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Spectral imbalance in the inertial range dynamics of decaying rotating turbulence
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Direct numerical simulations of homogeneous decaying turbulence with background rotation show the
existence of a systematic and significant imbalance between the non-linear energy cascade to small scales
and its dissipation. By starting the decay from a statistically stationary and weakly rotating turbulent state,
where the dissipation and the energy flux are approximately equal, the data show a growing imbalance between
the two until a maximum is reached when the dissipation is about twice the energy flux. This dichotomy of
behaviors during decay is reminiscent of the nonequilibrium and the equilibrium regions previously reported
for nonrotating turbulence [Valente and Vassilicos, Phys. Rev. Lett. 108, 214503 (2012)]. Note, however, that
for decaying rotating turbulence the classical scaling of the dissipation rate ε ∝ u′3/L (where u′ and L are the
root mean square fluctuating velocity and the integral length scale, respectively) does not appear to hold during
decay, which may be attributed to the effect of the background rotation on the energy cascade. On the other hand,
the maximum energy flux holds the scaling �max ∝ u′3/L in the initial stage of the decay until the maximum
imbalance is reached.

DOI: 10.1103/PhysRevE.95.023114

I. INTRODUCTION

Estimating the small-scale energy dissipation from large
scale statistics for statistical stationary and nonstationary
evolving flows is at the core of virtually all turbulence
closures as it enables predictions of momentum transport
(e.g., drag), mixing, particle dispersion and clustering, noise,
etc. The emphasis is given to the empirical scaling of the
energy dissipation rate ε ∝ u′3/L, using solely a characteristic
turbulent velocity, such as the root mean square of the velocity
fluctuations u′, and an integral length scale L. This scaling is
directly related to practical applications for modeling and goes
back to the seminal works by Taylor [1] and Kolmogorov [2].
This inviscid scaling of the viscous dissipation rate of energy
is supported by the widely accepted phenomenology that the
small-scale dissipative turbulence-induced motions are fed
by a continuous range of larger-scale motions (the energy
cascade [3,4]), and are always sufficiently small scale to make
molecular dissipation efficient (also known as the dissipation
anomaly [3,5]).

The scale-by-scale energy budget for incompressible, ex-
ternally forced, homogeneous flows in wave-number space can
be written as [3,6]

∂tE(k,t) = T (k,t) − 2νk2E(k,t) + F (k,t), (1)

where E(k,t) and T (k,t) are, respectively, the spherically
averaged energy spectrum and the net energy transfer term,
2νk2E(k) is the viscous dissipation spectrum, and F (k,t) is the
spectrum of energy input from the external forcing. Note that
the energy budget is the same both for rotating and nonrotating
flows [6]. Supposing that the external forcing is concentrated
at small wave number kf and integrating each term in Eq. (1)
from k > kf to ∞ we get

∫ ∞

k

∂tE(k′,t) dk′ = �(k) −
∫ ∞

k

2νk′2E(k′,t) dk′, (2)

where �(k,t) ≡ ∫ ∞
k

T (k′,t)dk′ is the nonlinear energy flux. It
is generally accepted that for large Reynolds numbers and for
k within the inertial range of scales

∫ ∞
k

2νk′2E(k′,t)dk′ ≈ ε

(i.e., the contribution of the large scales to the viscous
dissipation is negligible) [7,8]. Here, the inertial range cor-
responds to scales sufficiently small not to have external
energy input, i.e., k > kf , but large enough for their con-
tribution to the viscous dissipation to be negligible. Note
that one cannot neglect

∫ ∞
k

∂tE(k′,t) dk′ without introducing
Kolmogorov’s notion of local equilibrium [2] or restricting
the scope to statistically steady turbulence where this term is
identically zero and thus �(k) ≈ ε for any k within the inertial
range of scales, as long as the contribution to the viscous
dissipation from

∫ k

0 2νk′2E(k′,t)dk′ is negligible, which is
considered to be asymptotically exact for infinite Reynolds
numbers. Kolmogorov’s notion of local equilibrium assumes
that small-scale turbulent motions are very fast paced and thus
instantaneously adjust to dissipate whatever energy they are
fed. The conceived near-instantaneous adjustment of the level
of dissipation to the energy that the small scales receive from
the large scales via the nonlinear flux [i.e., �(k) ≈ ε], is a
landmark of the classical theory of turbulence and became
popularized as Kolmogorov’s 4/5th law due to its isotropic
form [3,9,10]. The generalization that

∫ ∞
k

∂tE(k′,t) dk′ ≈ 0
and therefore �(k) ≈ ε for virtually all turbulent flows justifies
its importance for turbulence modeling and its use as a building
block in state-of-the-art closures.

Consequently, for decaying or generally nonstationary
flows the spectral balance �(k) ≈ ε [or �(k) = ε at infinitely
large Reynolds numbers] is not exact and requires empirical
testing to support its use in turbulence closures. Even for
statistically steady flows at very large Reynolds numbers,
the balance �(k) = ε is exact in a statistical sense where the
quantities �(k) and ε are taken as averages in time and in the
homogeneous directions and it is known not to hold in a local
sense [11–13]. However, for nonstationary flows the balance
�(k) = ε is yet to be observed—a fact that is usually attributed
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either to the data being at insufficiently high Reynolds numbers
(i.e., a low Reynolds number effect [7,14]) or, contrastingly,
a consequence of the delay in cascading the energy down to
the small scales (a lag which increases with the Reynolds
number [11,15–18]).

A third, alternative, viewpoint is that, regardless of the
Reynolds number and/or of energy cascade “delays,” one
cannot neglect the required rate of change of energy to induce
or annihilate small scale motions

∫ ∞
k

∂tE(k′,t) dk′ [19]. This
is argued to be the case because even though the fraction of
the total energy contained in the small scales Kη decreases
with the Reynolds numbers, the associated time scale τη also
becomes vanishingly small and it can be shown that Kη/τη ∝ ε

and is thus finite. This can be argued to be the root cause
for the significant imbalance between �(k) and ε reported for
nonstationary homogeneous turbulence and the manifestations
of nonequilibrium dissipation behavior observed in recent
experiments and simulations [8,19–23].

Many of the considerations above are also applicable for
weakly rotating turbulent flows, i.e., flows where rotation has
an important role on turbulence dynamics but it does not
fully dominate the flow and lead to a quasi-2D turbulence
regime [24–28]. For example, the empirical scaling ε ∝ u′3/L
is thought to apply to weakly rotating turbulence [28] with
different variants to take into account the anisotropy of the
flow [29,30]. In contrast, strongly rotating flows are weakly
turbulent and exhibit marked differences such as laminarlike
dissipation scaling [28] and thus the discussions pertaining
to turbulence theory are of limited use. Furthermore, this
weak rotation regime has, arguably, a closer connection
to engineering applications and is also typical of many
rotating turbulence laboratory experiments and numerical
simulations [24,28,31–35].

In this paper, we investigate the existence of significant
imbalances between �(k) and ε and nonequilibrium dissipa-
tion scalings in weakly rotating decaying flows. Therefore,
we perform direct numerical simulations (DNSs) of decaying
periodic box turbulence subject to different background rota-
tion rates 	 and we create the conditions for nonequilibrium
dissipation scalings by using a statistically steady and fully
developed rotating turbulence field as an initial condition [19].

II. NUMERICAL METHODOLOGY

In this study, we consider the three-dimensional (3D)
incompressible Navier-Stokes equations in a rotating frame
of reference

∂t u + ω × u + 2� × u = −∇P + ν∇2u, (3)

where u is the velocity field, ω = ∇ × u is the vorticity, P =
p/ρ + u2/2 is the total pressure per unit mass, ρ is the mass
density, and ν is the kinematic viscosity. In a Cartesian domain,
we choose the rotation axis to be in the z direction with � =
	ez, where 	 is the rotation frequency. In the ideal case of
ν = 0, Eq. (3) conserves the energy E = 1

2 〈|u|2〉 (where | · |
stands for the L2 norm) and the helicity H = 〈u · ω〉 with the
angular brackets denoting a spatial average.

We numerically integrate Eq. (3) using the pseudospectral
method in a periodic box of size 2π satisfying the incompress-
ibility condition ∇ · u = 0 and using a third-order Runge-

Kutta scheme for the temporal advancement. The aliasing
errors are removed with the 2/3 dealiasing rule and as a result
the minimum and maximum wave numbers are kmin = 1 and
kmax = N/3, respectively, where N is the number of grid points
in each Cartesian coordinate. For more details on the numerical
code, see Ref. [36].

The initial conditions for the decaying simulations are
obtained by running the code with an additional nonhelical
random forcing term (see [27,37]) until a statistically steady
and fully developed turbulence state is reached. All simulations
were integrated for more than 100 turnover times with the
exception of the highest resolution runs (10243), which were
integrated for roughly 80 turnover times. Then, the free
turbulence decay was initiated by switching off the forcing.

The turbulent energy K , the energy dissipation rate ε, and
the integral scale L are extracted from the spherical-shell
averaged energy spectrum E(k) ≡ ∑

k�|k|<k+1 |̂uk|2, as

K ≡
∑

k

E(k), (4)

ε ≡ 2ν
∑

k

k2E(k), (5)

L ≡ 3π/(4K)
∑

k

E(k)/k, (6)

where .̂ denotes the Fourier mode. The energy flux at wave
number k is computed as

�(k) ≡ −
∑
k′�k

T (k′) with (7)

T (k) ≡
∑

k�|k|<k+1

û∗(k) · ̂(u × ω)k (8)

the nonlinear energy transfer term (∗ denotes the complex
conjugate), from which we compute the maximum down-
scale energy flux as �max ≡ max[�(k)]. We characterize
the energy cascade flux by its maximum value �max since
the functional form of �(k) in the inertial range follows
�(k) ∝ �max[1 − α(kη)4/3] for statistically steady turbulence
assuming an energy spectrum E(k) ∝ k−5/3, where α is a
numerical constant and η ≡ (ν3/ε)1/4 is the Kolmogorov
microscale [19,38].

Two sets of dimensionless control parameters for the
simulations are defined based on the forcing amplitude and
large scale turbulence statistics and characterize the turbulence
field used as the initial condition. The forcing Reynolds
and Rossby numbers are given by ReF = U/(kminν) and
by RoF = Ukmin/(2	), respectively, where U = (f0/kmin)1/2

and f0 is the forcing amplitude. From these definitions Re2
F is

essentially the forcing Grashof number and RoF the ratio of
the rotation period τw ∝ 	−1 to the turnover time at the forcing
scale τf = (Ukmin)−1. The turbulence Reynolds and Rossby
numbers are given by ReL = u′L/ν and RoL = u′/2	L,
respectively, where u′ ≡ √

2/3K is the root mean square
of the fluctuating velocity. For convenience we also define
the Taylor microscale based Reynolds number Reλ = u′λ/ν

where λ ≡
√

15νu′2/ε is the Taylor microscale. Note that ReF

and RoF are control parameters for which we do not require
knowledge of the solution to be evaluated whereas ReL, RoL,
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TABLE I. Numerical parameters of the DNS. Note that the values
for the resulting turbulence Reynolds and the Rossby numbers are
given for the steady state used as initial condition for the decay.
Dataset no. 14 was obtained with the numerical code used in Ref. [19].

No. ReF RoF ReL Reλ RoL 	 ν N

1 200 5.0 60 36 2.5 0.1 5.0 × 10−3 128
2 200 0.5 250 115 0.2 1.0 5.0 × 10−3 128
3 667 10.0 180 73 6.3 0.05 1.5 × 10−3 256
4 667 5.0 175 72 3.0 0.1 1.5 × 10−3 256
5 667 1.0 220 80 0.6 0.5 1.5 × 10−3 256
6 667 0.5 940 287 0.2 1.0 1.5 × 10−3 256
7 2000 ∞ 500 130 ∞ 0.0 5.0 × 10−3 512
8 2000 5.0 500 130 3.3 0.1 5.0 × 10−3 512
9 2000 var 500 130 3.3 var 5.0 × 10−3 512
10 2000 1.0 615 144 0.6 0.5 5.0 × 10−3 512
11 2000 var 615 144 0.6 var 5.0 × 10−3 512
12 2000 0.5 2410 414 0.2 1.0 5.0 × 10−3 512
13 4545 5.0 1150 200 3.0 0.1 2.2 × 10−4 1024
14 ∞ 924 173 ∞ 0.0 1.5 × 10−3 1024

and Reλ are observables and cannot be determined a priori.
The summary of the control parameters of our DNS and the
resulting turbulence Reynolds and Rossby numbers for the
initial condition are listed in Table I.

According to Ref. [34], it is common practice in turbulence
laboratory experiments to force briefly at Rossby numbers
RoL > 1, and then let RoL drift down to RoL ∼ 1 as the
energy of the turbulence decays. Trying to perform numerical
simulations that would be useful to laboratory experiments, we
followed this approach to perform our DNS. As we shall see,
this approach is rather different than the simulations which
often have imposed Ro 
 1 as an initial condition.

To avoid biasing our analyses with data that may have non-
negligible confinement effects due to the periodic box size we
only consider data points where the integral length scale is
smaller than 1/4 of the box size (2π/L � 4; [39]), except for
the strongly rotating cases (datasets no. 2, no. 6, and no. 12)
where we alleviate this constraint to 2π/L � 2.9 (see Fig. 1).
Nevertheless, we include the remaining data in the figures, but
distinguish them using black marks and thin dashed lines.

III. RESULTS

The presented data complement the numerical and exper-
imental data available in the literature in two fundamental
aspects. First, we use forced statically steady state turbulence
with the desired Rossby number as an initial condition rather
than a randomized velocity field. This approach allows us
to reproduce the conditions for nonequilibrium turbulence
dissipation [19] and assess whether it also occurs in weakly
rotating turbulence. It also guarantees that the turbulence is
fully developed—in the sense of a fully developed energy
cascade—from the very start of the decay in contrast to the
standard approach where the first couple of eddy turnover
times of the decay are biased by the development of the
nonlinear interactions. This allows us to consider the data
from the very start of the decay, where the nonequilibrium
dissipation behavior is manifested, but comes at the price of

1 10 100
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t/T
L
(0)

2π
/
L

(t
)

RoF = ∞
RoF = 5 .0
RoF = 1 .0
RoF = 0 .5

FIG. 1. Development of the ratio of the box size to the integral
length scale, 2π/L, throughout the decay for various control Rossby
numbers RoF at ReF = 2000. The abscissas are normalized by the
initial eddy turnover time. The data corresponding to 2π/L < 4 (or
2π/L < 2.9 for the strong rotation case, RoF = 0.5) are denoted
using black thin marks and dashed lines.

requiring a converged forced run for every decay simulation.
Second, in addition to simulations with a constant rotation
rate and thus decreasing Rossby number during decay (i.e.,
an increasing influence of the background rotation) we also
perform decaying simulations with a constant Rossby number
by varying the rotation rate. This, in turn, allows us to study
the decay of turbulence subjected to rotation within the same
rotating turbulence regime, i.e., maintaining the same ratio
of the rotation period τw ∝ 	−1 to the eddy turnover time
TL = L/u′ throughout the decay, and report differences to the
standard approach of fixing 	 and thus straddling multiple
rotating turbulence regimes during the decay (since TL can
increase by multiple orders of magnitude).

A. Temporal evolution

We start by presenting the temporal evolution of the
turbulence statistics that will be used to show that in rotating
turbulence there is also evidence of nonequilibrium dissipation
scalings and of the imbalance �(k) �= ε throughout the decay.
The statistics of interest are the time series of the integral
scale L (Fig. 1), the kinetic energy K (Fig. 3), the dissipation
rate ε, and the maximum energy flux �max (Fig. 4) for a
range of the control parameter RoF . As noted in Sec. II,
box turbulence simulations can be hindered by confinement
effects if the integral scale is not sufficiently smaller than the
box size. The situation worsens for decaying box-turbulence
simulations since the integral scale generally grows throughout
the decay and thus the effects of confinement are progressively
larger. We chose 2π/L ≈ 4 [39] as our cutoff beyond which
the confinement effects may no longer be negligible (Fig. 1).
For rotating turbulence, the integral scale tends to increase
and grow faster during decay for smaller Rossby numbers
(i.e., larger 	), arguably due to the effect of the background
rotation on the energy cascade [26,40,41], and therefore
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FIG. 2. Energy spectrum compensated by k5/3 for the initial
instants of the turbulence decay for RoF = ∞ and ReF = 2000.

the confinement tends to deteriorate (Fig. 1). Note that at
the start of the decay the integral scale decreases (2π/L

increases) for the first one or two turnover times before
growing throughout the remaining decay. We observed this
behavior for most of our simulations, except the strongly
rotating cases. This behavior requires some discussion. Given
that L ≡ 3π/(4K)

∑
k E(k)/k, the low wave-number part of

the spectrum has a large influence on the numerical value of
L and thus a decrease in L during a decrease in K implies
that the smaller wave numbers are losing energy faster than
the larger wave numbers (cf. Fig. 2). A plausible explanation
is the adjustment of the low wave-number part of the
spectrum to the cessation of external forcing—noticeable up
to t/TL(0) � 0.4 in Fig. 2.

In turn the energy decreases monotonically throughout
the decay at a rate which depends on the initial Rossby
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FIG. 3. Decay of energy over time (normalized by the initial eddy
turnover time) for various control Rossby numbers RoF at ReF =
2000.
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FIG. 4. Decay of the turbulent energy dissipation ε and the energy
cascade flux � for different control Rossby numbers RoF for ReF =
2000.

number (Fig. 3), which is consistent with the numerical and
experimental data in the literature [40–42]. Given that in
freely decaying homogeneous turbulence dK/dt = −ε, this
is a direct consequence of the faster decrease in the energy
dissipation rate ε, which is a consequence of (or the cause
for) the dampening of the nonlinear energy flux �(k) (Fig. 4).
The energy flux spectra for various instances throughout the
decay are shown in Fig. 5 for a dataset with moderately strong
background rotation (RoF = 1.0 and RoL decreases from 0.5
at the start of the decay to 0.1 when 2π/L < 4; this dataset is
included in Figs. 1, 3, and 4). It can be noted that the maximum
value of the normalized flux spectrum �(k)/ε decreases as
time progresses and that no upscale energy flux at low wave
numbers occurs even at later times where the Rossby number
is moderately low, RoL ≈ 0.1. Figure 5 also illustrates what
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FIG. 5. Energy cascade flux spectrum �(k) for various snapshots
throughout the decay for dataset no. 10 (ReF = 2000, RoF = 1.0).
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we mean by weakly rotating turbulence—turbulence where
the background rotation has a significant effect on the energy
cascade but not strong enough to induce an upscale energy flux
and/or a quasi-2D flow.

B. Decaying nonrotating turbulence

Having turbulence modeling in mind, in the following
discussion we chose to consider the dimensionless dissipation
and energy flux parameters and how they may scale with large
scale variables,

Cε ≡ εL/u′3 and C� ≡ �maxL/u′3, (9)

respectively, without attempting to infer whether statistics
decomposed along axes parallel and perpendicular to the axis
of the rotation could improve the scalings (see, e.g., Ref. [43]).

Prior to discussing our results concerning the scaling
behavior of these quantities in rotating turbulence, it is useful
to review the recent developments for nonrotating turbulence
to have it as a benchmark. In laboratory experiments of
grid-generated decaying nonrotating turbulence it is widely
accepted that far from the grid ε ∝ u′3/L or Cε ≈ const as
long as the Reynolds number of the decaying turbulence
remains moderately large, typically at least above Reλ ≈ 100.
Although until recently the scaling of the cascade flux had
not been measured and the Reynolds number of the DNS data
were insufficiently large, it was believed that in that same
region C� ≈ Cε ≈ const. Recently, however, three interesting
findings have been reported for both laboratory experiments
and numerical simulations. First, it was found that upstream or
after the steady-state region (i.e., Cε ≈ C�), there is a region
where Cε ∝ Re0/ReL �= const, denoted as a nonequilibrium
dissipation region [8,19,22] (where Re0 is a global Reynolds
number of the flow such as our control Reynolds number
based on the forcing ReF or a mesh Reynolds number
for grid turbulence experiments). Second, it was found that
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ReL/ReL(0)
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ReL(0) = 430 (N = 5123)
ReL(0) = 920 (N = 10243)

CΠ

Cε

FIG. 6. Normalized turbulent energy dissipation Cε and nonlinear
energy cascade flux C� vs the turbulent Reynolds number ReL for
nonrotating decaying simulations starting from a statistically steady
forced state.

in the further downstream region or later in time where
Cε ≈ const, the dissipation was roughly twice the nonlinear
flux �max (i.e., Cε ≈ 2C�). Finally, it was found that C�

exhibits much smaller variations and can be considered to
a first approximation to being constant throughout the decay,
contrary to what is observed for Cε.

In Fig. 6 we present data for C� and Cε from two DNSs of
decaying nonrotating turbulence which are consistent with the
above mentioned findings.

The steady state corresponds to the initial point where
ReL/ReL(0) = 1 and C� ≈ Cε. As the turbulence decays,
the Reynolds number decreases and the data show that Cε

increases from its steady state value around 0.5 until reaching
a plateau starting around ReL/ReL(0) ≈ 0.5 where it takes a
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(a)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

ReL/Re0
L

C
Π

,C
ε

Ω = 0 (RoL(t) = ∞)
Ω = 0 .5(RoL(0) = 0 .6)
Ω = var(RoL(t) = 0 .6)

CΠ

Cε

(b)

FIG. 7. Normalized turbulent energy dissipation Cε and nonlinear
energy cascade flux C� vs the turbulent Reynolds number ReL

for rotating and nonrotating decaying simulations starting from a
statistically steady forced state. For the rotating cases we compare
both constant rotation rate 	 (and varying RoL) and constant turbulent
Rossby number RoL (achieved by varying 	) simulations.
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numerical value of order 1. This is the denoted nonequilibrium
dissipation region exhibiting a clear departure from Cε ≈
const, contrasting with the behavior C� which exhibits a lesser
variation. As the turbulence continues to decay the Reynolds
number will eventually decrease to a point where low Reynolds
number effects will be non-negligible and Cε will depart from
the plateau with the numerical value of order 1, whereas
C� remains approximately constant (see, e.g., Ref. [44] for
a review on the low Reynolds number behavior of Cε and data
supporting C� ≈ const for low Reynolds numbers).

Note that the data presented in Fig. 6 were obtained with
two distinct numerical codes. The lower Reynolds number data
simulated with N = 5123 collocation points were obtained
with the numerical code used for the remaining rotating
turbulence simulations, whereas the N = 10243 data were
obtained with the numerical code used in Ref. [19]. Both
numerical codes employ a pseudospectral method, but the
forcing strategies for the steady state simulations serving as
initial conditions for the decay are quite different. For more
details please refer to Refs. [19,27].

It is thus reassuring to note that although there are
quantitative differences, the qualitative behavior of C� and
Cε is quite similar.

C. Decaying rotating turbulence

Turning now to the decaying rotating turbulence, it is clear
that the same qualitative departure between C� and Cε occurs
from the start of the decay for both cases of weak (RoL ≈
3.3) and stronger rotation (RoL ≈ 0.6) and for both fixed and
varying rotation rates (cf. Figs. 7 and 9).

However, rather than reaching a plateau, Cε reaches a
maximum value and decreases afterwards [see Figs. 7(a)
and 7(b)]. Interestingly, this appears to be directly associated
with the behavior of C� and how the nonlinear interactions
are affected by the background rotation. For the runs with
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Ω = var(RoL(t) = 0 .6)

FIG. 8. Ratio between the turbulent energy dissipation ε and
the maximum nonlinear energy cascade flux �max vs the turbulent
Reynolds number ReL/ReL(0) for rotating and nonrotating decaying
simulations starting from a statistically steady forced state.

fixed background rotation rate, and therefore decreasing RoL

as the turbulence decays, the associated dampening of the
energy cascade leads to a diminishing value of C� which
occurs progressively for the run with weaker background
rotation [Fig. 7(a)] and very abruptly for the run with higher
background rotation [Fig. 7(b)]. For the runs with fixed RoL

throughout the decay (i.e., varying 	), it is clear that the
effect of the background rotation on the cascade leads to a
reduced variation in the numerical value of C� throughout
the decay. For the weaker rotation (RoL ≈ 3.3) the behavior
of C� is almost identical to the nonrotating case [Fig. 7(a)],
whereas for the stronger rotation (RoL ≈ 0.6), the normalized
energy flux reaches a plateau around C� ≈ 0.4 [Fig. 7(b)].
Interestingly, it appears that the behavior of Cε beyond the
initial increase appears to be dictated by the behavior of C�
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FIG. 9. Normalized turbulent energy dissipation Cε and nonlinear
energy cascade flux C� vs the turbulent Rossby number RoL for
the rotating decaying simulations starting from a statistically steady
forced state for (a) various control Rossby numbers RoF at a fixed
ReF = 667 and (b) various control Reynolds numbers ReF at a fixed
RoF = 5.0.
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and the two seem to be proportional. Indeed, by plotting the
ratio between ε and �max it can be seen that there is a period
where ε/�max ≈ const (with a constant around 2 or slightly
lower for the stronger rotation case, which may nevertheless
be due to confinement effects) after a transition region from
the initial steady state where ε ≈ �max, similar to what is
observed for nonrotating turbulence (cf. Fig. 8). As noted for
nonrotating turbulence, as the turbulence continues to decay,
the small Reynolds number effects become non-negligible and
there is a monotonous increase in the ratio ε/�max.

In Fig. 9, we show the behavior of C� and Cε against
the turbulent Rossby number RoL for various control RoF

when ReF = 667 [Fig. 9(a)] and for various control ReF

when RoF = 5.0 [Fig. 9(b)]. Interestingly, it appears that
C� is roughly constant with a numerical value around 0.5
for RoL � 0.3 and decreases for smaller RoL. Note that C�

is almost independent of the initial Rossby and Reynolds
numbers as long as the initial Rossby number is sufficiently
large to allow a fully turbulent flow for a given Reynolds
number [28]. In turn, the behavior of Cε for the various initial
Rossby numbers is also qualitatively similar to that discussed
above, i.e., presenting the initial ascending departure from
Cε ≈ C� followed by a descent which can be attributed to the
effect of the background rotation on the energy cascade that is
depicted as a decrease in C�.

Last, the behavior of Cε for increasingly larger ReF is such
that the maximum value reached decreases [cf. Fig. 9(b)]. For
even larger Reynolds numbers, it may be the case that the
behavior of Cε becomes Reynolds number independent with a
functional form close to that indicated by our largest Reynolds
number dataset in Fig. 9(b), but one cannot preclude the hy-
pothesis that the departure of Cε from C� will further decrease
and eventually Cε ≈ C�, indicating that this behavior is a finite
Reynolds number effect which vanishes at very large Re.

IV. CONCLUSIONS

Decaying turbulence subjected to background rotation
exhibits similar imbalances between the energy flux �max and
the energy dissipation rate ε as recently reported for laboratory
and numerical experiments of freely decaying nonrotating
turbulence [8,19]. In close resemblance to nonrotating turbu-
lence, the ratio ε/�max increases from unity at the start of the
decay, if the initial condition is statistically steady turbulence
at sufficiently large Reynolds number, up to a value around 2
where it exhibits a plateau which ceases when the turbulence
has decayed to a point where low Reynolds number effects
become predominant.

At the initial stage of the decay the dimensionless parameter
C� is approximately constant (i.e., �max ∝ u′3/L), while Cε

increases up to a maximum value. In contrast to nonrotating
turbulence, we find that Cε does not exhibit a region where
Cε ≈ const (i.e., ε does not scale as u′3/L). This appears to be
related to the fact that C� tends to decrease after Cε reaches
a maximum value as the Rossby number and the Reynolds
number decrease. The decrease in C� is commonly attributed
to the dampening of the nonlinear energy cascade caused by
the background rotation. We demonstrate this by introducing
simulations with fixed turbulent Rossby number. In this case,
it is possible to maintain a consistent effect of the rotation
throughout the decay, which reduces the variation in C� and
consequently the variation in Cε .

Our data indicate that Cε may not tend towards C� as the
Reynolds number increases, but we are not able to address
how this imbalance will behave at larger Reynolds numbers.
However, for nonrotating flows the reader is referred to the
discussion in Ref. [19] and the data compilation in Refs. [7,14]
where the imbalance between ε and �max is suggested to
persist up to at least Reλ ∼ O(105), which implies that for
the overwhelming majority of engineering applications one
cannot neglect this behavior.

The fact that C� remains constant while Cε exhibits
significant variations during decay for the Reynolds and
Rossby numbers that we considered implies that a turbulence
model, in the spirit of the K-ε model, with an evolution
equation for the energy flux instead of the energy dissipation
rate would be more robust for the simulation of nonstationary
flows ubiquitous in engineering applications. Nevertheless, in
order to have a more complete picture, dedicated experiments
are required to assess the imbalance �max �= ε at much larger
Reynolds numbers for both rotating and nonrotating turbulent
flows that are statistically nonstationary. Until recently these
investigations were limited to laboratory experiments but the
computational capabilities to perform high Reynolds number
numerical experiments are now becoming available.
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