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Numerical study of nonequilibrium gas flow in a microchannel with a ratchet surface
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The nonequilibrium gas flow in a two-dimensional microchannel with a ratchet surface and a moving wall
is investigated numerically with a kinetic method [Guo et al., Phys. Rev. E 91, 033313 (2015)]. The presence
of periodic asymmetrical ratchet structures on the bottom wall of the channel and the temperature difference
between the walls of the channel result in a thermally induced flow, and hence a tangential propelling force on
the wall. Such thermally induced propelling mechanism can be utilized as a model heat engine. In this article, the
relations between the propelling force and the top wall moving velocity are obtained by solving the Boltzmann
equation with the Shakhov model deterministically in a wide range of Knudsen numbers. The flow fields at both
the static wall state and the critical state at which the thermally induced force cancels the drag force due to
the active motion of the top wall are analyzed. A counterintuitive relation between the flow direction and the
shear force is observed in the highly rarefied condition. The output power and thermal efficiency of the system
working as a model heat engine are analyzed based on the momentum and energy transfer between the walls. The
effects of Knudsen number, temperature difference, and geometric configurations are investigated. Guidance for
improving the mechanical performance is discussed.
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I. INTRODUCTION

In rarefied gas, the inhomogeneity of temperature field
can lead to gas motion, i.e., the so-called thermally induced
flows [1]. The flows further exert force on objects immersed
in the gas or on the confining walls. Such force can be utilized
as the propelling power in some applications. A well-known
application is the Crookes radiometer [2], also known as light
mill. Using a Crookes radiometer, the radiation intensity is
indicated by the rotation speed of the mounted vanes on a
spindle enclosed in an evacuated glass bulb. The rotation of the
vanes is driven by the rarefied gas flow in the bulb due to the
temperature difference across the vanes. Thermally induced
force can also be produced in microdevices working under
regular atmosphere condition due to the nonequilibrium effect,
and have found their applications in many microelectrome-
chanical systems (MEMS) devices. For example, in an atomic
force microscope (AFM), the microcantilever will experience a
force if its surface temperature is different from the sample [3].

Usually, thermally induced force due to nonequilibrium
effects in a gas system can be classified into several types [4]
according to the origins of the flows. In the examples of
Crookes radiometer and AFM, the dominant force are the
so-called radiometric force and Knudsen force, respectively,
both of which direct across the vanes or the microcantilevers.
The radiometric force is the force exerted on a plate with
differently heated sides placed in a chamber in rarefied
condition. While the Knudsen force is the force exerted on
two planar surfaces (usually a smaller one and a big one) kept
at different temperatures separated by a distance comparable
to the mean free path of the gas. The two types of force have
been investigated by theoretical, experimental, and numerical
approaches [4–8].
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Another significantly different but less studied thermally
induced force is the one caused by the thermal creep flow,
which develops at the surface of a wall with nonuniform
temperature [1]. Although such flows have been widely studied
since Maxwell’s seminal work from 1879 [9], the shear force
induced by the flow near the wall according to the third
Newton’s law has drawn litter interest [4]. Note that this
kind of force is fundamentally different from the radiometric
force and the Knudsen force. The radiometric force and the
Knudsen force are primarily caused by the pressure difference
between the opposite sides, hence they act across the solid
wall, while the force associated with the thermal creep flow
is essentially the shear stress acting along the solid wall.
Moreover, unlike the two other kinds of force, the thermal
creep flow generated force can only be induced near a wall
with nonuniform temperature. In addition, the shear force
induced by the thermal creep flow is much weaker than
the radiometric force and the Knudsen force under the same
imposed temperature difference [4]. This is most likely the
reason why it is less studied than the other two. However, as
the direction of the shear force is along the wall, the thermally
induced force does have potential advantages in some specific
applications. Recent studies show that a surface temperature
gradient is not necessary to produce such shear force. For
instance, Donkov et al. [10] observed that a thermal creep flow
and the corresponding shear force can be induced in a channel
with a hot plain surface and a cold ratchet surface structured
with diffusive-specular reflective segments [see Fig. 1(a)]. The
observation motivated Baier et al. [11] to propose a heat energy
harvesting device based on this phenomenon. A parametric
study was further conducted in the free molecular regime based
on the collisionless Boltzmann equation [11]. Würger [12]
also theoretically estimated the thermal creep velocity and the
shear stress generated in the configuration, and he claimed
that the thermal creep flow is the driving mechanism of the
self-propelling Leidenfrost droplets over a ratchet surface
which has been experimentally observed [13–15]. It should be
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FIG. 1. (a) Channel with ratchet surface. The top and bottom
walls are maintained at different temperatures. (b) One segment (in
the dashed line rectangle) of the periodical structures. The thick blue
and red solid lines with hatched patterns represent diffusive solid
walls maintained at different temperatures Tb and Tt , respectively.
The thick dashed green lines represent specularly reflective solid
walls.

noted that in his analysis, the gas-wall interaction property is
assumed to be homogeneous on the ratchet surface. However,
a later study by Hardt et al. [16] on a similar geometry using
the direct simulation Monte Carlo (DSMC) method shows that
if the ratchet surface is diffusive everywhere, the shear force
is not sufficient to propel the droplets.

In most of the previous studies [10,12,16,17], the ratchet
surface of the channel is at rest with respect to the opposite
surface, as the primary interest in these studies is the mass flow
rate across the channel when it works as an Knudsen pump.
However, if the force produced by the thermally induced flow
in such geometry is to be applied as the self-propelling power
of microdevices or in a microheat engine [11], the two surfaces
may move relative to each other. In Ref. [11], the shear stress
as a function of the surface velocity was studied, and it is
found the shear stress changes linearly with the surface speed.
However, their numerical analysis is limited to free molecular
limit only. In practical applications, the system should work in
the transition regime to maximize the net power output [10].
Therefore, it is necessary to study the thermally induced flow
with movable surfaces in such configurations in a wide range
of operating conditions. However, it is a challenging task to
simulate such low-speed thermally induced nonequilibrium
flows, which is difficult for the widely used DSMC method,
particularly in slip and near-continuum regimes. On the other
hand, analysis based on the Navier-Stokes equations is limited
to near-continuum flows [17].

In this work, we perform a numerical study on the
two-dimensional nonequilibrium gas flow and investigate the
corresponding shear force (or tangential force) in a ratchet
channel between two walls with different temperatures and
velocities. The mechanical performance including the output
power and thermal efficiency of the system when working as a
heat engine are analyzed. The effects of the Knudsen number,
the geometric configuration, and the temperature configuration
are investigated. The numerical method employed here is
the recently developed discrete unified gas-kinetic scheme
(DUGKS) based on the Boltzmann-Shakhov equation [18,19],
which applies to the whole range of Knudsen number, and is
particularly efficient for low speed near continuum flows.

The remainder of the paper is organized as follows.
In Sec. II, we first describe the problem and the major
assumptions. Then, in Sec. III, the governing equations are
presented. In Sec. IV, we first use a test case to verify our
method against the DSMC method, and then the numerical
results are presented and analyzed. Finally, conclusions are
made in Sec. V.

II. STATEMENT OF THE PROBLEM

The problem considered is a unit cell of an infinite
channel shown in Fig. 1(a). The configuration and geometrical
parameters are illustrated in Fig. 1(b). The top plate is placed
horizontally and is assumed to be purely diffusive. It maintains
at a constant temperature Tt and moves horizontally with a
constant velocity Uw. The bottom wall is a stationary ratchet
wall with a saw-tooth-like structure. Each segment of the
structure on the ratchet wall is further composed of a segment
of an inclined diffusive wall and a segment of a vertical
specular wall [see in Fig. 1(b)]. The inclined wall maintains
at a constant temperature Tb which is different from Tt . The
width and height of the saw-tooth are L and H , respectively.
The distance from the tip of the saw-tooth to the top plate
is B. Due to the periodic structures in this configuration, the
flow pattern is also periodical in the horizontal direction with a
period length of L. Therefore, we only consider one period of
the channel as illustrated in Fig. 1(b). The gas in the channel
is argon with a temperature-dependent viscosity as [20]

μ = μref

(
T

Tref

)ω

, (1)

where μref is the reference viscosity at the reference tem-
perature Tref, and ω is a constant dependent on the specific
molecular interaction model. For the currently considered
argon gas, ω is set to be 0.81 which is consistent with the
variable hard-sphere (VHS) model of argon gas [20]. The
reference viscosity is also determined by the VHS model [20],

μref = 15ρλ
√

2πRTref

2(7 − 2ω)(5 − 2ω)
, (2)

where ρ is density of the gas, and λ is the mean free path
(mfp). The mfp is inversely proportional to ρ by [20]

λ = m√
2ρπd2

, (3)

where m = 6.63 × 10−26 kg and d = 4.17 × 10−10 m are the
mass and hard-sphere diameter of the argon gas molecular. The
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Knudsen number of the system is defined as Kn = λ/(B +
H/2) [16].

III. GOVERNING EQUATIONS

The governing equation is the Boltzmann equation with the
Shakhov collision model [21],

∂f

∂t
+ ξ · ∇f = �S(f ), (4)

where f = f (ξ ,x,t) is the velocity distribution function of
particles with velocity ξ at time t and position x. �S(f ) is the
Shakhov collision term given by

�S(f ) = f S − f

τ
, (5)

where τ is the relaxation time. The modified equilibrium
distribution function is defined as

f S = f M

[
1 + (1 − Pr)

c · q
5PRT

(
c2

RT
− 5

)]
,

with f M = ρ

(2πRT )3/2
exp

(
− c2

2RT

)
, (6)

where Pr is the Prandtl number and c = ξ − U is the peculiar
velocity with U being the fluid velocity. For a monatomic
gas, Pr is equal to 2/3. The macroscopic variables such as the
density ρ, velocity U , temperature T , stress tensor p, and heat
flux q can be calculated from the moments of the distribution
function,

ρ =
∫

f dξ , ρU =
∫

ξf dξ , ρE = 1

2

∫
ξ 2dξ ,

(7)

q = 1

2

∫
cc2f dξ , p =

∫
ξξf dξ ,

where ρE = 1/2ρU 2 + CvT is the total energy with Cv being
the heat capacity [(3/2)R for monatomic gases]. The pressure
is related to the density and temperature by P = ρRT , and the
relaxation time τ is related to the viscosity as τ = μ/P .

For the two-dimensional flow considered here, the depen-
dence of distribution function on the z component of ξ , i.e., ξz

can be eliminated from the governing equation by introducing
the following reduced distribution functions:


 =
[
g

h

]
=

∫ ∞

−∞

[
1
ξ 2
z

]
f (ξ ,x,t)dξz. (8)

Integrating Eq. (4) over the range of [−∞,∞] with respect to
ξz, and noting that ∂
/∂z = 0 leads to

∂


∂t
+ ξx

∂


∂x
+ ξy

∂


∂y
= − 1

τ
[
 − 
S] ≡ � (9)

in two-dimensional space, with 
S = [gS,hS]T and

gS = gM

[
1 + (1 − Pr)

c · q
5PRT

(
c2

RT
− 4

)]
,

hS = gM

[
1 + (1 − Pr)

c · q
5PRT

(
c2

RT
− 2

)]
RT,

gM = ρ

2πRT
exp

(
− c2

2RT

)
. (10)

Now, all the vector variables have only two components, such
as x = [x,y] and ξ = [ξx,ξy].

The governing equation can be written in a nondimensional
form as

∂
̂

∂t̂
+ ξ̂x

∂
̂

∂x̂
+ ξ̂y

∂
̂

∂ŷ
= 8

5
√

π

1

(B̂ + Ĥ /2)Kn

× ρ̂T̂ 1−ω[
̂ − 
̂S], (11)

where

ĝS = ĝM

[
1 + 4

5
(1 − Pr)

ĉ · q̂

ρ̂T̂ 2

(
2ĉ2

T̂
− 4

)]
,

ĥS = ĝM

[
1 + 4

5
(1 − Pr)

ĉ · q̂

ρ̂T̂ 2

(
2ĉ2

T̂
− 2

)]
T̂

2
,

ĝM = ρ̂

πT̂
exp

(
− ĉ2

T̂

)
, (12)

and the nondimensional variables are defined by

x̂ = x/L, ŷ = y/L, ξ̂ = ξ/
√

2RT0,

ρ̂ = ρ/ρ0, Û = U/
√

2RT0, p̂ = p/(ρ0RT0),

T̂ = T/T0, q̂ = q/ρ0(2RT0)3/2, ĝ = g/(ρ0/RT0),

ĥ = h/ρ0, 
̂ = [ĝ, ĥ]T , 
̂s = [ĝs , ĥs]T ,

B̂ = B/L, Ĥ = H/L, t̂ = t/(L/
√

2RT0), (13)

where ρ0 and T0 are the reference density and temperature,
respectively. The hats on the nondimensional variables are
omitted in the following analysis.

The gas-wall interaction models have to be specified to
implement the boundary conditions at the channel walls.
Two kinds of gas-wall interaction models are considered for
different segments of the ratchet walls. The first one is the fully
diffusive wall model, where the gas molecules that hit the wall
are assumed to be fully accommodated with the wall, and
are reemitted from the wall with an equilibrium distribution
associated with the nondimensional wall temperature Tw and
velocity Uw,


 =
[

1
Tw/2

]
gM (ρw,Uw,Tw) for ξ · nw > 0, (14)

where nw is the unit normal vector of the wall pointing into the
flow domain, and gM (ρw,Uw,Tw) stands for the equilibrium
distribution function of gas molecular with velocity ξ with the
arguments of density ρw, temperature Tw, and macrovelocity
Uw. The density ρw is determined by the impermeable wall
condition, i.e.,

ρw = −
∫
ξ ·nw<0 gξ · nwdξ∫

ξ ·nw>0 gM (1,Uw,Tw)ξ · nwdξ
. (15)

The second type of gas-wall interaction model is the specular
reflective boundary condition, in which the wall is assumed to
be ideally smooth and the gas molecules striking the wall
will be reflected with their tangential velocity component
unchanged but normal velocity component reversed, i.e.,

ξ r = ξ i − 2(ξ i · nw)nw, (16)
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where the superscripts i and r denote the incoming and
reflecting directions, respectively.

IV. RESULTS AND ANALYSES

The numerical scheme used to solve the kinetic equation
is the discrete unified gas-kinetic scheme (DUGKS) [19,22],
which is a finite-volume scheme for the discrete velocity
Boltzmann model equation [20]. Compared with the stochastic
DSMC method, the deterministic nature of DUGKS makes
it more efficient for low-speed flow problem in this study.
Moreover, the DUGKS is also efficient for near continuum
flow due to the special construction of distribution flux at
cell interfaces [19]. The algorithm of the DUGKS is briefly
described in the Appendix.

We now present the numerical results for various operating
conditions (Kn, Tt , Tb) and geometry configurations (B,
H ). Unless stated otherwise, the base parameters are given
as follows. The nondimensional geometric parameters are
H = 0.3 and B = 0.3. The wall temperatures are Tt = 0.75
and Tb = 1.25. The top wall is at rest, i.e., Uw = 0. In
all of the computations below, the Courant-Friedrichs-Lewy
(CFL) number defined as η = �t min[(|U | + |ξ |)/�x] is set
to be 0.8 where �x measures the local cell size [22]. The
physical space is discretized with an unstructured mesh with
5623 triangular cells. The smallest cells are distributed in
the regions near the tip of the ratchet and the upper wall
in order to capture the large gradients and to compute the
shear stress more accurately. Grid independence is checked
by comparing the tangential force acting on the top plate
using a mesh with 5632 cells and a finer one with 18220
cells. The relative difference in the values of the tangential
force by using the two meshes is less than 2%, indicating that
the coarser mesh is fine enough to obtain mesh-independent
results. The discrete velocity grids and the quadrature rules
for the numerical integrations of the moments are chosen
according to the Knudsen number as listed in Table. I. For
small Knudsen numbers (Kn < 0.1), the half-range Gauss-
Hermite type quadrature is appropriate since the distribution
functions deviate only slightly from the Maxwell-Boltzmann
equilibrium distribution function. For larger Knudsen numbers
(Kn � 0.1), we use the compound Newton-Cotes quadrature
since the distribution function can be highly nonequilibrium.

TABLE I. Numbers of quadrature points in the velocity space
and quadrature types at different Knudsen numbers (Kn) used in the
DUGKS method.

Kn Quadrature type No. of points

0.001 Half-range Gauss-Hermite 8 × 8
0.01 Half-range Gauss-Hermite 12 × 12
0.05 Half-range Gauss-Hermite 20 × 20
0.1–0.5 Compound Newton-Cotes 41 × 41
0.7–1 Compound Newton-Cotes 61 × 61
2–5 Compound Newton-Cotes 81 × 81
10 Compound Newton-Cotes 201 × 201

The nondimensional discrete velocity points are distributed
uniformly in the range of [−4,4] × [−4,4] when using the
compound Newton-Cotes quadrature. The velocity space grid
independence of the numerical results has also been verified.
For example, at Kn = 0.5, the relative difference of the
tangential force acting on the top wall using the velocity grid
sizes of 41 × 41 and 61 × 61 is less than 0.3%. As the DUGKS
is an explicit method, the flow is assumed to have reached
steady states if the average relative change of the velocity
fields in two successive steps is less than 10−8.

A. Validation

Before presenting the numerical results, we first validate
our numerical method against DSMC method at Kn = 0.1 and
Uw = 0.01. The DSMC code used here is the open source
parallel DSMC solver, dsmcFoam [23]. Both the DSMC and
DUGKS solvers use the same mesh with 5632 cells. A total
of 112640 particles are used in the DSMC simulation with an
average of 20 particles residing in each cell initially.

The temperature and flow fields predicted by both methods
are shown in Fig. 2. It can be observed that the DUGKS results
agree well with the DSMC predictions. Due to the low speed
of the flows, the statistic noises can be clearly observed from
the streamlines of the DSMC results, especially in the vortex
region near the bottom corner, where the velocity magnitude
is very small compared to the thermal velocity. To compare
the two results quantitatively, we present the shear stress and
normal heat flux distributions on the top wall in Fig. 3, and
present the velocity and temperature profiles across the throat

1.20
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80

T

(a) DUGKS

1.20
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80

T

(b) DSMC

FIG. 2. Isotherms and streamlines of the validation case (Kn = 0.1, Uw = 0.01). (a) Results obtained by the DUGKS. (b) Results obtained
by DSMC method.
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FIG. 3. Shear stress pxy and normal heat flux qy along the top
wall for the validation case (Kn = 0.1, Uw = 0.01) predicted by both
DSMC method and the DUGKS.

of the channel in Fig. 4. From those results, we can see the
DUGKS results match the DSMC results quite well, despite
the statistic noises in the DSMC results.

Given the good agreement between the two methods, we are
confident that the DUGKS can be faithfully used to study the
thermally induced flow problems. We would like to mention
the computational costs of the two methods. Both of the DSMC
and DUGKS solvers were run with 12 message passing inter-
face (MPI) processes on an Intel Xeon E5-2680v3 CPU. The
DSMC code took about 160 h get the steady results, while the
DUGKS code took only 4 h. This contrast clearly demonstrates
for such thermally induced low-speed flows the deterministic
solver is significantly faster than the DSMC solver.

B. Relation between shear stress and wall velocity

In this subsection, we analyze the tangential force acting
on the top wall at different Knudsen numbers and its relation
with the top wall velocity. The tangential force F is calculated
by integrating the shear stress along the top plate assuming a
unit length in the Z direction. The tangential force exerted on

0.30 0.35 0.40 0.45 0.50 0.55 0.60
8.0

8.5

9.0

9.5

×10−3

ux

y

u
x

0.8

0.9

1.0

1.1

T

T

DSMC
DUGKS

FIG. 4. Temperature T and horizontal velocity ux profiles across
the throat of the channel for the validation case (Kn = 0.1, Uw =
0.01) predicted by both DSMC method and the DUGKS.

0 0.2 0.4 0.6 0.8 1

×10−2

−6

−4

−2

0

2
×10−3

Kn

Uw

F

0.01 0.05
0.1 0.2
0.5 1
2 5

FIG. 5. Tangential force acted on the top wall against wall
velocity at different Knudsen numbers ranging from 0.01 to 5.

the top wall is a combined effect of thermally induced flow
and the active motion of the top wall. The thermally induced
flow is from left to right; hence it induces a rightward tractive
force on the wall, whereas the gas will exert a leftward drag
force in response to the active motion of the wall. Therefore,
it is expected that F will direct to the right as Uw = 0, and
its magnitude will decrease with the increasing of Uw, even
reverse its direction if Uw is large enough.

The dependence of F on Uw can be analyzed from the
moment exchange of the molecules hitting on and leaving
from the wall. The force exerting on the top wall by the incident
molecules is

F− = −
∫

ξ ·n<0
(ξ · n)ξg−(ξ )dξ , (17)

where g−(ξ ) is the reduced distribution function of the incom-
ing molecules with incident velocity ξ , and n is the inward
unit normal vector pointing into the gas. On the other hand,

1 2 3 4 5 6 7

×10−3

−4

−2

0

2

4
×10−3

Uw

F

Kn = 1
Kn = 10

FIG. 6. Tangential force acted on the top wall against wall
velocity for the case of H = 0.9 and B = 0.1 at Kn = 1 and Kn = 10.

023113-5



LIANHUA ZHU AND ZHAOLI GUO PHYSICAL REVIEW E 95, 023113 (2017)

10−3 10−2 10−1 100 101

0.0
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×10−3

U∗
w

U
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××

FIG. 7. Tangential force on a static wall (SWF in the body text)
and shear-free wall velocity (SFV in the body text) at various Knudsen
numbers.

the force exerting by the molecules leaving from the wall is

F+ = −
∫

ξ ·n>0
(ξ · n)ξg+(ξ )dξ , (18)

where g+(ξ ) is the reduced distribution function of the
outgoing molecules with velocity ξ . Since the wall is
diffusive, g+ can be expressed as

g+(ξ ) = gM (ρw,uw,Tw), (19)

where ρw is given by Eq. (15). Then a direct calculation of
Eq. (18) leads to [11],

F+ = −ς [(πRTw/2)1/2n + uw t], (20)

where ς = ∫
ξ ·n<0 |ξ · n|g−(ξ )dξ is the molecule flux and

t is the unit tangential vector. The net force on the wall is
then F = F+ + F−. Specifically, the tangential force can be
expressed as

F = F−
x − ςuw, (21)

or in nondimensional form

F (Uw) = F ∗
(

1 − Uw

U ∗
w

)
, (22)

where F ∗ and U ∗
w are two parameters that may depend on

the Knudsen number for a specific geometric and temperature
configuration. Actually, F ∗ represents the tangential force
as Uw = 0, i.e., the pure thermally induced force, which is
termed as static wall force (SWF) in this work; U ∗

w represents
the wall velocity at which the tangential force vanishes. It is
also the terminal wall velocity when the system approaches
the steady state if we assume the wall can move freely in
the horizontal direction. This critical velocity is termed as
shear free velocity (SFV) in this work. We note that similar
concepts were also introduced in Ref. [11]. F ∗ and U ∗ are
two important parameters which characterize the response of
the system to the variation of the top wall velocity.

The result given by Eq. (22) suggests that the tangential
force on the top wall is linearly dependent on the wall velocity.

0.002

(a) Kn = 0.01

0.005

(b) Kn = 0.1

0.002

(c) Kn = 0.5

0.0005
A B C

(d) Kn = 10

FIG. 8. Velocity fields with static top wall configuration, i.e., Uw = 0 at different Knudsen numbers. (a) Kn = 0.01. (b) Kn = 0.1.
(c) Kn = 1. (d) Kn = 10. Data have been interpolated to structured grids for better presentation.
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FIG. 9. Contours of the distribution function at three points near the top wall [marked in Fig. 8(d)] when Kn = 10.

Actually, in Ref. [11] this dependence has been derived
analytically in the free-molecule case (i.e., Kn → ∞) for a
similar configuration. But at finite Kn, it is difficult, if not
impossible, to derive the exact values of F ∗ and U ∗

w.
In Fig. 5, the profiles of F against Uw at different values

of Kn are shown. The linear relationship between F and Uw

is clearly shown. It should be noted that even though these
numerical results are obtained with a specific value of H

and B, the linearity of the relationship should still hold at
other configurations of H and B since the above analytical
analysis does not make assumption on the value of H and B.
For example, for an additional case of H = 0.9 and B = 0.1,
the F ∼ Uw relations obtained from numerical simulations at
Kn = 0.1 and 1 presented in Fig. 6 are also clearly linear.

It is also evident from Fig. 5 that the linearity of the
relation between F and Uw depends on Kn. In Fig. 7, we
show the dependencies of F ∗ and U ∗

w on the Knudsen number.
It can be seen both F ∗ and U ∗

w vanish in the continuum
and free molecular limits, and their maximum values appear
at around Kn = 0.5 and 0.1, respectively. It is interesting
that in the study of the thermally induced flow in a similar
ratchet channel with different boundary conditions [10], the

average velocity also takes its maximum value at Kn ≈ 0.1,
but the tangential force reaches its maximum after around
Kn > 10. This difference can be attributed to the different
wall configurations. In the present study, the vertical wall is
specularly reflective, and the inclined bottom wall is diffusive
reflective, while in the case studied in Ref. [10], the wall
reflective properties are just the reverse.

The velocity fields with the steady wall configuration at
Kn = 0.01, 0.1, 0.5, and 10 are shown in Fig. 8. It can be seen
that the flow patterns at different Knudsen numbers are quite
different. At very small Kn (Kn = 0.01), a vortex appears near
the throat, and the flow is accelerated at the tip of the ratchet,
whereas at large Knudsen numbers, vortices are generated in
the bottom corner even though the flow is very weak there. An
interesting but counterintuitive phenomenon observed from
Fig. 8 is that, at smaller Knudsen numbers, the overall flow
direction is from left to right, but at Kn = 10 the flow direction
is reversed. This phenomenon can be explained by the more
pronounced effect of the specular reflective vertical wall in
higher rarefied condition. A more interesting observation is
that the SWF is still rightward even though the flow direction
has changed to the leftward near the top wall at the case

0 0.2 0.4 0.6 0.8 1

0

2

4

6

×10−4

x

p
x
y

DUGKS
DSMC

(a)

0.0005

(b)

FIG. 10. Results of the case of Kn = 10, Uw = 0 using DSMC method. (a) Shear stress distribution at the top wall (the DUGKS solution
has been included). (b) Velocity fields.
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0.002

(a) Kn = 0.01

0.005

(b) Kn = 0.1

0.002

(c) Kn = 1

0.0002

(d) Kn = 10

FIG. 11. Velocity field at shear-free state, i.e., when F = 0 at different Knudsen numbers. (a) Kn = 0.01. (b) Kn = 0.1. (c) Kn = 1.
(d) Kn = 10. Data have been interpolated to structured grids for better presentation.

of Kn = 10, which contrasts to our intuition based on the
Newton’s shear force law. The reason is that the distribution
function near the top wall is highly nonequilibrium, which can
be clearly seen from Fig. 9, where the contour plots of the
distribution functions at three points near the top wall [marked
in Fig. 8(d)] are presented. An independent DSMC simulation
has also been conducted to corroborate this counterintuitive
phenomenon. The shear force distribution along the top wall
and flow field are shown in Fig. 10, from which we can
see the shear force exerted on the top wall predicted by

DSMC method agrees with our results using the DUGKS
despite exhibiting significant statistic noises. The flow field
in Fig. 10(b) also agrees with Fig. 8(d). Particularly, the main
flow direction indeed reverses from rightward to leftward, even
though the force retains its direction compared with lower
Knudsen number cases.

The shear-free state of the system is a critical state at which
the thermal driving effect exactly balances the driving effect
due to the active moving wall. This state is equivalent to the
load-free state if the system works as a heat engine with ideal
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0.0

0.5

1.0

1.5

2.0

×10−3

ΔT

F
∗

Kn = 0.1
Kn = 0.5
Kn = 1

(a)
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FIG. 12. Static wall tangential force (a) and shear-free wall velocity (b) against temperature difference.
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FIG. 13. Temperature field and streamlines at two temperature configurations. (a) Hot-bottom case (Tt = 0.75, Tb = 1.25). (b) Hot-top
case (Tt = 1.25, Tb = 0.75). In both cases, Kn = 0.1 and Uw = 0.

mechanical efficiency. The velocity field in shear-free states at
Kn = 0.01, 0.1, 1, and 10 are shown in Fig. 11. Comparing
Fig. 11 with Fig. 8, we can see when the Knudsen number is
small, the flow fields at the bottom half of the channel change
only slightly from the static wall states, and the shear flows
in the upper half of the channel are balanced by the shear
induced by the moving wall. However, at Kn = 10 the flow
field at shear-free state is very different from that at static wall
state. A large vortex occupying almost the whole upper half
of the channel develops, even though the overall flow is very
weak. Due to the large vortex, the net total mass flux through
the channel is almost zero at Kn = 10.

C. Influence of the temperature difference

We now investigate the influence of the temperature
difference between the top wall and the inclined bottom wall.
The mean temperature T0 = 1/2(Tt + Tb) is fixed, and the
wall temperatures Tb and Tt are adjusted to achieve various
temperature difference �T = Tb − Tt . Five different values
of �T in the range of [0.125,0.75] are considered. For each
case, the SWF and SFV are measured and the results are shown
in Fig. 12. Only three Knudsen numbers, i.e., Kn = 0.1, 0.5,
and 1, are considered, as F ∗ and U ∗

w take their maximum values
in this range of Kn, as demonstrated in Fig. 7. From Fig. 12 we
can see F ∗ and U ∗

w scale almost linearly with the temperature
difference, indicating the strength of thermally induced flow
is proportional to the temperature difference.

In the previous analyses, the bottom wall maintains at
a higher temperature than the top wall, i.e., �T > 0. Now
we consider the reversed case, namely, a cold-bottom and
hot-top configuration (Tb = 0.75 and Tt = 1.25). All other
parameters are kept the same, i.e., Uw = 0 and H = B = 0.3.
The temperature and flow fields at Kn = 0.1 are presented
in Fig. 13. It can be seen that the main flow direction in the
reversed temperature configuration is reversed accordingly.
Both the temperature and the velocity fields have similar
structures in the two cases, but the contour levels and
the flow direction are reversed. To show the quantitative
difference between the two configurations, we plot the shear
stress distribution along the top wall in Fig. 14 for the two
configurations. The sign of the shear stress for the hot-top
case is changed for a better comparison. It can be seen that
the local shear stress in the hot-top case is larger than that in
the hot-bottom one. This difference can be explained by the
temperature dependence of the viscosity because the absolute

value of velocity field and hence the shear rate distribution is
almost the same in the two configurations. In the hot-top case,
the local gas viscosity near the top wall is larger than that in
the hot-bottom one due to the much higher local temperature.

D. Influence of the geometry configuration

In the previous cases, the geometry parameters are fixed at
H = 0.3 and B = 0.3. We now study the influence of those
geometry parameters to the SWF and the SFV.

First, we fix the ratio of H and B at one but change their
absolute values. Five values of H/L will be considered. The
SWF and the SFV are shown in Fig. 15. We can see both
F ∗ and U ∗

w increase with the increasing of H , suggesting
greater tangential force can be obtained using a higher ratchet.
This trend can be explained as follows. A larger value of
H means the inclined bottom wall is steeper and thus the gas
temperature gradient near the inclined wall is more significant,
which results in a stronger thermal creep flow in the channel.

Then we study the impact of the ratio between H and B.
The width of the channel, i.e., H + B is fixed, but different
values of B/H are used. The SWF and SFV at various values
of B/H are shown in Fig. 16. It can be seen that B/H has a

0 0.2 0.4 0.6 0.8 1

0.0

1.0

2.0

3.0
×10−3

x

p x
y

Hot bottom
Hot top, sign reversed

FIG. 14. Shear stress along the top wall at two different tempera-
ture configurations. In the hot-bottom case, Tt = 0.75 and Tb = 1.25.
In the hot-top case, Tt = 1.25 and Tb = 0.75. In both cases, Kn = 0.1
and Uw = 0.
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FIG. 15. Static wall tangential force (a) and shear-free velocity wall velocity (b) as functions of H/L at various Knudsen numbers.

significant influence on the SWF and SFV. Generally, a small
value of B/H leads to much larger F ∗ and U ∗

w. In the limit of
B/H → ∞, both F ∗ and U ∗

w vanish. This is reasonable since
a nearly flat bottom ratchet surface (B/H → ∞) will induce
a negligible thermal driving effect.

E. Mechanical performance as a heat engine

We now investigate the mechanical performance and
thermal efficiency of the ratchet structure system when it
acts as a heat engine. At steady state, the thermal energy
is transferred from the hot surface to the cold one, with a
net loss which is converted to mechanical work done on
the moving top wall. The output power can be calculated
as P = UwF. As analyzed in Sec. IV B, the tangential force
is linearly related to the velocity of the top wall. Then we
have P = −(F ∗/U ∗

w)U 2
w + F ∗Uw. Using the results from

Sec. IV B, we plot the curves of the output power as a function

of the top wall velocity in Fig. 17. Similar to the SWF and SFV,
the power curves are also affected by the Knudsen number,
the temperature difference, and geometric configurations.
From Fig. 17, we can observe that the maximum output
power and the wall velocity at which the power achieves
its maximum change nonmonotonically with the Knudsen
number. The maximum power Pmax and the corresponding
thermal efficiency ηmax as functions of the Knudsen number
are presented in Fig. 18. The maximum thermal efficiency is
calculated as ηmax = Pmax/Qh, where Qh is the total heat flux
on the top wall when the output power reaches its maximum.
We can assume the top wall velocity has negligible influence
on the total heat flux on the walls, which is reasonable since
the flow velocity is so small that the temperature field is not
affected apparently by the flow of the gas, and subsequently the
coupling between the temperature field and the velocity fields
is weak. Figure 18 shows that both the maximum output power
and the maximum thermal efficiency increase rapidly with the
increase of Kn as Kn < 0.3, but then they drop gradually.
It is observed that the thermal efficiency is in the order of
0.001%, which is extremely small compared with the Carnot
efficiency of an ideal heat engine with the same temperature
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FIG. 16. Static wall tangential force (a) and shear-free velocity wall velocity (b) as functions of B/H at various Knudsen numbers.
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FIG. 17. Dependence of the power output on the wall velocity at
various Knudsen numbers.

configuration. This is due to the finite thermal driving effect
that the current ratchet structure can generate.

We note that the thermal efficiency here is also much smaller
than those obtained in [11], in which the thermal efficiency of
a similar structure is analyzed in the free molecular limit. This
difference can be explained by the different placements of
the specular reflective wall segment and different width and
length ratio of the channel. On the one hand, the specular
reflective segment is placed vertically in this study, while
in [11] the specular reflective segment is placed inclined and
the angle of inclination can be adjusted. According to [11], the
highest thermal efficiency is obtained with an inclination angle
around 20◦, and it is much smaller in the limit of 90◦ which
is corresponding to the vertical configuration in this study. On
the other hand, the ratio of width to length, i.e., H/L of the
ratchet structure is 0.1 or even smaller in [11]. While in our
base configuration, it is 0.3 which indicates a much smaller
output power and hence the thermal efficiency according to
the observations in Sec. IV D.
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FIG. 18. Maximum power output and thermal efficiency.

The effect of temperature difference to the maximum output
power and thermal efficiency can be analyzed using the results
in Sec. IV C. Because both the SWF and the SWF scale nearly
linearly with the temperature difference, the output power
is expected to scale quadratically with the increase of the
temperature difference. The thermal efficiency will increase
linearly with the increase of the temperature since the heat
flux will also scale linearly at the same time.

V. CONCLUDING REMARKS

In the present study, motivated by the potential application
of thermal creep flow as an energy harvesting device, the
thermal and boundary driven gas flows in a microchannel with
ratchet surface in a wide range of operating conditions have
been invested. The tangential force acting on the channel wall
at different wall velocity are obtained by deterministically
solving the Boltzmann model equation using the recently
proposed discrete unified gas-kinetic scheme. It is found the
tangential force changes linearly with the wall velocity, and
the parameters characterizing the linear relations are obtained
in various operating conditions. The tangential force on the
static wall and the top wall velocity at shear-free state achieve
their maximum values in the Knudsen number range of [0.1,1]
and are found to be influenced linearly by the imposed wall
temperature difference. The relative height of the ratchet
structures has a significant influence on the thermal driving
effect, namely a higher ratchet structure leads to a larger
tangential force.

The mechanical power output and the thermal efficiency
when the system works as a heat engine are also measured
based on the relation between the tangential shear force and
the wall velocity. It is found that both of them can achieve
the maximum values in the early transition regime and are
significantly larger than those in the free molecular regime.

The thermal driving effect produced by the current inclined
diffusive reflective wall and vertical specular reflective wall
configuration is relatively small compared with the inclined
specular reflective wall configurations in previous studies.
Future study should consider more general geometry configu-
rations to improve the thermal efficiency.
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APPENDIX: DISCRETE UNIFIED
GAS-KINETIC SCHEME

The numerical scheme used to solve the Boltzmann
model equation is the discrete unified gas-kinetic scheme
(DUGKS) [18,19,22], which is an explicit finite-volume
scheme for the discrete velocity Boltzmann model equation.
We only briefly mention the major steps of this method,
since the method presented here is essentially the same as
unstructured mesh-based DUGKS in [22]. Moreover, the
method has been implemented as an open source solver in
the framework of OpenFOAM [24].
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The governing equation, i.e., Eq. (9), is first discretized
in the velocity space with a chosen two-dimensional discrete
velocity grid {ξα,α = 1,2, . . . ,M},

∂
α

∂t
+ ξα,x

∂
α

∂x
+ ξα,y

∂
α

∂y
= − 1

τ

[

α − 
S

α

] ≡ �α,

(A1)

where 
α and 
S
α are the distribution function and equilibrium

distribution function with discrete velocity ξα . Equation (A1)
is then discretized in the spatial space with the following cell
centered finite-volume scheme [19]:


n+1
α,k − 
n

α,k + �t

|Vk|F
n+1/2
α,k = �t

2

[
�n+1

α,k + �n
α,k

]
,

k = {1,2, . . . ,N}, (A2)

where 
n
α,k is the cell averaged value 
α of cell k at time level

tn, |Vk| is the volume of the cell k, N is the total number of
cells, and �t = tn+1 − tn is the time step. The flux Fn+1/2

α,k is
evaluated at the middle time step by

Fn+1/2
α,k =

∑
l

ξα · Sk,l

n+1/2
α,k,l , (A3)

where Sk,l is the surface vector of face l belonging to cell k,
and 


n+1/2
α,k,l is the face centered distribution function of face l

at the middle time step. The main idea behind DUGKS is that
the 


n+1/2
α at cell face center is constructed in a physical way

by solving the governing equation locally around the cell face
from time tn to time tn+1/2. The evolution equation for 
α at

the cell face center xf is [19]


n+1/2
α (xf ) − 
n

α(xf − ξα�t/2)

= �t/4
[
�n+1/2

α (xf ) + �n
α(xf − ξα�t/2)

]
. (A4)

In the above equation, the distribution functions at xf −
ξα�t/2 are interpolated linearly from the nearby cell centered
distribution functions.

The implicitness of Eq. (A2) and Eq. (A4) is eliminated by
introducing two variable transformations [19],


̃α = 
α − �t/2�α, 
̄α = 
α − �t/4�α. (A5)

In the actual implementation, 
̃α is tracked instead of the
original 
α . The macrovariables at each time step are evaluated
by taking moments of 
̃α as follows:

ρ =
∑

α

wαg̃α, ρUi =
∑

α

wαξα,i g̃α,

ρE = 1

2

∑
α

wα

[(
ξ 2
α,x + ξ 2

α,y

)
g̃α + h̃α

]
,

qi = 2τ

2τ + �tPr
q̃i , with

q̃i = 1

2

∑
α

wαcα,i

{[
c2
α,x + c2

α,y

]
g̃α + h̃α

}
,

pij = 2τ

2τ + �t
p̃ij , with p̃ij =

∑
α

wαcα,icα,j gα. (A6)
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