechanism and
the forward spectral energy transfer, which are three-dimensional turbulence characteristics, are examined at
changing d , from the standard case d = 3.0 to the strongly decimated flow field for d = 2.7. As the Fourier
dimension decreases, these forward energy transfer mechanisms are strongly suppressed, which in turn reduces
both the small-scale intermittency and the deviation from Gaussianity. Besides the energy exchange intensity,
the variations of d considerably modify the relative weights of local to nonlocal triadic interactions. It is found
that the contribution of the nonlocal triads to the total turbulent kinetic energy exchange increases as the Fourier
dimension increases.
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I. INTRODUCTION

As an overall description, hydrodynamic turbulence is
a spatiotemporal chaotic flow field evolution, involving in-
teractions among an extremely wide range of scales. Due
to this chaotic nature, the turbulence dynamics can show
acute sensitivity to the variations of the specifying flow field
parameters [1]. Although the kinematical quantities such as the
turbulent intensity and the integral length scale at the initial
or upstream flow field are mainly considered as the specifying
parameters, it has been observed that the turbulence dynamics
can also be strongly influenced by the variation of the number
of the spatial dimensions.

More specifically, the two-dimensional turbulence can
show qualitatively and quantitatively different dynamics com-
pared to its three-dimensional turbulence counterpart [2].
Indeed, by reducing the physical space dimension from the
relevant value 3 to 2, the direction of the energy cascade
is reversed towards the infrared (large-scale) region of the
spectrum. Moreover, the three-dimensional turbulence shows
pronounced small-scale intermittency and anomalous scaling
while the statistics of the small-scale structures in the two-
dimensional turbulence demonstrates some signatures of the
Gaussianity and self-similar behavior.

These profoundly different characteristics of the turbulence
in two- and three-dimensional flow fields have founded a
viable framework for investigating the transitional behavior of
turbulence in 2 � d � 3 dimensions. This feature of the space
dimensionality, as a controlling parameter, mainly originates
from the statistical physics problems. Indeed, in many-body
problems, dimension plays an essential role in characterizing
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the strength of the interactions among many degrees of
freedom [3,4].

Notably, despite the enormous number of researches done
on the two-dimensional turbulence (see among others Refs. [5–
10]), a few researches have been carried out to investigate the
impact of the variation of the dimension on the turbulence
dynamics.

In one of the earliest studies, Nelkin [11] theoretically in-
vestigated the existence of the crossover dimension for validity
of Kolmogorov’s scaling law. Using dynamical reasoning, he
showed that for 2 < d < 8/3, the Kolmogorov scaling law in
the limit of infinite Reynolds number is exact, and at d = 3.0
a small correction has to be added.

By introducing the dimension as a formal parameter into
the renormalization method, Forster et al. [12] proposed a
systematic method for calculating stationary, fully developed
d-dimensional turbulence with a high Reynolds number, for
arbitrary noninteger d. Using this methodology, Fournier
and Frisch [13] examined the transitional behavior of the
turbulence evolution for dimensions at 2 � d � 3. By probing
the power-law behavior of the infrared and ultraviolet regions
of the energy spectrum, they found a crossover dimension d ≈
2.03 for the transition between the two- and three-dimensional
characteristics of the energy cascade, i.e., backward and
forward energy transfer.

In a later study, L’vov et al. [14] investigated the transi-
tional behavior of the turbulence with dimension lower than
2. Using analytical reasoning, they obtained the crossover
dimension d = 4/3 for the validity of Kolmogorov’s scaling
law, in which the enstrophy flux is identically zero and
the statistical properties of the small-scale structures are
exactly Gaussian. Moreover, based on their findings, within
4/3 � d � 2 the enstrophy flux remains negligibly small and
the small-scale statistics show insignificant deviation from
Gaussianity.
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In a different approach, Giuliani et al. [15] investigated the
transitional behavior of the Gledzer-Ohkitani-Yamada (GOY)
shell model from d = 2.0 to d = 3.0. To change the effective
dimension of the shell model, the helicity conservation
(three-dimensional invariant) is continuously varied to an
enstrophy conservation (two-dimensional invariant). Based on
their calculations, a crossover dimension for the GOY shell
model is obtained, in which the energy distribution among
infrared shells develops into an equipartition state while the
statistical properties show deviation from the Gaussianity.

Using direct numerical simulation (DNS), Celani et al.
[16] investigated the transition of the isotropic turbulence
evolution between two and three dimensions. To resemble
the transition from a three-dimensional isotropic system to
the two-dimensional one, the aspect ratio of the computational
domain is continuously reduced. Above the crossover aspect
ratio 1:2, they observed a linear growth in the kinetic
energy, which indicates the energy transfer toward large scales
through an inverse energy cascade, as in two-dimensional
flows.

In the same line as the L’vov’s research, Frisch et al. [17]
examined the flow field evolution of the high Reynolds number
isotropic turbulence in dimensions at 1.5 � d � 2. To this
end, they reduced the degrees of freedom of the Navier-
Stokes equation in the Fourier space, using a generalized
Galerkin projection. Therefore, without changing the spatial
dimension and the corresponding dynamical invariants of
the Navier-Stokes equation, turbulent flow field evolution
poses a Fourier fractal dimension d. Performing different
DNSs, they demonstrated that the inverse energy cascade,
as a key feature of the two-dimensional turbulence, persists
in dimensions lower than 2. Moreover, they observed that
lowering the Fourier fractal dimension leads to the reduction
of this backward spectral energy transfer, while resulting in a
monotonic increase in the Kolmogorov constant of the energy
spectrum.

Based on the same fractal decimation method proposed
by Frisch et al. [17], in a more recent research Lanotte
et al. [18] examined the evolution of a high Reynolds
number isotropic turbulence with Fourier fractal dimensions
d ∈ {2.5,2.8,2.9,2.99,2.999,3}. Their DNS results revealed
that the main characteristic of the three-dimensional turbu-
lence, i.e., the direct energy cascade, persists in this range
of dimensions. Further, they reported that by reducing d,
the small-scale intermittency reduces quickly. Using scaling
relations, they also showed that the inertial range power law
of the energy spectrum is directly influenced by the variation
of the Fourier dimension.

In a latter study, Lanotte et al. [19] investigated the impact of
the fractal Fourier decimation on the vortex dynamics in terms
of the statistics of the velocity and the velocity gradient tensor.
They observed that the reduction of the Fourier dimension
strongly hampers the vortex stretching process and increases
the flow field Gaussianity.

In view of the above-mentioned studies, the impact of the
Fourier dimension reduction on several important features of
turbulence has been examined. However, there are many fun-
damental questions, which have not been addressed yet. The
spectral energy transfer is perhaps one of the most fundamental
dynamical mechanisms of turbulence, which shows nontrivial

FIG. 1. Schematic representation of homogeneous turbulent
shear flow (HTSF) configuration, with U1 as the mean velocity, S

the imposed uniform mean shear, and (L1,L2,L3) representing the
domain size.

differences in two and three dimensions. However, it is not
clear how the variation of the Fourier dimension modifies the
triadic nonlinear energy transfer mechanism.

Besides these issues, there are other turbulence features,
such as the influence of the reduction of the Fourier dimension
on the large and small-scale anisotropy, which the impact
of dimensionality on them cannot be investigated in the
framework of an isotropic turbulence.

This study is motivated by the above-mentioned questions.
More specifically, the objective of this research is to address the
impact of the variation of the Fourier fractal dimension on (1)
the overall flow field evolution, (2) the infrared and ultraviolet
regions of the spectrum based on the small and large scales
dynamics, and (3) the nature of the spectral energy transfer
mechanisms.

To this end, the flow field evolution of the homogeneous
turbulent shear flow (HTSF) at different Fourier fractal
dimensions 2.7 � d � 3.0 is investigated, using DNS. The
Fourier fractal dimension of the flow field is varied by
projecting the turbulent flow field evolution on a reduced set
of the Fourier modes, known as the fractal decimation method
[17,18].

The HTSF is an unbounded homogeneous turbulence,
which is subjected to a uniform mean velocity gradient in
one spatial direction (see Fig. 1). This flow field configuration
can provide an appropriate framework for extending the line of
researches mentioned above. Despite its simplicity, this flow
field configuration contains complex turbulent features, such
as the large-scale anisotropy, kinetic energy production, and
hairpin vortical structures quite similar to those observed in a
wall-bounded turbulence (see among others Refs. [20–24]).

The remainder of the paper is organized as follows. In
Sec. II, the flow field configuration is briefly explained along
with the governing equations and variation of the flow field
Fourier dimension. In Sec. III, the numerical method and
the simulation specifications are presented. The results are
gathered in Sec. IV. First, the overall flow field evolution is
discussed in Sec. IV A. Next, dynamics of the large and small
scales turbulence are investigated in Secs. IV B and IV C. The
last part of the results, i.e., Sec. IV D, is devoted to the spectral
energy transfer mechanisms. Finally, some conclusions are
summarized in Sec. V.

023115-2



FRACTALLY FOURIER DECIMATED HOMOGENEOUS . . . PHYSICAL REVIEW E 95, 023115 (2017)

II. FLOW FIELD DESCRIPTION AND GOVERNING
EQUATIONS

The Navier-Stokes (NS) equation for the evolution of an
incompressible flow can be written as

∂ũi

∂x ′
i

= 0,

∂ũi

∂t ′
+ ∂(ũi ũj )

∂x ′
j

= − ∂p̃

∂x ′
i

+ ν
∂2ũi

∂x ′
j ∂x ′

j

,

(1)

where x ′
i , t ′, ũi , and ν denote the ith spatial coordinate, time,

ith velocity component, and the fluid kinematic viscosity. In
the above equations, the constant density is absorbed into the
static pressure, resulting in the modified pressure p̃. Using
Reynolds decomposition, the dependent variables ũi = Ui +
ui and p̃ = P + p can be decomposed into the mean and the
fluctuating parts, denoted by the upper-case and the lower-case
letters, respectively. Introducing this decomposition into the
NS equation (1), the governing equations for the mean and
fluctuating fields can be obtained [25].

For the considered HTSF in this research, the mean pressure
P is uniform in space and constant in time. The mean flow is
denoted by U = (Sx ′

2,0,0), where the shear rate S, similar
to the mean pressure, is uniform in space and constant in
time.

Such a mean flow preserves the homogeneity of an initially
homogeneous turbulence during the flow field evolution. On
the other hand, a homogeneous turbulence cannot influence
the evolution of its carrier mean flow (Ref. [26], p. 112).
Here, it can be easily checked that the considered mean
flow is a steady state solution of the NS equation and,
therefore, the turbulence flow field evolution can be inclu-
sively described by the governing equation of the fluctuating
part:

∂ui

∂x ′
i

= 0,

∂ui

∂t ′
+ ∂(uiuj )

∂x ′
j

+ Sx ′
2
∂ui

∂x ′
1

+ Sδi1u2 = − ∂p

∂x ′
i

+ ν
∂2ui

∂x ′
j ∂x ′

j

,

(2)

where δi1 is the Kronecker δ. Despite the homogeneity of
the turbulent field, the second equation (2) is not periodic
in the laboratory frame, due to the explicit dependence of
the convective term, i.e., Sx ′

2, on the normal direction. This
nonperiodic term can be eliminated by considering the flow
field evolution in a reference frame, which deforms with the
mean flow [27]:

xi = x ′
i − (St)x ′

2δi1 and t = t ′, (3)

where t and xi represent transformed moving coordinates.
Using the chain rule, the transformed equations into the
moving frame can be written as follows:

∂ui

∂xi

− St
∂u2

∂x1
= 0,

∂ui

∂t
+ ∂(uiuj )

∂xj

− Stu2
∂ui

∂x1
+ Su2δi1

= −
(

∂p

∂xi

− St
∂p

∂x1
δi2

)

+ ν

(
∂2ui

∂xj ∂xj

− 2St
∂2ui

∂x1∂x3
+ 2S2t2 ∂2ui

∂x1∂x1

)
. (4)

Since the periodic boundary conditions can be applied to
Eqs. (4), any flow field variable φ(x,t) can be expanded by
Fourier coefficients φ̂(k,t) [28],

φ(x,t) = (δk)3
∑

k

φ̂(k,t) exp(ik · x),

φ̂(k,t) = (2π )−3
∫

φ(x,t) exp(−ik · x)dx,

(5)

where δk ≡ 2π (L1L2L3)−1/3, and i ≡ √−1. Moreover, the
wave vector k is given by

k = 2π (n1/L1,n2/L2,n3/L3), (6)

where ni are integers, each of which varies over the range from
−Ni/2 to Ni/2 − 1 and Ni is the number of the expansion
terms (grid points) in the xi direction. Application of the
Fourier transform (5) to equations (4) results in

kiûi = 0,(
d

dt
+ νk2

)
ûi =

(
−δij + kikj

k2

)
F{uiuj }

+ 2
kik1

k2
Sû2 − δi1Sû2. (7)

Here k2 = kiki is the wave vector module, ûi(k,t) is the Fourier
coefficient of the fluctuating velocity field, and F{uiuj }
represents the Fourier transform of the nonlinear quadratic
terms uiuj . Moreover, wave vectors in the moving and
laboratory references, i.e., ki and k′

i , are related as follows:

ki = k′
i − Stk′

1δi2. (8)

Using the fractal decimation procedure in Fourier space,
introduced by Frisch et al. [17], it is possible to continuously
reduce the Fourier dimension of the governing equation (7) to
the noninteger values below 3, i.e., d � 3. Concisely, in the
fractal decimation procedure, the governing equation, as well
as its initial condition, are projected on a pre-selected set of
the Fourier modes as follows:

∂vi

∂t
= P D{NL(vi,vj )} + L(vi), (9)

where vi(x,t) is the decimated incompressible field, and NL
and L denote the corresponding nonlinear and linear terms of
the NS equation, respectively. The decimated field vi(x,t) is
defined based on the following projection in Fourier space:

vi(x,t) = P D{ui(x,t)} = (δk)3
∑

k

α(k)ûi(k,t) exp(ik · x),

(10)

where α(k) are independent, prespecified, time-frozen random
coefficients:

α(k) =
{

1, with probability hk,

0, with probability 1 − hk.
(11)
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To ensure the reality of the decimated velocity field vi(x,t),
coefficients α(k) are constrained with Hermitian symmetry
α(k) = α(−k). The key element of this method is the
probability function hk , which is considered as

hk = kd−3, 0 < d � 3. (12)

This probability function ensures that the number of the
active Fourier modes within the sphere with spectral radius k

grows as kd . Therefore, although the decimated field evolves
in a three dimensional space, vi(x,t) effectively possesses a
number of Fourier modes which correspond to a turbulence
flow field evolution in a d-dimensional Fourier space.

Accordingly, the projection (10) reformulates the problem
on a fractal set corresponding to the Fourier dimension d,
without breaking the statistical homogeneity and the Galilean
invariance. Due to the preservation of the homogeneity, similar
to the original NS equation in the integer dimension d = 3.0,
the evolution of the decimated HTSF can also be inclusively
described by the governing equations of the decimated fluctu-
ating field. Moreover, validation of the Galilean invariance
allows transforming the fluctuating field into the moving
frame, using Rogallo’s transformation (3).

Therefore, the solution procedures for calculating the
HTSF field in the fractal and integer Fourier dimensions
are completely similar. However, it should be noted that to
preserve the idempotency of the projection (10), which ensures
the inviscid conservation of the quadratic quantities, the set of
the active Fourier modes has to be preselected from the wave
vectors in the moving reference.

III. METHOD OF SOLUTION

In this section the numerical method and the simulation
setup are briefly discussed.

A. Numerical algorithm

The governing equation (7) is numerically solved using the
Fourier pseudospectral method with triply periodic boundary
conditions. The nonlinear convection terms are treated based
on the 3/2 de-aliasing rule. The solution is advanced in time
using a second-order Runge-Kutta method.

As a result of the coordinate transformation (8), the wave
vector k2 is explicitly related to St , where S and t are the shear
rate and time, respectively. This time dependency poses two
issues, which have to be considered in the solution procedure.
The first issue is related to the incompressibility condition.
Starting from an incompressible field at time step tn, the
projection tensor (δij − kikj /k2) in the momentum equation
(7) enforces the continuity condition with respect to the wave
vector ki(tn). Since the wave vector ki rotates during the
time interval [tn,tn+1], the obtained Fourier mode ûi(ki,tn+1)
does not satisfy the incompressibility condition with respect
to ki(tn+1). To prevent deviation from the incompressibility
condition, the right hand side of the momentum equation
(7) has to be projected onto the perpendicular plane of the
wave vector k(tn+1), before updating the Fourier modes at
each Runge-Kutta stage.

The second issue is related to the growth of the wave vector
k2. During the flow field evolution, the wave vector k2 = k′

2 −

FIG. 2. Schematic representation of the remeshing procedure in
the (k1,k2) plane. The straight arrows inside the lattice represent
the shifts of the Fourier modes after each remeshing according to
relabelling (13). The magnitudes of these arrows are proportional to
the magnitude of the shift for each column. The circles in black (white)
are active (decimated) Fourier modes. The grey circles outside the
lattice indicate the exited active (decimated) Fourier modes, which
are re-entered as the active (decimated) modes from the opposite
boundary, as indicated with big arrows around the lattice.

Stk′
1 and the corresponding terms in Eq. (7) can unboundedly

grow. Therefore, to avoid subsequent numerical errors, the
variation of k2 has to be limited within a prespecified interval,
which is performed through a remeshing procedure [27].

To this end, at specific times St = (n + 1/2)(L1/L2),n =
{0,1,2, . . . }, the wave vector k′

2 is periodically relabelled as

k′
2 → k′

2 + k′
1

(
L1

L2

)
, (13)

while k′
1 and k′

3 remain unchanged [29]. This relabelling
ensures the boundedness of the wave vector k.

The remeshing procedure also shifts the Fourier modes in
the wave space according to relabelling (13). Therefore, after
each remeshing, some Fourier modes exit the spectral domain
from one of the boundaries in the k2 direction. To accomplish
the aliasing-free remeshing procedure, any Fourier mode that
exits the spectral domain from one boundary is re-entered from
the opposite boundary with zero amplitude.

In evolution of the fractally decimated HTSF, to preserve
the number of the active Fourier modes during the remeshing
procedure, the exited active (decimated) Fourier modes are
re-entered as the active (decimated) modes from the opposite
boundary. Figure 2 schematically demonstrates the movement
and the recycling of the Fourier modes during the remeshing
procedure.

It should be noted that although the number of the active
and decimated Fourier modes does not change, the skeleton of
the fractal Fourier set, and consequently its fractal dimension,
inevitably changes during the remeshing procedure. However,
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TABLE I. The specification of the computational setup and the initial velocity field used for all simulations (in mks units).

Dimension of the fractal set of the active Fourier modes (d) 3, 2.9, 2.8, 2.7
Resolution (N1 × N2 × N2) 5123

Domain size (L1 × L2 × L3) 4π × 2π × 2π

Uniform mean shear rate (S) 16
Kinematic viscosity (ν) 0.01
Integral length scale [L Eq. (15)] 0.33

Taylor microscale (λ2 ≡ u2
1/(∂u1/∂x1)2) 0.26

Dissipation rate (ε) 2.918
Turbulent kinetic energy (q2

0 ≡ uiui) 1.8471
Constant spectrum coefficient [E0 in Eq. (14)] 1.1244 × 10−3

Spectrum peak energy wave number [k0 in Eq. (14)] 8
Nondimensional shear parameter (S∗ ≡ Sq2/ε) 10.13
Reynolds number based on the Taylor microscale (Reλ ≡ q2λ/ν) 35
Reynolds number based on the integral length scale (ReL = q2L/ν) 46

it is found that for the considered range of the relevant
simulation parameters, i.e., the fractal Fourier dimension d and
the resolution, the variation of the skeleton of the decimated
Fourier set does not affect the averaged fractal dimension by
more than 1% and has negligible effects on the evolution of
the decimated flow (see the Appendix).

B. Simulation specifications

In this research, four DNSs have been carried out at
different values of Fourier dimensions d = 3.0, 2.9, 2.8, and
2.7. The computational domain is a rectangular box with size
4π × 2π × 2π , discretized using 5123 grid points. The lower
bound of the fractal dimension, i.e., d = 2.7, is set based on
the resolution considerations. Indeed, the required resolution
to obtain the reliable statistics significantly increases as the
dimension d decreases.

All simulations are initialized with a stochastic solenoidal
isotropic velocity field with the prescribed energy spectrum

E(k) = E0k
4 exp(−2k2/k2

0). (14)

Here, k0 defines the location of the peak in the energy spectrum
and the constant E0 is closely related to the initial turbulent
kinetic energy. For all simulations, the mean flow shear is
S = 16 and the initial Reynolds number based on the Taylor
microscale is Reλ = 35. The detailed specification of the

computational domain and the initial velocity field used for
all simulations are listed in Table I.

Figure 3 demonstrates the quality of the simulations by
presenting time evolutions of Reλ, as well as the resolution
constraints at the small and large scales. The evolution of Reλ

is presented in Fig. 3(a), which shows a monotonic growth of
the Reynolds number for all cases. The computational domain
size constraint for the evolution of the large-scale structures,
i.e., the unbounded growth of the integral length scale, is
demonstrated in Fig. 3(b) by presenting the evolution of the
integral length scale in the streamwise direction, defined as

L(t) ≡ 1

u1(x,t)u1(x,t)

∫ ∞

0
u1(x,t)u1(x + re1,t)dr, (15)

where e1 is the unit vector in the x1 direction. This figure
shows that for all cases, the integral length scale L(t) grows
monotonically [note that the integral length scale L should not
be confused with the linear operator symbol in Eq. (9)].

The resolution criterion for the small-scale structures
is demonstrated in Fig. 3(c) by presenting η/�x2, where
η ≡ (ν3/ε)1/4 is the Kolmogorov microscale and ε is the
turbulent kinetic energy dissipation rate. It can be observed that
although this quantity decreases monotonically, for all cases
the criterion η/�x2 � 1.2 is retained during the simulation
time.
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FIG. 3. Temporal evolution of (a) the Reynolds number based on the Taylor microscale Reλ; (b) the streamwise integral length scale
L, normalized by the computational domain size; (c) the Kolmogorov length scale η normalized by the grid spacing in the cross-stream
direction �x2.
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From these figures it can be observed that the fidelity of the
simulations are maintained until St � 12. After this time, both
resolution requirements, i.e., η/�x2 � 1.2 and dL/dt � 0,
will be violated simultaneously, which implies that within the
considered resolution, the chosen simulation parameters yield
maximum simulation window time. Interestingly, it can be
observed that the window of time, over which the simulations
retain resolution for large and small scales, increases by
reduction of the Fourier dimension. This issue can be retrieved
from Figs. 3(b) and 3(c), by comparing the evolutions of L/L1

and η/�x2 for the test case d = 2.7 to those in the original
problem d = 3.

IV. RESULTS

The DNS results are presented in the following: First, the
impact of the variation of the Fourier dimension d on the
overall HTSF evolution is discussed in Sec. IV A. Next, the
sensitive dependence of the dynamics of the large and small
scale structures on the variation of d is discussed in Secs. IV B
and IV C, respectively. Finally, in Sec. IV D, the influence of
d on the spectral energy transfer is investigated.

A. Overall flow field evolution

One of the most ubiquitous aspects of the HTSF evolution
is the development of an enormous number of tangled, large-
and small-scale streamwise vortical structures, which are
generated through coupling between the turbulence and the
mean shear flow. In Fig. 4, the impact of the variation of the
Fourier dimension on this fundamental feature of the HTSF is
visualized by comparing the proliferation of these large and
small structures at different dimensions d.

Despite the lack of a clear definition for the small and
large scales or eddies in physical space, the small scales
are associated with the field of the velocity gradients while
the large scales are characterized by the velocity field [1,30].
The velocity gradient includes both the symmetric part, i.e., the
strain rate sij = (∂ui/∂xj + ∂uj/∂xi)/2, and the asymmetric
part, which is related to the vorticity ωi = εijk∂uk/∂xj and
εijk denoting the alternating symbol. Since in a homogeneous
field 2sij sij = ωiωi , in this research the small-scale structures
are probed based on the enstrophy field ω2.

Figures 4(a) and 4(b) demonstrate the impact of the
dimensionality on the instantaneous state of the large-scale
structures. In these figures, the snapshots of the turbulent
kinetic energy isosurfaces q2 ≈ 1.7 for the flow fields with
d = 3.0 and d = 2.7, at the well developed stage St = 10,
are presented. In both dimensions large scale eddies appear
as streaky structures, which are elongated in the streamwise
direction [21,31]. A strong visual correlation between the
instantaneous turbulent kinetic energy fields in d = 3.0 and
d = 2.7 can be discerned, which implies that the dynamics of
the large-scale structures are not significantly affected by the
variation of the Fourier dimension.

Correspondingly, Figs. 4(c) and 4(d) demonstrate the
impact of the dimensionality on the instantaneous state of
the small-scale structures. In these figures, the snapshots of the
enstrophy isosurfaces ω2 ≈ 160, at the same circumstances
of Figs. 4(a) and 4(b), are presented. Similar to the large-
scale structures, it can be seen that as a result of the
mean shear action, the initially incoherent vorticity blobs are
stretched into the coherent, streamwise elongated vortex tubes.
However, it can be observed that the reduction of the Fourier
dimension substantially influences the small-scale structures.

FIG. 4. The snapshots of the energy isosurfaces q2 ≈ 1.7 of the flow fields for (a) d = 3.0 and (b) d = 2.7. The snapshots of the enstrophy
isosurfaces ω2 ≈ 160 of the flow fields for (c) d = 3.0 and (d) d = 2.7. All flow fields at St = 10.
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FIG. 5. The three-dimensional energy spectrum at St = 10,
developed from a k4-exponential initial energy spectrum, indicated
by the grey curve.

The enstrophy field at d = 3.0 shows highly convoluted and
tangled vortical structures while in the flow field with d = 2.7
the complexity of these structures is considerably reduced. The
instantaneous state of the flow field structures with d = 2.9 and
2.8 follow the observed trend (not shown).

The less granulated turbulent flow field structure at the
lower Fourier dimension can be further investigated by
considering the hampering effect of the dimension reduction
on the level of the small-scale activity. This issue is examined
in Fig. 5 based on the kinetic energy of the large and small
scales. Since the flow field scales are intrinsically related to the
Fourier space, the energy spectrum can provide an appropriate
description for the kinetic energy of different scales. Figure
5 shows the three-dimensional energy spectrum of all cases
at St = 10, developed from a k4-exponential initial energy
spectrum. Due to the modest range of the Reynolds number,
neither of the spectra shows a discernible inertial subrange.
This issue can be also clearly observed in Fig. 13, in which k

independent spectral energy flux is not established.

Consistent with the visualization in Fig. 4, it can also be
observed in Fig. 5 that for all cases, the infrared (low wave
number) region of the spectra, which represents the kinetic
energy of the large-scale structures, collapses fairly well.
However, the ultraviolet (high wave number) region of the
spectra shows steeper descent for the flow fields with lower
dimensions. Therefore, although the kinetic energy of the large
scales shows an almost insensitive dependence on the variation
of the flow field dimension, the kinetic energy of the small
scales declines as the Fourier dimension reduces.

Finally, the overall dynamics of the large and small scales
are investigated in Fig. 6, by considering time evolutions of
the turbulent kinetic energy q∗2 ≡ q2/q2

0 and the enstrophy
ω∗2 ≡ ω2/ω2

0, normalized by their respective initial values.
Figure 6(a) shows that the time evolution of the turbulent
kinetic energy is slightly affected by the variation of the
Fourier dimension. All test cases show an almost identical
monotonically increasing turbulent kinetic energy evolution
except for the test case with the lowest dimension d = 2.7,
whose time evolution to some extent deviates from the other
test cases after St ≈ 6. The sensitive dependence of the
turbulent kinetic energy evolution on the variation of the
Fourier dimension can be further examined by considering
its nondimensional growth rate, i.e., σeng ≡ q̇2/(Sq2).

Approximately after St ≈ 6, for all cases σeng evolves to
an asymptotically constant value, which implies an approxi-
mately exponential growth for the turbulent kinetic energy, i.e.,
q∗2 ∝ exp(σengSt). The dependency of the exponent growth
rate on the dimension variation is plotted in the inset of
Fig. 6(a). It can be observed that reduction of the Fourier
dimension from d = 3.0 to d = 2.7 results in a 20% reduction
of the turbulent kinetic energy growth rate.

Figure 6(b) shows the time evolution of the normalized
enstrophy for all cases. Similar to the turbulent kinetic energy,
ω∗2 also shows a monotonic increase during the flow field evo-
lution. However, compared to q∗2, variation of the Fourier di-
mension shows a more pronounced influence on the time evo-
lution of this quantity for St � 6. This sensitive dependency
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FIG. 6. Time evolutions of the normalized (a) turbulent kinetic energy q∗2, and (b) enstrophy ω∗2. In the insets: the asymptotic values of
the nondimensional growth rates of the (a) energy σeng ≡ q̇2/(Sq2), and (b) enstrophy σens ≡ ω̇2/(Sω2).
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FIG. 7. Temporal evolution of (a) the normalized turbulent kinetic energy production −P and (b) the ratio of the turbulent kinetic energy
production to dissipation −P/ε.

is more investigated by considering the nondimensional
growth rate of the enstrophy, i.e., σens ≡ ω̇2/(Sω2).

Similar to the turbulent kinetic energy, σens also develops
to a constant evolution after St ≈ 6, which implies an
approximately exponential growth for the enstrophy. The
asymptotic enstrophy growth rate exponent is presented in the
inset of Fig. 6(b). Clearly, an approximately 40% reduction
in the enstrophy growth rate can be observed, as the Fourier
dimension reduces from d = 3.0 to d = 2.7, i.e., almost two
times the reduction of the turbulent kinetic energy growth rate.

B. Turbulent kinetic energy

In this section, the dynamics of the large scales is further
examined by considering the Reynolds stresses. The transport
equation of the Reynolds stresses for the decimated field
vi(x,t), and p(x,t) may be written as follows:

dRij

dt
= Pij + �ij − εij , (16)

where

Rij ≡ P D{vivj }, Pij ≡ −Rjk

∂Ui

∂xk

− Rik

∂Uj

∂xk

,

�ij ≡ P D

{
p

(
∂vi

∂xj

+ ∂vj

∂xi

)}
, εij ≡ P D

{
2ν

∂vi

∂xk

∂vj

∂xk

}
,

(17)

and P D is the projection operator as indicated in Eq. (10).
This equation implies that at each time iteration, the nonlinear
terms are projected on the preselected set of the active Fourier
modes. In Eqs. (16) and (17), Pij is the production term, �ij

is the redistribution term, and εij denotes viscous dissipation.
The governing equation for the turbulent kinetic energy is
directly related to the trace of the Reynolds stress transport
equation (16),

1

2

dq2

dt
= P − ε, (18)

where q2 ≡ Rii is the turbulent kinetic energy, P ≡ Pii/2
represents the turbulent kinetic energy production, and ε ≡
εii/2 is the turbulent kinetic energy dissipation.

Figure 7 presents time evolutions of the relevant terms
in equation (18). In Fig. 7(a), a monotonically increasing
evolution forP can be observed, where the growth rate reduces
as the flow field Fourier dimension decreases. Noting that
in the homogeneous incompressible flow ε = νω2, the time
evolution of the turbulent dissipation can also be retrieved
from Fig. 6(b).

Figure 7(b) compares the time evolutions of the turbulent
production and dissipation. It can be observed that for all cases,
the ratio of these quantities approaches an asymptote P/ε ∼
−1.2, which weakly depends on the Fourier dimension. This
implies an almost similar sensitive dependence of the produc-
tion and dissipation (enstrophy) on the variation of the Fourier
dimension. As observed in Fig. 6, however, the variation of
the Fourier dimension has a significantly smaller impact on the
evolution of q2, compared with ω2. This lower sensitivity could
be explained based on the turbulent kinetic energy equation
(18), in which the comparative variations of ε and P , as the
Fourier dimensionality varies, tend to offset each other.

The evolution of the turbulent production can be further
examined by noting that in the considered flow field configu-
ration, this quantity may be written as P = −Sρ12

√
R11R22,

where ρ12 = R12/
√

R11R22 is the only nonzero correlation
coefficient. From the DNS results, it is found that after St � 6,
the correlation coefficient approaches an asymptotic value
ρ12 = −0.581 ± 0.003, independent from the Fourier dimen-
sion. This asymptotic value for the correlation coefficient is
consistent with the previous results [32,33]. Therefore, the
observed variability of the turbulent production evolution can
be related to the sensitive dependence of the Reynolds stresses
R11 and R22 on the Fourier dimension variation.

Considering an initially isotropic field, the evolution of the
diagonal Reynolds stress components can be concisely written
as

dR11

dt
= �11 − ε11 + P11,

dR22

dt
= �22 − ε22,

dR33

dt
= �33 − ε33, (19)

where different terms in the above equations are introduced in
relations (17).
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FIG. 8. Time evolution of three normalized diagonal components of the Reynolds stress tensor: (a) normal R22/q
2, (b) spanwise R33/q

2,
and (c) streamwise component R11/q

2.

Dynamics of Eqs. (19) may be briefly described as follows:
R11 directly receives energy from the mean flow through the
action of the mean shear on the turbulent field, represented
by P11. Part of this energy is redistributed among different
directions by diagonal terms of the pressure strain �ij , without
affecting the overall turbulent kinetic energy. Finally, the
distributed energy among different directions is dissipated by
the corresponding diagonal components of εij , which appear
as the energy sinks in the dynamical equations (19).

Figure 8 shows the time evolutions of the diagonal Reynolds
stresses components, normalized by the turbulent kinetic en-
ergy. During long periods of time, it can be observed that these

quantities approach their approximately asymptotes. Figures
8(a) and 8(b), however, show that the asymptotic values for
the normal R22/q

2 and spanwise R33/q
2 components decrease

as the Fourier dimension decreases, while Fig. 8(c) shows an
opposite trend for the streamwise component R11/q

2. Since
the reduction of the Fourier dimension has a hampering effect
on the viscous dissipation, including ε22 and ε33, the lower
asymptotic values of R22/q

2 and R33/q
2 could be related to

the behavior of their source terms, i.e., �22 and �33.
Figure 9 demonstrates the impact of the variation of

the Fourier dimension on the diagonal components of the
pressure strain. This figure signifies the central role of the
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FIG. 9. Time evolutions of the pressure-strain diagonal components (a) �33, (b) �22, and (c) �11.
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indicated. The inset in the upper side presents the final stage of the
anisotropy levels for all cases.

pressure strain in energy redistribution. Both �22 and �33 are
dominantly positive while �11 is entirely negative throughout
the flow field evolution. Therefore, �11 extracts energy from
the streamwise component R11 and redistributes it between the
cross stream R22 and the spanwise R33 components, via �22

and �33. From this figure, the suppressing effect of the lower
Fourier dimension on the energy redistribution process can be
observed.

Figures 9(a)–9(c) clearly show that the magnitudes of all
�11, �22, and �33 reduce as the Fourier dimension reduces.
As it can be observed from Eq. (19), reductions of the source
terms �22 and �33 impede the growth of R22 and R33 while
reduction of the sink term �11 intensifies the growth of R11.
Nevertheless, the net effect of the countervariations of R22

and R11 is the reduction of the turbulent production term P =
−Sρ12

√
R11R22, as observed in Fig. 7(a).

Moreover, the main contribution to the turbulence
isotropization process comes from the dynamics of the
pressure-strain term. Therefore, one might expect the level
of the large-scale anisotropy to be also influenced by the
variation of the Fourier dimension. The large-scale anisotropy
can be quantified based on the invariants of the anisotropy
tensor, i.e., II = bij bji/2 and III = bij bjkbki/3, where bij =
Rij/q

2 − δij /3.
Figure 10 shows the flow field evolution in a plane spanned

by 3η2 = II and 2ξ 3 = III . It can be seen that all trajectories
start from the initial isotropic state and finally move towards
the one-component corner. During this final approach, all
trajectories are equidistantly located between the upper and
lower boundaries, which respectively represent the rodlike
and the two-component disklike turbulence structures. This
indicates that the kinematics of the longitudinal vortex is
simultaneously compressed in the cross-stream direction and
stretched in both the streamwise and spanwise directions [22].

The upper inset in Fig. 10 shows the final stage of
the anisotropy levels for all cases. It can be observed that

by lowering the Fourier dimension, the final stage of the
anisotropy is more stretched towards the one-component
corner, i.e., 1C point. Indeed, less effective energy distribution
in flow fields with lower dimensions prevents developments
of R22 and R33, resulting in a more rodlike structure of the
Reynolds stress tensor.

C. Vorticity dynamics

In this section, the dynamics of the small scales is
examined by considering the fluctuating enstrophy. Denoting
the fluctuating vorticity of the decimated field by ωi ≡
P D{εijk∂uj/∂xk} the transport equation of the decimated
fluctuating enstrophy ω2 ≡ P D{ωiωi} for HTSF may be
written as follows:

d

dt

(
ω2

2

)
= P D{ωiωj sij }︸ ︷︷ ︸

VSTurb

+ P D{ωiωj }Sij︸ ︷︷ ︸
VSMean

− P D

{
ν
∂ωi

∂xj

∂ωi

∂xj

}
︸ ︷︷ ︸

εens

.

(20)

Figure 11 presents time evolutions of the different terms of
Eq. (20). In Fig. 11(a), it can be observed that for all cases,
VSTurb undergoes a monotonic growth, however, its growth
rate significantly decreases as the Fourier dimension reduces.
This sensitive dependence originates from the dominant con-
tribution of the small-scale dynamics to this vortex stretching
mechanism.

In contrast to VSTurb, Fig. 11(b) shows that after an initial
rise during the transitional period, VSMean develops into a
stationary evolution, independent of the Fourier dimension.
This trend is expected because this vortex stretching mecha-
nism is governed by the dynamics of the large-scale structures,
which are relatively insensitive to the variations of the Fourier
dimension.

Figure 11(c) shows the time evolution of the enstrophy
dissipation. For all cases, a close similarity between time
evolutions of εens and VSTurb in Fig. 11(a) can be discerned.
This observed correlative behavior of VSTurb and εens in
Figs. 11(a) and 11(c) implies that the dissipation adjusts
itself to the vortex stretching process VSTurb, which is closely
related to the concept of the energy cascade in the physical
space. This issue might be further quantified by considering
the skewness of the velocity derivative, which is related to
the energy transfer based on the Kolmogorov’s four-fifths
law [34]. Moreover, Gaussian departure of the small-scale
statistics and their intermittency can also be measured by this
quantity.

For the HSTF configuration, a generalization of the
velocity-derivative skewness is defined as [35]

Sux
=

1
3 (∂ui/∂xi)3[

1
3 (∂uj/∂xj )2

]3/2 , (21)

where the summation convention has been adopted. The
time evolution of this quantity is demonstrated in Fig. 12.
The sensitive dependence of the Sux

on the variation of
the Fourier dimension can be clearly retrieved from this
figure. It can be observed that for long periods of time, this
quantity tends to develop into a constant level evolution.
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FIG. 11. Time development of different enstrophy dynamic terms. The time evolutions of (a) the vortex stretching VSTurb, (b) the vortex
stretching VSMean, and (c) the enstrophy dissipation εens.

However, the magnitude of this asymptotic state decreases
as the Fourier dimension reduces. Therefore, the reduction of
the Fourier dimension results in the reduction of the energy
transfer, as well as the small-scale intermittency and departure
from the Gaussian statistics. This trend is in agreement with
substantial different small-scale statistical characteristics in
two- and three-dimensional turbulences, where the latter is
characterized by the small-scale intermittency whereas the
former shows some indications of the small-scale Gaussianity.

D. Spectral energy transfer

Since the vortex stretching is equivalent to the inten-
sification of the velocity derivatives, this process can be
considered as the manifestation of the spectral energy transfer
in physical space. In Sec. IV C, it was observed that the main
vortex stretching mechanism significantly decreases as the
Fourier dimension reduces, which leads to the demotion of
the small-scale activities. In this section, this reduction of the
downward energy transfer is investigated.
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FIG. 12. Time development of the velocity derivative skewness Sux
.
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The concept of the energy transfer mechanism is intrin-
sically relevant in Fourier space, where the “scale” can be
rigorously defined. Two quantities of primary importance for
describing the energy transfer mechanism are the spectral
energy transfer T (k) and the spectral energy flux �(k).

The spectral energy transfer T (k) represents the contribu-
tion of the nonlinear term of the Navier-Stokes equation to the
time evolution of the energy spectrum E(k). It quantifies the
energy transfer rate from all wave numbers to a specific wave
number k. This term is related to the Fourier transformation
of the nonlinear term of the Navier-Stokes equation as
follows:

T (k) =
∫

|k′|=k

∫
p

∫
q
S(k′|p,q)δ(k′ − p − q)dpdqdk′. (22)

Here, δ(k) is the vector Dirac δ function, and S(k′|p,q) is the
triad transfer function. For the decimated flow, this function,
which presents a mode-to-mode energy transfer rate, may be
expressed as

S(k′|p,q) = − Im{[k′ · ûD(q)][ûD(p) · ûD(k′)]}
− Im{[k′ · ûD(p)][ûD(q) · ûD(k′)]}, (23)

where Im denotes the imaginary part. The decimated Fourier
coefficients are defined as ûD(k) ≡ α(k)û(k), in which α(k)
are independent, prespecified, time-frozen random coefficients
(11) (note that k′ should not be confused with the wave vector
in the laboratory reference). The first (second) term in Eq. (23)
represents energy transfer from mode p(or q) to mode k′ with
mode q(or p) acting as the mediator. Similarly, the spectral
energy flux, defined as

�(k) = −
∫ k

0
T (k′)dk′

= −
∫

|k′|�k

∫
p

∫
q
S(k′|p,q)δ(k′ − p − q)dpdqdk′, (24)

provides the energy transfer rate from all scales below k to
those above k.

Figure 13(a) shows the spectral energy transfer function
and flux for all cases at St = 10. It can be observed that
T (k) is negative (positive) in the low (high) wave number
region, which indicates the prevalence of the forward energy
cascade for all cases. However, both negative and positive
peaks of the energy transfer reduce as the Fourier dimension
reduces.

Corresponding energy flux �(k) is presented in Fig. 13(b).
Due to the moderate Reynolds number during the flow field
evolution, neither of the test cases shows the constant level
energy flux. The forward direction of the spectral energy
transfer can also be retrieved from the dominantly positive
�(k) throughout the whole range of the spectrum. However,
consistent with the behavior of T (k), reduction of the Fourier
dimension leads to the reduction of the peak of the energy
flux, which for all cases occurs at k ≈ 13. This issue is better
visualized in the inset of Fig. 13(b), which shows that reduction
of the Fourier dimension from d = 3.0 to d = 2.7 results in an
almost 50% reduction in the maximum spectral energy flux.
Therefore, the spectral energy transfer is significantly impeded
as the Fourier dimension reduces. As a result of this blockage
of the forward energy transfer, the small-scale activities are
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FIG. 13. (a) The spectral energy transfer T (k), and (b) the spectral
energy flux �(k) for all test cases at St = 10. The inset of (b) presents
the maximum of the energy flux �(k) vs the flow field dimension d .

strongly hampered, which in turn leads to a faster decay of the
ultraviolet part of the energy spectrum in Fig. 5.

The sensitive dependence of �(k) on the variation of the
flow field dimension can be further inspected by considering
the following flux splitting:

�(k) = �+(k) − �−(k),

�+(k) = 1

2

∫ ∞

|k′|=k

dk′
∫ |q|=k

0

∫ |p|=k

0
S(k′|p,q)dpdq,

�−(k) = 1

2

∫ |k′|=k

0
dk′

∫ ∞

|q|=k

∫ ∞

|p|=k

S(k′|p,q)dpdq, (25)

where the wave vectors p, q, and k′ are subjected to the triangle
constraint. �+(k) presents the total rate of energy gain in
the range k′ > k due to the triad interactions with p,q < k,
while �−(k) denotes the total rate of the energy loss in the
range k′ < k due to the triads with p,q > k [6]. In this research,
these quantities are evaluated based on the coarse-grained
shell-to-shell energy transfer function, which will be shortly
introduced.

Figure 14 depicts �±(k) for all cases at St = 10. It can
be clearly observed that the magnitudes of both �+(k) and
�−(k) reduce as the Fourier dimension reduces. However, the
variation of the Fourier dimension has a considerably higher
impact on the �+(k), as compared to the �−(k). Therefore, the
observed reduction of the total energy flux �(k) in Fig. 13(b)
mainly originates from the reduction of �+(k), as the active
Fourier set is reduced.

The observed dependency of the energy transfer mech-
anisms T (k) and �(k) on the Fourier dimension can be
further investigated by analyzing their Eqs. (22) and (24).
Considering the spectral energy transfer T (k) for instance,
its Eq. (22) may be written as the Riemann summation T (k) =
(δk)3 ∑

|k|=|p+q| S(k|p,q), where, as already introduced, (δk)3

represents the volume of the differential spectral element.
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FIG. 14. Splitting energy flux �(k) into two components �+(k)
and �−(k) for all test cases at St = 10. �+(k) appears with positive
values while �−(k) takes negative value, both contributing to the
forward energy flux.

Here, summation takes place over all triads which can
be formed among the set of active Fourier modes. This
representation clearly shows that the variation of T (k) can
originate from variations of (a) the number of the active triads,
and (b) the magnitude of the triad transfer function S(k|p,q),
as the Fourier dimension varies.

With respect to the first issue, the number of the active
Fourier modes is proportional to the volume of the d-
dimensional sphere, Kd , where K is the relevant spectral ra-
dius, i.e., the grid resolution. The number of the corresponding
triads, which is proportional to the three-combination subset
of these active modes, is approximately K3d . Therefore, as
the Fourier dimension decreases, the number of the active
triads which contribute to the energy transfer process, and
consequently T (k), decreases.

This reduction of the energy transfer results in the energy
deprivation of the downstream Fourier modes, which in
turn influences the magnitude of the triad transfer function
S(k|p,q). This interplay, which is related to the second issue,
can be investigated by considering the impact of the variation

of the Fourier dimension on the course-grained triad transfer
function Ŝ(l|n,m).

Similar to S(k|p,q), the course-grained triad transfer
function Ŝ(l|n,m) represents the energy transfer into shell l due
to all interactions between the Fourier modes in shells n and m,
subjected to the triangle constraint. Although, as a result of this
coarse graining procedure, some of the detailed information
is lost, Ŝ(l|n,m) still preserves the physical relevance of the
original triad transfer function [36].

To evaluate Ŝ(l|n,m), the wave-number space is divided
into concentric spherical shells, here with shell thickness �k =
3. Using band-filtered velocity field, the coarse-grained triad
transfer function is defined as

Ŝ(l|n,m) =
∑

kl � |k| < kl+1
pn � |p| < pn+1
qm � |q| < qm+1

S(k|p,q). (26)

Due to the considerable variations in magnitude of Ŝ(l|n,m)
over different shells, a more appropriate description can be
obtained by the following normalization [37]:

S(l|n,m) = Ŝ−(l|n,m)

Smin
+ Ŝ+(l|n,m)

Smax
, (27)

where Smin and Smax represent the minimum and maximum of
Ŝ(l|n,m), respectively. The positive and negative parts of the
energy transfer function in the above normalization are defined
as

Ŝ+(l|n,m) =
{
Ŝ(l|n,m) if Ŝ(l|n,m) � 0,
0 otherwise,

(28)

and similarly

Ŝ−(l|n,m) =
{
Ŝ(l|n,m) if Ŝ(l|n,m) � 0,
0 otherwise.

(29)

Figures 15(a) and 15(b) show the normalized course-
grained triad transfer function, S(l|n,m), for two cases d =
2.7 and d = 3.0, at the wave number k = 50, at St = 10.
Comparing these figures, qualitatively similar regions in
(kp,kq) planes can be discerned, which may be concisely
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FIG. 15. The normalized triad energy transfer function S(l|n,m) for k = 50. (a) d = 2.7, and (b) d = 3.0, at St = 10. The contour levels
are ±1/2m,m = 0, . . . ,20 that are the same for all pictures.
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describes as follows (a more complete description can be found
in Refs. [36–39]): first, high intensity regions, in which the
contours appear as a dipole and are localized at the corners
of the rectangular area; second, mainly negative low intensity
regions, which are extended along |kp − kq | = k boundaries of
the rectangular area; finally, low intensity negative and positive
islands, which are irregularly scattered throughout the central
part of the rectangular area.

Low intensity regions along |kp − kq | = k boundaries
mainly represent weak forward nonlocal energy exchange
while those in the central part of the rectangular area contribute
to both weak forward and backward energy exchange.

However, the main contribution to the energy exchange
comes from the high intensity regions, located at the corners
of the rectangular area. These dominant energy exchanges take
place between two wave numbers of similar size, i.e., kp ≈ k

(kq ≈ k), and a considerably smaller wave number as the me-
diator, i.e., kq ≈ 0 (kp ≈ 0). This combination indicates a local
energy exchange through a nonlocal, elongated triad (this issue
will be further investigated using locality function). Moreover,
it can be observed that in these regions, the course-grained triad
transfer function is strictly positive [Ŝ(l|n,m) ≈ Smax] below
the wave number k, and strictly negative, [Ŝ(l|n,m) ≈ Smin]
above the wave number k. Therefore, high intensity regions
contribute to the forward energy exchange between adjacent
wave numbers.

Despite above-mentioned similarities in Figs. 15(a) and
15(b), a variation of the Fourier dimension, qualitatively and
quantitatively, influences S(l|n,m), specifically in the high
intensity regions. Quantitatively, it is found that the extrema of
the triad transfer function, i.e., Smin and Smax, show one order of
magnitude reduction, O(10), as the Fourier dimension reduces
from d = 3.0 to d = 2.7. With respect to the energy transfer
function T (k), this observation signifies that besides reduction
of the number of the active triads, the magnitude of S(k|p,q),
measured by Smin and Smax, is also tremendously decreased.

This reduction of the magnitude of the triad transfer
function is consistent with the observed behavior of the
fractally decimated Burgers equation. Similar to the Navier-
Stokes equation, in the one-dimensional Burgers equation
mode-to-mode energy transfer appears in triads. It has been
observed that reduction of the Fourier dimension of the one-
dimensional Burgers equation results in the significant loss of
the phase coherency amongst triad phases and consequently
depletion of the energy transfer [40].

By comparing Figs. 15(a) and 15(b), qualitative differences
between their respective high intensity regions can also be
discerned. It can be observed that in contrast to the flow
field with d = 3.0, in which the dominant energy exchange
is acutely localized in the corners of the rectangular area,
the flow field with lower dimension d = 2.7 shows a quite
extended interaction region along the rectangular boundary
|kp + kq | = k. Geometrically speaking, the dominant energy
exchange in the former case takes place between kp ≈ k with
mediator wave number kq ≈ 0, i.e., the local energy transfer
through the nonlocal triads, while in the latter case between
kp � k through mediator wave number kq � 0, i.e., energy
transfer through less nonlocal triads.

This elongation of the interaction region along the rectangu-
lar boundary |kp + kq | = k can be further explained as follows.

The energy transfer into an eddy corresponding to the wave
number k is proportional to the imposed strain fields on it, from
all other eddies, which may be presented by [

∫
κ2E(κ)dκ]1/2

[25]. If one assumes a power law spectrum E(κ) ∝ κ−m for
eddies in the positive region along the rectangular boundary
|kp + kq | = k with 1 < m � 3 [13], the energy transfer into

the wave number k can be approximated as [
∫ k

0 κ2−mdκ]1/2.
The integrand represents the contribution of different modes

0 < κ < k along the |kp + kq | = k to energy transfer into
mode k. It can be observed that as the exponent m increases
(decreases), the contributions of the distant modes κ � k from
this region to the total energy exchange become more (less)
pronounced, which can be interpreted as the energy transfer
through local (nonlocal) triads.

Therefore, the sequence of events might be considered as
follows. As the Fourier dimension decreases, the efficiency
of the spectral energy transfer reduces, which leads to the
deprivation of the small-scale kinetic energy. This hampering
effect results in a faster decline of the corresponding energy
spectrum, i.e., increase of m in view of the model energy
spectrum.

Besides the above-mentioned qualitative discussion, the
impact of the Fourier dimension variation on the locality of the
energy transfer triads can also be quantitatively investigated,
using the energy transfer locality function. This quantity
provides a measure for the disparity of the interacting scales
[6]. In order to separate the local and nonlocal interactions,
different triads are parametrized based on the ratio of the
smallest to the middle wave number, here denoted by v.
The energy transfer locality function represents the fraction
of the total nonlinear energy transfer that is due to all
triad interactions in which the ratio of the smallest to the
middle wave number is greater than v, and computed as
follows [38]:

W (v) =
∑

k′�k

∑
v�r T (k′|p,q)∑

k′�k

∑
p,q T (k′|p,q)

, v = min(k′,p,q)

mid(k′,p,q)
.

(30)

In Fig. 16, the locality function is plotted for all cases
at St = 10 and k = 50, using the coarse-grained transfer
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FIG. 16. The energy transfer locality function for all test cases at
St = 10 and k = 50. The inset presents the variation of the locality
of triads involved in 50% energy transfer.
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function. Overall, it can be observed that the contribution of
the nonlocal triads to the turbulent kinetic energy exchange
becomes more pronounced as the Fourier dimension increases.
More precisely, it can be observed in the inset that half
of the total energy transfer is accomplished by the triad
interactions in which the ratio of the smallest wave number
to the middle one is less than 0.34, 0.30, 0.27, and 0.24 at
d = 2.7, 2.8, 2.9, and 3, respectively. This indicates that the
involved triads become more and more elongated as the Fourier
dimension increases. As already discussed, this reduction of
the triadic locality by increasing the Fourier dimension is
also visualized in the corners of the rectangles in Figs. 15(a)
and 15(b).

It should be noted that although mode-to-mode energy
exchanges through nonlocal triads are extremely larger than
those for local triads, the dominant contribution to the spectral
energy flux comes from local triadic interactions [41]. Indeed,
through the integration (24) or (22), larger cancellations occur
among contributions from nonlocal triads, compared to those
from local triads [42,43]. The higher scale locality of the
energy transfer at a lower Fourier dimension in Fig. 16 implies
that the fractal decimation results in a further cancellation of
nonlocal contributions.

Moreover, as can be retrieved from Fig. 15, the nonlocal
triads occupy a small fraction of the Fourier space volume
compared to the local triads [44]. Therefore, the cumulative
effects of the extremely larger number of the local triads
overwhelm the contribution of the nonlocal triads in the
above-mentioned integrations. However, to correctly capture
this dominant effect of the local triads from a band-filtered
velocity field with constant bandwidth on the linear scale, it
is required to use band-pass filters with very broad spectral
support [45,46]. From Fig. 16, one might interpret the fractal
Fourier decimation as a filtering with a nonlocal kernel, whose
spectral support is related to the fractal dimension d.

Fourier decimation can also influence the action of the mean
shear on the turbulence. In the homogeneous shear flow, there
is a contentious energy supply into the turbulent field, through
the interaction of the mean shear with the turbulent flow. It
is found that for all cases, the production term P11 injects
energy into the low wave number modes, dominantly within
0 < k � 10. As a result of this direct energy injection, all
the local and nonlocal triads with at least one mode in this
region become more energetic than the other triads. Since this
energy is directly received by the streamwise component of the
fluctuations [see Eq. (19)], mean shear also induces anisotropy
on the large-scale structures. This large-scale anisotropy can
be directly transferred to the small-scale dynamics through
the energized nonlocal triads. Due to this distant coupling, the
dissipative scale of the HTSF can also show a significant level
of the anisotropy.

However, this process can be significantly influenced by
the Fourier decimation. As observed in Fig. 16, the energy
transfer nonlocality reduces as the Fourier dimension reduces,
which can hamper the direct induction of the anisotropy on the
small-scale structures. Therefore, in contrast to the large-scale
anisotropy, the small-scale anisotropy reduces as the Fourier
dimension reduces. This issue can also be observed in Fig. 12,
which shows the lower level of the velocity derivative skewness
for the flow field with lower Fourier dimension.

V. CONCLUSIONS

The impact of the variation of the flow field dimensionality
on the temporal evolution of an incompressible homogeneous
turbulent shear flow is investigated by conducting different
direct numerical simulations (DNSs). The Fourier dimension
is varied within 2.7 � d � 3.0, by systematically reducing
the degrees of freedom of the Navier-Stokes equation based
on the fractal Fourier decimation method. Consistent with
the previous studies, it is found that reduction of the Fourier
dimension has a suppressive effect on the dynamics of both
large and small-scale structures. However, evolution of the
small-scale structures shows higher sensitivity to the variation
of the Fourier dimension, compared to that of the large-scale
structures.

Dynamics of the large-scale structures is investigated based
on the time evolution of the turbulent kinetic energy. Develop-
ments of both kinetic energy production and dissipation, which
are turbulent central mechanisms, are significantly hampered
as the Fourier dimension reduces. Nevertheless, the time
evolution of their ratio approaches an asymptote P/ε ∼ −1.2,
which weakly depends on the Fourier dimension. Therefore,
the energy balance between large and small scales is not
significantly affected by the modifications of the triad-to-triad
energy transfer mechanism. The energy distribution among
different diagonal components of the Reynolds stress is
also hindered by the reduction of the Fourier dimension,
which in turn increases the level of the large-scale flow field
anisotropy.

Dynamics of the small-scale structures is investigated based
on the vorticity dynamics. In all dimensions, the vorticity
dynamics is dominantly governed by the interplay between
the fluctuating vortex stretching mechanism and the enstro-
phy dissipation. The monotonical growth of both quantities,
however, is significantly suppressed as the Fourier dimension
reduces. The reduction of the vortex stretching process results
in a lower level of small-scale intermittency as well as the lesser
a departure from the Gaussian statistics. Within the considered
range of dimensions, the energy transfer mechanism indicates
strictly forward energy cascade process. However, similar to
the vortex stretching process, this forward spectral energy
transfer is significantly impeded by the reduction of the Fourier
dimension. As a result of this energy blockage, the activities
of the small-scale structures are suppressed, which affects the
high wave number part of the energy spectrum: the lower the
Fourier dimension, the steeper the decay of the ultraviolet
region of the energy spectrum.

By splitting the spectral energy flux into �−(k) and �+(k),
it is found that the magnitude of both components decreases
as the Fourier dimension reduces. However, �+(k) shows
considerably higher decline compared to �−(k) as the Fourier
dimension reduces.

By reconstructing the course-grained triad transfer func-
tion, modifications in the triad-to-triad nonlinear energy
transfer mechanism is also investigated. It is found that for
all cases the energy exchange dominantly takes place between
two wave numbers of similar size and one considerably smaller
wave number as the mediator. However, the reduction of the
Fourier dimension quantitatively and qualitatively influences
this dominant energy exchange mechanism. First, the intensity
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FIG. 17. Comparison of time evolutions of (a) the normalized turbulent kinetic energy q2/q2
0 , and (b) the normalized energy dissipation

rate ε/ε0, obtained with remeshing process (Rogallo) and shear periodic method (Brucker et al. [33]), for the test case d = 2.7.

of this triadic energy exchange significantly reduces at the
lower flow field Fourier dimensions. Second, the contribution
of the nonlocal triads to the turbulent kinetic energy exchange
becomes more pronounced as the flow field Fourier dimension
increases.

In connection with the original problem (d = 3), the
fractally decimated homogeneous turbulent shear flow might
be considered as an appropriate framework for investigating
different theoretical issues. It is well known that at relatively
large periods of time, dynamics of the HTSF large scales
approach a self-similar state. Reducing the Fourier dimension
increases the temporal window over which the simulations can
retain good resolution of the large and small scales. Therefore,
the decimated HTSF is a good candidate for investigating this
asymptotic state.

The other important feature of the HTSF is the large-scale
anisotropy, which appears as the rodlike structures at relatively
large shear parameter. These structures are the primary con-
tributor in dynamics of the sublayer of wall-bounded turbulent
shear flows. Since by reduction of the Fourier dimension the
large-scale anisotropy increases, decimated HSTF can provide
a more suitable framework for investigating these vortical
structures and their transport mechanism.

Finally, the dynamical coupling between the large and small
scales through the nonlocal triadic energy transfer can be
controlled by changing the Fourier dimension. At a reduced
Fourier dimension, it is possible to isolate the dynamics of
the small scales from that of the large scales. Therefore, using

Fourier decimation, it might be possible to investigate the
universal state of the small scale of the homogeneous shear
flow at a moderate Reynolds number.

APPENDIX

In this Appendix, the consistency of the fractal Fourier
decimation and the remeshing procedure is examined. To this
end, time evolution of the test case with extreme truncation
d = 2.7 is simulated using two different approaches: one with
remeshing procedure and the other based on the shear periodic
boundary condition. In the latter approach, the skeleton of
the preselected set of the active Fourier modes and its fractal
dimension remains constant during the simulation (Brucker
et al. [33]).

Figures 17(a) and 17(b) compare time evolutions of the
normalized turbulent kinetic energy q2/q2

0 and the turbulent
kinetic energy dissipation (enstrophy) ε/ε0, obtained from
these two schemes. An excellent agreement between the results
obtained from both methodologies can be observed. This
indicates that within the range of the considered parameters,
the combined effects of the remeshing procedure and the fractal
Fourier decimation do not affect the results. Moreover, as it
can be observed, the aliasing-free remeshing procedure does
not result in any discontinuities in time evolutions of these
statistics at remeshing time St = 1,3, . . . . This shows that
the total amount of kinetic energy and enstrophy are almost
conserved during the remeshing procedure.
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