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Retarding viscous Rayleigh-Taylor mixing by an optimized additional mode
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The Rayleigh-Taylor (RT) mixing induced by random interface disturbances between two incompressible
viscous fluids is simulated numerically. The ensemble averaged spike velocity is found to be remarkably retarded
when the random interface disturbances are superimposed with an optimized additional mode. The mode’s
wavenumber is selected to be large enough to avoid enhancing the dominance of long-wavelength modes, but not
so large that its saturated spike and bubble velocities are too small to stimulate a growing effective density-gradient
layer suppressing the long-wavelength modes. Such an optimized suppressing mode is expected to be found in
the RT mixing including other diffusion processes, e.g., concentration diffusion and thermal diffusion.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) occurs when a heavy
fluid is laid on a light fluid in a gravitational field or the
interface is accelerated to the heavier one [1,2]. RTI is
important in a wide variety of applications including iner-
tial confinement fusion [3], astrophysical phenomena [4,5],
ultrathin foil accelerated by the radiation pressure [6], and
gas-particle mixtures [7]. It has been shown that the growth
of an unstable RT mode may be retarded by surface tension
and viscosity [8], concentration diffusion [9], rotation [10],
or the bimode interaction [11]. When RTI arises from ran-
dom interface perturbations (initial disturbances with banded
spectra), the highly disordered mixing zone is dominated by
large scale structures, and its width increases as hb ∼ αbAgt2

[12–18], where A is the Atwood number, g is the gravity,
and hb and αb are the penetration depth and the growth rate
parameter of bubbles, respectively. Since no fluid is completely
inviscid, the momentum-diffusion (viscous) effect has been an
important topic for theoretical [19,20], experimental [21], and
numerical [22] studies of RTI and RT mixing. It has been
revealed numerically and experimentally that the addition
of a single mode or multimodes with long wavelength(s)
can enhance the RT mixing, i.e., increasing the instability
penetration [14] and the growth rate parameter αb [18,23].
However, it is still unknown by far whether there exists an
additional mode that is optimized to suppress utmostly the
viscous RT mixing induced by random initial disturbances,
and this is the main motivation of this paper.

II. OPTIMIZED SUPPRESSING MODE

The two-dimensional incompressible viscous Navier-
Stokes equations are solved by a projection method in the
Cartesian coordinates with the x∗ axis lying on the undisturbed
interface between the upper heavier fluid of density ρ2 and the
lower lighter fluid of density ρ1. The gravity g points to the
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contradictory direction of y∗, and the characteristic length and
time scales are (ν2/g)1/3 and (ν/g2)1/3, respectively, where
ν = (μ1 + μ2)/(ρ1 + ρ2), and μ1 and μ2 are the dynamic
viscosities of the lower and the upper fluids, respectively.

The interface is tracked with the volume-of-fluid
method [24] and the pressure Poisson equation is solved by
the multigrid method. The ratio between the width L to the
height H of the computational domain is 1:4. A uniform mesh
2048 × 8192 is tested by comparing results with those of
1024 × 4098 without significant difference. In addition, good
consistency is obtained between the growth rate predicted
by the linear stability theory of viscous RTI [25] and the
simulation value based on the mesh 2048 × 8192. Therefore,
2048 × 8192 is used in the simulations. The widths of the
mixing zone studied in this paper are less than 2L, so no-slip
boundary conditions are applied on the top and the bottom and
periodic conditions are used in the horizontal direction. For
simplicity, it is assumed in the following simulations that both
fluids have the same kinematic viscosity μ1/ρ1 = μ2/ρ2, and
the Atwood number A = (ρ2 − ρ1)/(ρ1 + ρ2) = 0.65.

The fluids are initially quiescent with a random interface
displacement in the vertical direction

hran,0 = δ

100∑
n=1

cos

(
2nπ

L
x + φn

)
, (1)

where φn is a random phase lag in [0,2π ] [26]. The additional
single mode is a cos(2naπx/L) and na is an integer wavenum-
ber. In order to examine whether the additional mode could
suppress the RT mixing, δ and a are assumed to be constants of
0.001L and 0.02L, respectively. Accordingly, the amplitude
of hran,0 is about 0.02L for different random cases.

Along with the growth of perturbations, the lighter fluid
bubbles up while the heavier one penetrates into the lighter
fluid forming spikes. It is shown in Fig. 1 that the width
of the RT mixing zone increases when the initial random
perturbations are superposed with a low wavenumber mode
of na = 5 [Figs. 1(a) and 1(c)], but decreases for an additional
mode with a large wavenumber na = 35 as shown in Figs. 1(b)
and 1(d). The maximum heights (above and below the initial
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FIG. 1. Temporal evolutions of the fluid interfaces disturbed
initially by random perturbations with (blue) and without (red) a
superimposed additional mode of wavenumber na .

unperturbed interface) of bubbles and spikes are referred to
as the bubble and the spike penetration depths hb and hs ,
respectively. Considering that the initial amplitude of the
superposed case is about twice larger than that of the random
perturbations, the suppression effect of a large wavenumber
mode on both hb and hs is substantial.

In order to look for the most effective wavenumber to
suppress the RT mixing, 50 independent randomly perturbed
interfaces and different additional modes are tested, and the
ensemble-averaged results are shown in Fig. 2. In comparison
with the random cases, different wavenumbers na of the
additional modes lead to different evolution scenarios of hs
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FIG. 2. Temporal evolutions of the ensemble-averaged values of
the spike penetration hs (a) and the spike velocity (b) with and without
the superposed additional modes. (c) The velocity suppression factor
σ as a function of the additional wavenumber na at different times.
The dashed vertical line in (c) represents the wavenumber of the
most unstable linear viscous mode. (d) Temporal evolution of hs and
hb for na = 35 at different initial amplitude a/L = 0.01,0.02,0.04,
respectively.

as shown in Fig. 2(a). The spike velocity vs = dhs/dt for the
case without an additional mode can be fitted with a straight
dashed line in Fig. 2(b), indicating the self-similar stage where
dimensionless parameters satisfy vs ∼ At . At the initial stage
of RT mixing, smaller na produces larger vs and hence wider
mixing zones than those of the random case, while increasing
na decreases vs and then suppresses the mixing. However,
when na is very large, it is shown in Fig. 2(b) that the spike
velocity for the superposed case with na = 60 becomes higher
than that of na = 35 as t > 18, indicating that there must exist
the most effective suppressing mode with na less than 60. Later
on, the spike penetration depth hs of na = 60 is also larger than
that of na = 35 at t = 25 [Fig. 2(a)], but is still smaller than
the hs of the random initial perturbation case.

The suppression effects of different additional modes
are evaluated with the velocity suppression factor σ = 1 −
vs,a/vs,r , where vs,a and vs,r are the ensemble-averaged spike
velocities with and without the additional modes, respectively.
Consequently, σ > 0 and σ < 0 represent a suppression and an
enhancing effect, respectively. As shown in Fig. 2(c), σ < 0 for
small na , especially as na < 11, the wavenumber of the most
unstable linear mode. This phenomenon is consistent with
the previous observation [14]. The marginal na above which
σ > 0 decreases quickly from 50 at t = 5 to 11 at t = 20, and
at t = 25 a maximum σ of 31% is reached at na = 30, the
wavenumber optimized for the most suppressing effect at this
instant. It is also shown in Fig. 2(d) that the additional mode
with larger amplitude has a stronger retardation effect on the
spike and bubble penetrations at the late mixing stage than that
with smaller amplitude.

III. MECHANISM OF THE OPTIMIZED SUPPRESSION

The optimized suppression mechanism includes two as-
pects. First, the dominance of long-wavelength or low-
wavenumber modes is enhanced by the viscous diffusion. For
inviscid fluids, the linear growth rate of an initial perturbation
as h0cos(2πnx/L) is proportional to

√
n, so a mode with

large n grows fast and reaches its saturated velocity [27]
soon, while the mode with small n still grows exponentially
and then dominates the late stage [28]. The dispersion
relation for viscous RTI [25] was simplified [8] to obtain an
approximate expression of the dimensionless growth rate as√

kA + k4 − k2, where k = 2nπ/L. With the increase of n,
the viscous linear growth rate increases first similar to the
inviscid case, then decreases after reaching its maximum value
at n = 11 for A = 0.65. Therefore, at the initial stage modes
with wavenumbers larger than 11 have been suppressed by
viscous diffusion, and the dominance of the long-wavelength
mode (n < 11) during a viscous RT mixing becomes more
remarkable in comparison with the inviscid case. As shown
in Fig. 1(c), the instantaneous interface fluctuation at the late
stage of mixing is dominated by large-scale structures with
a wavenumber around 5, the value of the additional mode.
The ensemble-averaged spike velocity with a large-wavelength
additional mode (na = 5) increases with a higher growth
rate parameter than that of the case without the additional
mode [Fig. 2(b)], a phenomenon consistent with previous
two-dimensional and three-dimensional simulations [14,18].

023109-2



RETARDING VISCOUS RAYLEIGH-TAYLOR MIXING BY . . . PHYSICAL REVIEW E 95, 023109 (2017)

FIG. 3. Wavenumber dependence of the interface evolution for a
single viscous RT mode. The bubble velocity and the spike velocity
multiplied with

√
n are compared with their inviscid saturated val-

ues vb

√
n =

√
AL

3π (1+A) = 2.576 and vs

√
n =

√
AL

3π (1−A) = 5.593 [27]

shown by the dashed lines in (a) and (b), respectively. The temporal
evolution of a viscous mode interface with a large wavenumber
n = 60 is shown in (f)–(h), and the results for the low-wavenumber
mode with n = 5 are shown in (c)–(e) as references.

Second, the suppression of an additional mode with a
very high wavenumber on the low-wavenumber modes is
weakened by the viscous diffusion. It is proposed for inviscid
fluids [11] that the mushroom shape at the spike tips of the
short-wavelength mode imposes effectively a density gradient
layer on the effective interface of the long-wavelength mode
with a wavenumber of k and modifies the linear growth rate
of the long-wavelength mode as γeff = √

Ak/(1 + kl). The
density gradient scale length l is evaluated as l ∼ wasks ,
where w is the mushroom width and as and ks are the
amplitude and the wavenumber of the short-wavelength mode,
respectively. This approximation requires ks � k and the

underlying mechanism is applicable for viscous RT mixing
as well, i.e., larger l leads to smaller γeff or larger suppression
effect. Assuming w ∼ 1/ks , then we get l ∼ as . At the initial
stage the amplitudes of all modes are small; an additional
mode with a higher wavenumber can suppress more modes
with low and moderate wavenumbers, and hence higher
na leads to more effective suppression just as shown by
the data at t = 5 in Fig. 2(c). At the late stage, nonlinear
evolution of bubbles leads to saturated velocities, which are
very close to its inviscid limit [27] for low-wavenumber
modes as shown in Fig. 3(a). Since in this paper the Atwood
number is relatively large, A = 0.65, only the spike velocity
shows the reacceleration phenomenon [Fig. 3(b)], which is
consistent with the previous simulations of a single mode [29].
For high-wavenumber modes (n > 11), the reacceleration of
spikes disappear because the viscous diffusion suppresses
the formation of Kelvin-Helmholtz structures on the sides
of spikes [Figs. 3(f)–3(h)]. More importantly, the saturated
velocities of both bubbles and spikes decrease remarkably with
the increase of wavenumber as n > 11 [Figs. 3(a) and 3(b)],
leading to a smaller amplitude as in comparison with the
inviscid case. Therefore, if the wavenumber of the additional
mode is too large, viscous diffusion will dramatically retard
the growth of as and l, enlarging γeff and weakening its
suppression effect on long-wavenumber modes. As a result,
at any instant during the nonlinear mixing process, there must
be an additional mode with the optimized wavenumber to
utmostly suppress the dominant long-wavelength mode.

The RT mixing process induced by random interface distur-
bances is characterized with multiple time and length scales.
By introducing the fluid mixture fraction ρ ′ = (ρ − ρ1)/(ρ2 −
ρ1), we can calculate the ensemble-averaged density spectrum
Eρ at the original undisturbed interface as shown in Fig. 4, and
for each sample case we have

∫
Eρ(n)dn = ρ ′2. Without the

additional mode, the dominant wavenumber (the wavenumber
of the spectrum peak) for random initial disturbances is around
the value of the most unstable linear mode (n = 11) at the
early stage [Fig. 4(a)], and then becomes smaller and smaller
with time because more and more high-wavenumber modes
reach their saturated velocities. In the meantime, the flow
around the original interface becomes fully developed turbu-
lence and the inertial subrange labeled by the −5/3 law [30]
emerges in the spectrum [Fig. 4(b)]. When the additional
mode (e.g., na = 30) is added initially, its higher harmonics
are produced almost simultaneously [Fig. 4(a)]. Though the
additional mode and its harmonics lost their dominance in
the following stage [e.g., Fig. 4(b)] and the spectrum curve

 

FIG. 4. The ensemble-averaged density spectra calculated at the midplane (the original interface) and different times for cases with (black)
and without (red) the additional mode.
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becomes smooth, their influence is continued. It is shown in
Figs. 4(b) and 4(c) that in the later stage the modes with large
wavenumbers are stimulated by the additional mode and its
harmonics, and the spectrum curves at the large-wavenumber
range are higher than their counterparts without the additional
mode, while the spectrum peaks at the low-wavenumber range
are suppressed and hence the growth of the mixing zone is
retarded.

IV. CONCLUSIONS

By numerical simulations and statistical analysis, it is
shown that the growth of the RT mixing zone can be substan-
tially retarded by superimposing an optimized additional mode
on its random initial perturbations. The additional mode and its
harmonics enhance large-wavenumber modes to form an effec-
tive density-gradient layer for the dominant long-wavelength
modes and hence decrease their growth rates. Since viscous
diffusion undermines the effectiveness of the additional mode

with too large wavenumber, an optimized wavenumber can
be found by looking for the maximum velocity-suppression
factor. Although different Atwood numbers, viscosity ratios,
initial disturbance amplitudes, and three-dimensionality influ-
ence the selection of the additional mode and are worth further
investigations, the optimized suppression mechanism caused
by the viscous diffusion is universal, and is expected to be
applied in the RT mixing processes accompanied with thermal
diffusion and concentration diffusion.
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