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Spatiotemporal velocity-velocity correlation function in fully developed turbulence
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Turbulence is a ubiquitous phenomenon in natural and industrial flows. Since the celebrated work of
Kolmogorov in 1941, understanding the statistical properties of fully developed turbulence has remained a
major quest. In particular, deriving the properties of turbulent flows from a mesoscopic description, that is, from
the Navier-Stokes equation, has eluded most theoretical attempts. Here, we provide a theoretical prediction for the
functional space and time dependence of the velocity-velocity correlation function of homogeneous and isotropic
turbulence from the field theory associated to the Navier-Stokes equation with stochastic forcing. This prediction,
which goes beyond Kolmogorov theory, is the analytical fixed point solution of nonperturbative renormalization
group flow equations, which are exact in the limit of large wave numbers. This solution is compared to two-point
two-times correlation functions computed in direct numerical simulations. We obtain a remarkable agreement
both in the inertial and in the dissipative ranges.
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I. INTRODUCTION

Kolmogorov made a fundamental step in the understanding
of the statistical properties of homogeneous and isotropic
three-dimensional turbulence in his seminal K41 theory [1,2].
This theory shows that energy, which is injected at a typical
large (integral) length scale L by the external stirring, is
conserved across an inertial range of scales, through a constant-
flux transfer mechanism (the energy cascade), until it is
dissipated by molecular viscosity at a small (Kolmogorov)
length scale η. Assuming universality and scale invariance
in the inertial range, one then deduces from dimensional
considerations scaling predictions such as the power-law
decay of the kinetic energy spectrum with the well-known
−5/3 exponent. These predictions quite reliably describe
most experimental and numerical observations, at least for the
energy spectrum and low-order structure functions (moments
of equal-time velocity differences) [3]. However, despite many
theoretical efforts, the derivation of these scaling predictions
from fundamental principles, that is, from the Navier-Stokes
(NS) equation for the fluid dynamics, is still unsatisfactory [3].
Moreover, deviations from K41 scalings are observed in
experiments and numerical simulations and are large for
high-order structure functions. These deviations are related to
what is named “intermittency,” which refers to the full-fledged
complexity of turbulence beyond K41 theory [3]. Calculating
intermittency effects from NS equations is a longstanding
unsolved issue.

In this paper, we derive analytical solutions of fixed
point nonperturbative renormalization group (NPRG) (also
called functional) equations associated with the NS equation.
These equations are the exact leading behavior at large wave
numbers. We obtain the full space and time dependence of
correlation and response functions in the turbulent steady state
at distances smaller than the integral scale L. Its spatial Fourier
transform is found to take a form ∝ exp(−αk2t2), where k is
the wave number, t the time interval, and α a (nonuniversal)
constant which could be calculated from the (numerical)
solution of the full flow equations. Let us emphasize that
the dependence in tk is a noticeable result. Indeed, scaling

theory would imply that the correlation function depends on
the scaling variable tkz, where z is the dynamical exponent,
which is z = 2/3 for Navier-Stokes turbulence in d = 3. This
result shows that an effective exponent z = 1 arises, which
is a signature of violations of scale invariance, that is, in-
termittency. It follows in particular that the presented solution
correctly accounts for the “sweeping effect,” which is imposed
by the large-scale motion on the Eulerian velocities at small
scales [4]. Indeed, the energy spectrum calculated as a function
of the frequency displays a ω−5/3 decay, as observed in exper-
iments or numerical simulations for Eulerian velocity correla-
tions [3,5]. This is a nontrivial result from a theoretical point
of view [6–9] which reflects deviations from K41 scalings.

On the other hand, at coinciding times, the violations to
scale invariance are found to be subleading at large k, and
are hence not captured by the exact equations at leading order
studied in this paper. In particular, determining corrections
to the k−5/3 decay of the energy spectrum in the inertial
range would require the study of subleading equations, which
goes beyond the present paper. However, the behavior of this
spectrum can be determined for scales in the dissipative range,
beyond the Kolmogorov regime. Several mostly empirical
expressions were proposed to describe this behavior [10].
They all suggest “an approximately exponential decay” [8].
Our analytical solution shows that a crossover occurs at
a scale given by Taylor scale λ, from the k−5/3 power
law in the inertial range to a stretched exponential decay
following ∝ exp[−μ̂(λk)2/3] in the dissipative range, where
μ̂ is a (nonuniversal) constant (which could be computed by
numerically integrating the full flow equations).

In order to test these predictions, we perform direct numer-
ical simulations of fully developed isotropic turbulence from
the NS equation, recording in particular the time dependence
of the correlation function. The numerical solution precisely
exhibits the Gaussian dependence in kt . Moreover, the behav-
ior of the numerical energy spectrum in the dissipative range
is in agreement with the predicted stretched exponential.

In summary, we provide an analytical expression for the
spatiotemporal correlation and response function, accounting
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in particular for intermittency corrections at finite time
differences, and which is confirmed by the numerical data. This
expression is directly derived from the NS equation without
approximation for large wave numbers. This constitutes a
major step in the theoretical understanding and modeling of
isotropic and homogeneous turbulence, and opens promising
perspectives for the calculation of higher-order correlation
and structure functions for three-dimensional and also two-
dimensional turbulence.

The paper is organized as follows. The principles of
the NPRG formalism and main results obtained in [11] are
reviewed in Sec. II. Our starting point is the flow equation for
the two-point functions in an asymptotic form which is exact
at large wave numbers. We focus on the fixed point equations,
and derive and analyze their general solution in Sec. III. We
study in particular the behavior of the solution in the dissipative
range in Sec. III C. We briefly describe in Sec. IV the direct
numerical simulations, before stressing concluding remarks
and perspectives.

II. NPRG FORMALISM

The results presented in this paper are based on the
mesoscopic description of fluid dynamics embodied in the
Navier-Stokes equation

∂t �v + �v · �∇�v = − 1

ρ
�∇p + ν∇2�v + �f . (1)

In this equation, the velocity field �v, the pressure field p,
and the external stirring force �f depend on the space-time
coordinates (t,�x); ν is the kinematic viscosity; and ρ is
the density of the fluid. This continuous hydrodynamical
description is typically valid at scales much smaller than the
Kolmogorov scale defined by

η =
(

ν3

ε

)1/4

(2)

where ε is the mean rate of injection of energy per unit
mass. The presence of the external forcing �f in Eq. (1) is
necessary to sustain a stationary turbulent state. We consider
incompressible flows, satisfying �∇ · �v = 0.

At characteristic distances much smaller than the integral
scale, the statistical behavior of the velocity field is observed to
be independent of the actual details of the forcing. Therefore,
one can conveniently perform a statistical average over
stochastic forcings peaked at scales of order L. These forcings
are chosen Gaussian distributed, with a correlator

〈fα(t,�x)fβ(t ′,�x ′)〉 = 2δαβδ(t − t ′)NL(|�x − �x ′|), (3)

where the profile NL is peaked at the scale L. The NS
equation with stochastic forcing can then be cast into a field
theory following the standard Martin-Siggia-Rose-Janssen-de
Dominicis formalism [12–14].

Since universality and power-law behaviors are expected in
the inertial range, the renormalization group (RG) appears as
a natural theoretical approach to study the NS field theory, and
to calculate its scaling properties [15]. However, applying the
perturbative RG to turbulence has a long history, dating back
to the 1970s [16–19], and has turned out to be extremely chal-

lenging [20,21]. In this context, some of us have developed an
alternative RG approach, based on a nonperturbative and func-
tional RG. The NPRG is a modern implementation of Wilson’s
original idea [22], which is to calculate the physical properties
of a system by progressively, scale by scale, averaging over
fluctuations. It is an efficient procedure to compute large-scale
properties even in the presence of strong correlations and
fluctuations at all scales (as in critical phenomena) [23].

The NPRG consists in constructing a series of scale-
dependent effective models, each of which describing the
physics of the system at a given momentum scale κ . An initial
condition can be specified when κ is a large wave-number scale
, chosen much larger than the inverse Kolmogorov scale η−1,
where the dynamics of the velocity field is given by the NS
equation (or equivalently by NS “bare” action) [11,23]. The
physical statistical properties of the model are obtained in the
“infinite volume” limit κ → 0, when all fluctuations have been
taken into account.

The NPRG formalism provides exact RG flow equations,
governing the evolution of these effective models when the
renormalization scale κ runs from  to zero [23]. Solving these
RG flow equations is thus a way to solve the model. However,
these equations are partial-differential and functional equa-
tions for the n-point functions of the theory, that is, generalized
n-point correlation and response functions. Moreover, the
flow equations for the n-point functions involve the (n + 1)-
and (n + 2)-point functions, such that one should consider in
practice an infinite hierarchy of flow equations. As is common
in many theoretical approaches, the usual way to deal with such
an infinite hierarchy is to devise an approximation scheme to
truncate it and obtain a closed equation at a given order n (a
closure scheme).

In this paper, we focus on two-point (i.e., two-space point
and two-time) functions (n = 2) in the stationary turbulent
state. More precisely, we consider the scale-dependent cor-
relation function Cκ (t,�x) = 〈�v(t,�x) · �v(0,0)〉κ and response
function Gκ (t,�x) (translational invariance in time and space is
assumed), and their Fourier transforms, denoted Cκ (t,�k) and
Gκ (t,�k) where �k is the wave vector, and t is the time difference
in the stationary state. The response function is related to the
mean value 〈�v(t,�x) · �f (0,0)〉κ at scale κ through the relation

〈�v(t,�x) · �f (0,0)〉κ = 2 (d − 1)
∫

�,�q
Nκ (�q)e−i� tGκ (ω,�q),

(4)
where Nκ (�q) is the Fourier transform of the correlator of the
external stochastic forcing defined in Eq. (3), peaked at scale
κ . In particular, one can show that the mean energy injection
rate is given by

ε = 〈�v(0,0) · �f (0,0)〉κ = Dκκ
dγ −1, (5)

where Dκ is the effective (renormalized) forcing strength,
d is the space dimension, and γ is a pure (nonuniversal)
number depending on the precise choice of the forcing profile
N (q) [24].

A. Closure of the flow equations

As mentioned above, the exact NPRG flow equations
for the two-point functions involve three- and four-point
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functions. Usually, in order to solve these equations, one must
truncate them in some way. Such a truncation (usually called
closure) was achieved for the NS problem within the NPRG
context in several related works [11,25,26]. The approximation
implemented in these works, referred to as leading order
(LO) approximation, is very much inspired from similar ones
developed in the context of the closely related Kardar-Parisi-
Zhang (KPZ) equation describing interface growth and kinetic
roughening [27]. This approximation scheme has yielded
for KPZ very accurate results [28–30], and it can be quite
straightforwardly transposed to NS since the KPZ and NS
field theories share many common features, in particular
(time-gauged) symmetries [31].

For NS, the LO approximation consists in a truncation
at quadratic order in the velocity fields (velocity and the
associated Martin-Siggia-Rose response velocity), neglecting
all higher-order functions but the unrenormalized nonlinearity
(three-point vertex). This approximation is well controlled
in the small wave-number sector |�k| 	 κ of the theory, and
thus provides an accurate description of this regime (see
detailed discussion in [11]). It was shown at LO that the
NPRG flow reaches a fixed point, which encompasses the
universal properties of the turbulent steady state [11,25,26].
The existence of this fixed point was also well known from the
perturbative RG [20,21].

Besides these studies, some of us made a decisive step
in [11], by showing that in the regime of large wave numbers
truncation can be avoided. The closure of the flow equations
for the two-point functions can be achieved without approxi-
mation in the large wave-number regime, by only exploiting
the symmetries of the NS action. This result, exceptional
in the NPRG framework, relies on the existence of very
constraining symmetries (time-gauged – or time-dependent,
ones, in particular a time-gauged shift unveiled in [31]) and the
extensive use of the related Ward identities, and also on other
specificities of the NS equation referred to as “nondecoupling”
(see below).

B. Exact flow equations in the limit of large wave numbers

The equations derived in [11] following from a symmetry-
based closure are our starting point. They give the flow equa-
tions for the two-point (response and correlation) functions in
Fourier space, and are exact in the limit of large wave number
|�k| 
 κ:

κ∂κCκ (ω,�k)=−2

3
k2

∫
�

Cκ (ω + �,�k) − Cκ (ω,�k)

� 2
Jκ (� ),

κ∂κGκ (ω,�k)=−2

3
k2

∫
�

Gκ (ω + �,�k) − Gκ (ω,�k)

� 2
Jκ (� ),

(6)

in units where ν = η = 1. The Fourier conventions used in
this paper are

f (t,�k) =
∫ ∞

−∞

dω

2π
f (ω,�k) e−iωt ,

f (ω,�k) =
∫ ∞

−∞
dt f (t,�k) eiωt , (7)

keeping the same notation for the function and its Fourier
transform. In Eq. (6), Jκ is the integral

Jκ (� ) = −
∫

�q
{2∂sNs(�q) |Gκ (�,�q)|2

− 2∂sRs(�q) Cκ (�,�q)�[Gκ (�,�q)]}, (8)

where s = ln(κ/) is the “RG time,” with ∂s = κ∂κ . Ns is the
forcing profile defined in Eq. (3), and Rs is a momentum profile
involved in the NPRG procedure to freeze all fluctuations with
wave numbers |�k| � κ , and which vanishes in the limit κ → 0
(see [11] for details).

As shown in [11], these flow equations exhibit a very
peculiar property compared to ordinary critical phenomena,
named the nondecoupling property: the flow does not vanish
when the RG scale is much smaller than a given wave number
of the correlation function, that is,

lim
|�k|
κ

κ∂κXκ (ω,�k)

Xκ (ω,�k)
= 0, (9)

where Xκ stands for Cκ or Gκ . This nondecoupling property
opens the door for some intermittency effects. Indeed, the
stationary turbulent state corresponds to a fixed point of the
flow, which leads to universality and power-law behaviors.
However, the nondecoupling property implies that the behavior
at large wave numbers can deviate from dimensional scaling
(see [11]). This is indeed what we find in the following. On the
other hand, the decoupling property is restored at equal times.
Indeed, integrating Eq. (6) over frequencies leads to

∫
ω

κ∂κXκ (ω,�k) = 0, (10)

which means that standard K41 scaling results are recovered
at equal times. Intermittency corrections are hence absent at
leading order in �k for equal-time correlation and response func-
tions, which implies that these corrections must be small, in
agreement with experimental and numerical observations [3].
Possible corrections come from the subleading orders, which
are not included in the equations studied in this paper. These
corrections would be accessible by integrating the full flow
equations, given in [11], using some approximations to close
them, for instance along the lines of [29].

The flow equations for the correlation function and response
function in real time can be deduced from Eqs. (7) and (6),
which yields

κ∂κXκ (t,�k) = −2

3
k2 Xκ (t,�k)

∫
�

cos(�t) − 1

� 2
Jκ (� ). (11)

In the following, we consider the regime of small time
differences t 	 κ−2/3, or equivalently large frequencies ω 

κ2/3. In this limit, Eq. (11) takes a simple form

κ∂κXκ (t,�k) = 1
3 k2 t2 Iκ Xκ (t,�k), (12)

where Iκ is the integral

Iκ =
∫

�

Jκ (� ). (13)
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Note that this integral is a function of the RG scale κ only.
It does not depend on the external wave vector �k and time
difference t of the correlation or response functions Xκ .
Moreover, it is determined by the small wave-number sector.
Indeed, it is shown in [11] that the internal wave vector �q
and frequency � appearing in the integral (13) are dominated
by values of order |�q| � κ and � � κ2/3, respectively, which
hence belong to the opposite regime as the one studied here.
This integral can be reliably (but approximately) computed
within an approximation controlled in the small wave-number
sector, such as the LO one.

C. Fixed point equation

As mentioned previously, the RG flow associated to NS
turbulence leads to a fixed point. We are interested in the
vicinity of this fixed point where universality is expected.
As usual in RG studies, the fixed point is most conveniently
studied in terms of dimensionless quantities, such that all
explicit κ dependence is absorbed. In the NPRG procedure for
NS, two renormalized coefficients νκ and Dκ are introduced,
which correspond, respectively, to the effective viscosity and
forcing strength (see [11] for the precise definitions). Close to
a fixed point, these running coefficients behave as power laws
νκ ∼ κ−4/3 and Dκ ∼ κ−3 in d = 3. The effective viscosity is
hence approximately related to the microscopic viscosity as

νκ � ν(κη)−4/3 = ε1/3κ−4/3, (14)

using Eq. (2) and neglecting the small evolution of νκ at the
beginning of the flow when it is not a power law yet. The
effective forcing strength Dκ is related to the mean injection
rate ε following Eq. (5).

We introduce dimensionless variables, denoted with a hat
symbol. Momenta are measured in units of κ and times are
measured in units of (νκκ

2)−1 = ε−1/3κ−2/3. The response
function Gκ (t,�k) is dimensionless, and the dimension of
Cκ (t,�k) is Dκ/(νκκ

2) = γ ε2/3κ−11/3. Let us hence define the
dimensionless functions

Gκ (t,�k) = Ĝs(ŷ = ε1/3 tk2/3,x̂ = (k/κ)2/3),

Cκ (t,�k) = γ ε2/3

k11/3
Ĉs(ŷ = ε1/3 tk2/3,x̂ = (k/κ)2/3). (15)

We also introduce the dimensionless integral Îs as

Iκ = Dκκ
3

νκκ2
Îs = γ ε2/3 κ−2/3Îs . (16)

According to Eq. (12), the dimensionless functions satisfy the
flow equation

∂sX̂s(ŷ,x̂) − 2
3 x̂∂x̂X̂s(ŷ,x̂) = 1

3 ŷ2 x̂ γ Îs X̂s(ŷ,x̂). (17)

The fixed point equation corresponds by definition to
∂sX̂s = 0, and Îs → Î∗,X̂s(ŷ,x̂) → X̂∗(ŷ,x̂) tend to fixed
quantities independent of s. Hence, the fixed point equation
reads as

∂x̂X̂∗(ŷ,x̂) = − 1
2γ Î∗ŷ2 X̂∗(ŷ,x̂) ≡ −α̂ŷ2 X̂∗(ŷ,x̂), (18)

for both functions Ĉs and Ĝs , with α̂ a nonuniversal constant
(depending on the precise forcing profile.) At LO approxima-
tion, one finds that Îs tends to a positive constant Î∗ of the
order 4 × 10−2 at the fixed point, and α̂ is hence positive. Let
us analyze the solution of this equation.

III. GENERAL SOLUTION

The general solution of Eq. (17) is given by

X̂(ŷ,x̂) = FX(ŷ) exp[−α̂ ŷ2 x̂], (19)

where F (ŷ) is an arbitrary function that must be determined by
boundary conditions. We are interested in the regime of large
wave numbers |�k| 
 κ and small time differences t 	 κ−2/3.
In this regime ŷ 	 tk. Moreover, the RG flow ensures that all
functions are analytic smooth functions. Hence, in this regime,
FX(ŷ) can be replaced by FX(ŷ) � FX(0) ≡ cX.

A. Time dependence

To analyze this solution, let us first restore the dimensions.
The physical functions are obtained when the RG scale κ tends
to zero (infinite volume limit). In fact, the RG flow reaches a
fixed point, and the relevant scale is the inverse integral scale
L−1: the functions are essentially unchanged when κ further
decreases. Hence, one has

C(t,�k) = cC

γ ε2/3

k11/3
exp(−α̂ε2/3L2/3t2k2)

= cC

γ ε2/3

k11/3
exp(−α̃ε2/3η2/3t2k2), (20)

and similarly for G, with α̃ = aα̂Re1/2 (with a a numerical
factor of order 1), using that η/L ∼ Re−3/4 where Re is the
Reynolds number.

The expression (20) hence yields that the dominant behavior
of the correlation function is a Gaussian dependence in the
variable tk, and not in the scaling variable tk2/3. This is
a nontrivial result, since it implies a violation of standard
scale invariance, which is a signature of intermittency. It
means that the value of the critical dynamical exponent
z = 2/3 is effectively changed to the value z = 1, which
represents a strong correction to Kolmogorov scaling. A
physical manifestation of this is what is called the sweeping
effect, discussed below.

Whereas equal-time quantities are easily measured in
experiments and numerical simulations, recording the time
dependence is more difficult. The expression (20) hence
provides an interesting prediction, that we tested in numerical
simulations, and that could be studied in experimental settings.
We performed direct numerical simulations of the NS equation
at two different Taylor-scale Reynolds numbers Rλ = 90 and
160. The detail of the simulation is described in Sec. IV.
We computed for both Rλ the function C(t,k). The result
for Rλ = 160 is represented in Fig. 1, where C is plotted
as a function of the dimensionless variable ẑ2 = ε2/3η2/3k2t2

for different values of kη. The upper plot is in log scale.
The different curves for each kη appear as parallel straight
lines as expected from the predicted form of Eq. (20). The

023107-4



SPATIOTEMPORAL VELOCITY-VELOCITY CORRELATION . . . PHYSICAL REVIEW E 95, 023107 (2017)

FIG. 1. Time dependence of the correlation function C(t,k) in
k space (in dimensionless form) computed from direct numerical
simulations at Rλ = 90 and 160. (a) Correlation function C(t,k) for
Rλ = 160 in log scale as a function of the dimensionless variable
ẑ2 = (εη)2/3(kt)2, for different values of kη. In this representation,
the curves for the different kη are parallel lines, with the same slope
α̃, confirming the NPRG prediction. (b) Illustration of the collapse
of the normalized correlation function C(t,k)/C(0,k) for Rλ = 160
for all values of k, on a single Gaussian curve in the dimensionless
variable ẑ. (c) Value of the parameter α̃k estimated from Gaussian
fits of the data for all the different values of k, for both Rλ = 90 and
160. α̃k = α̃ is perfectly constant for Rλ = 160 (approximatively for
Rλ = 90).

lower plot shows the precise collapse of the normalized
function C(t,k)/C(0,k) (in dimensionless form) on a unique
Gaussian. The numerical data hence accurately confirm the
NPRG prediction. The values of the parameter α̃ estimated
from the numerical data are given in Table I.

TABLE I. Parameters of the numerical simulations for the
different Taylor Reynolds number Rλ: Taylor microscale λ, viscosity
ν, Kolmogorov scale η, mean energy injection rate ε; and fitting
parameters: Kolmogorov constant CK , dimensionless parameter of
the Gaussian time dependence α̃, and dimensionless parameter of the
stretched exponential decay μ̂ (see text).

Rλ 90 160 433

λ 0.236(7) 0.161(4) 0.118
ν 10−4 10−4 1.8 × 10−4

η 0.01264(7) 0.00642(4) 0.00287
ε 0.0000392(9) 0.00059(2) 0.0928
CK 2.26 1.90 2.24
α̃ 1.2×10−4 1.2×10−5 –
μ̂ 1.00 0.78 0.46

FIG. 2. Kinetic energy spectra in d = 3 obtained from direct
numerical simulations at different Taylor-scale Reynolds numbers
Rλ = 90,160,433 (from top to bottom), plotted in a dimensionless
form: ε−2/3E as a function of kη. The data for Rλ = 90 and 160 are
from this work; the data for Rλ = 433 come from the Johns Hopkins
Turbulence Database [32]. The numerical spectra display an inertial
range, extending with Rλ, with a k−5/3 decay (up to possible small
corrections).

B. Inertial range of the energy spectrum

Equal-time quantities can also be deduced from the
solution (20). In particular, the kinetic energy spectrum is
obtained as

E(k) = 4πk2C(t = 0,k) = 4 π γ cC ε2/3 k−5/3. (21)

It decays as a power-law with the Kolmogorov exponent
−5/3. This is in accordance with our statement below Eq. (10)
that the decoupling property is restored at equal times. To
illustrate this result, the energy spectra obtained from
numerical simulations are shown in Fig. 2, in a dimensionless
form. The numerical data come from the simulations we
ran for Rλ = 90 and 160, and from the Johns Hopkins
Turbulence database [32] for Rλ = 433. These spectra exhibit
a substantial inertial range, extending with Rλ, with a clear
k−5/3 decay (up to possible small corrections).

More interestingly, let us compute the energy spectrum as
a function of the frequency. This yields

E(ω) = 4π

∫ ∞

0
dk k2C(ω,k)

= 4π

∫ ∞

0
dk k2

∫ ∞

−∞
dt C(t,�k) eiωt

= 28/3cC π3/2γ ε8/9 η2/9 α̂1/3 �(5/6) ω−5/3, (22)

using Eq. (20). Hence, the decay of the energy spectrum as
a function of the frequency is found to also decay with the
exponent −5/3. This result corresponds to what is observed
in experiments and numerical simulations for velocities mea-
sured in a fixed reference frame (Eulerian velocities) [3]. The
equality of the exponents in Eqs. (21) and (22) is rooted in
the fact that the wave number and time interval appear as the
combination tk in Eq. (20), that is, with an effective dynamical
exponent z = 1, and not z = 2/3, as emphasized previously.
The latter would yield a ω−2 decay for the energy spectrum
in frequency, which is characteristic of velocities measured
along the flow (Lagrangian velocities), but is not observed for
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Eulerian ones [5]. Here, the solution (20) correctly predicts the
same power in frequency or wave number. Let us underline
that we consider a fluid without mean flow. This observation
is hence not related to Taylor’s frozen turbulence hypothesis.
In contrast, in the absence of mean flow, the ω−5/3 decay is
usually attributed to what is named the sweeping effect, which
is the random advection of small eddies past the observation
point by large energy-containing eddies. This can be viewed
as a statistical form of Taylor’s hypothesis, as introduced by
Tennekes [4]. This result is nontrivial from a field-theoretical
point of view, since it implies that standard scale invariance
is violated, which can be attributed to intermittency. This
shows that this effect is properly taken into account in the
solution (20).

C. Dissipative range of the energy spectrum

The solution (20) is valid for large wave numbers and
small time intervals. Let us study more precisely the limit
of vanishing time differences. In the previous section, t was
sent strictly to zero. This supposes in turn that one can consider
arbitrary small time differences, which is equivalent to sending
Kolmogorov scale η to zero. This is of course justified in
the inertial range, but not on smaller scales, that is, in the
dissipative range. In practice, the smaller time difference is
bounded by Kolmogorov time:

τ =
(ν

ε

)1/2
. (23)

Let us hence consider the limit t → τ , and k 
 κ ∼ L−1. It
is reasonable to assume that the scaling variable ŷ saturates in
this limit to a constant value given by

ŷ = ε1/3tk2/3 → ŷ0 = ε1/3τL−2/3 = η2/3L−2/3. (24)

The fixed point Eq. (18) then becomes

∂x̂X̂∗(ŷ → ŷ0,x̂) = −α̂η4/3 L−4/3 X̂∗(ŷ,x̂). (25)

The general solution of this equation reads

X̂∗(ŷ → ŷ0,x̂) = cX exp(−α̂η4/3L−4/3 x̂) (26)

and the energy spectrum is thus given in this limit by a stretched
exponential:

E(k) = 4πγ ε2/3 k−5/3cC exp[−α̂η4/3L−2/3k2/3]. (27)

Remarkably, a new scale emerges in the exponential, which is
Taylor scale. Indeed, the latter is related to the Kolmogorov
and integral scale through

λ

η
∼ Re1/4, and

λ

L
∼ Re−1/2, (28)

from which one deduces that

η2/3

L1/3
∼ λ1/3 Re−3/4, (29)

and thus

E(k) = 4πγ ε2/3 k−5/3cC exp[−μ̂(λk)2/3], (30)

with μ̂ a nonuniversal constant μ̂ = bα̂Re−3/2, where b is a
numerical factor of order 1. Hence, the expression (30) shows
that, beyond the k−5/3 Kolmogorov decay, a crossover to a

FIG. 3. Same dimensionless kinetic energy spectra as in Fig. 2,
multiplied by (kη)5/3 and represented in log scale as a function of
(kη)2/3. The NPRG predicts a crossover from the k−5/3 power law to
a stretched exponential decay exp[−μ̂(λk)2/3] in the dissipative range
(dashed lines), which is observed in the numerical data (plain lines
with symbols).

stretched exponential decay with argument k2/3 occurs typi-
cally below the Taylor scale, that is, for wave numbers in the
dissipative range. Several expressions have been proposed for
this regime, mainly under the form of a modified exponential
exp(−cky), but with different values for y (1/2 [33], 3/2 [34],
4/3 [35], or 2 [36,37]). These expressions are mostly based
on approximate fits of the experimental data or (approximate)
analytical considerations [10]. The common wisdom is that
the spectrum decay is “approximately exponential” in the
dissipative range [8]. In order to assess the prediction (30),
we analyzed the numerical energy spectra in the dissipative
range. The stretched exponential on the scale k2/3 is indeed
observed, as illustrated in Fig. 3, although the number of
decades available in the data is of course limited. The value of
the parameter μ̂ estimated from the numerical data is given in
Table I.

IV. DIRECT NUMERICAL SIMULATIONS

The numerical simulations performed to obtain the data of
incompressible forced homogeneous isotropic turbulence at
Rλ = 90 and 160 are based on a pseudospectral code with
second-order explicit Runge-Kutta time advancement [38].
The simulation domain is discretized using 2563, respectively,
5123, grid points on a domain of length 2π for Rλ = 90,
respectively, 160. A classic 3/2 rule is used for dealiasing the
nonlinear convection term and a projection method in spectral
space is used to enforce the divergence-free condition. The
forcing is a fully random forcing concentrated at small wave
numbers [39]. The simulation parameters are chosen such that
kmaxη > 1.5, where kmax is the maximum wave number in the
domain. A typical configuration of the modulus of the velocity
field obtained in the simulation for Rλ = 160 is represented
at different times in Fig. 4. Additional data from the Johns
Hopkins Turbulence Database [32] are also used for the kinetic
energy spectra in Figs. 2 and 3. They correspond to simulations
on 10243 nodes of isotropic turbulence with Rλ � 433. The
relevant parameters for the simulations are gathered in Table I.
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FIG. 4. Typical map of the modulus of the velocity field in
simulated turbulence for Rλ = 160, at different times.

V. CONCLUSION

In this paper, we provide an analytical expression for
the space- and time-dependent correlation (and response)
functions of a fluid in a forced turbulent state. These ex-
pressions are derived from NPRG flow equations which are
exact in the limit of wave numbers large compared to the

inverse integral scale. We show that these expressions yield
predictions beyond the standard observations and Kolmogorov
theory. The essential aspects are (i) the time dependence
for the correlation function in k space ∝ exp(−αt2k2) with
an effective dynamical exponent z = 1, which implies a
strong correction to standard scaling theory; (ii) a related
ω−5/3 decay of the energy spectrum, as observed for Eule-
rian velocities, and which reflects the sweeping effect; and
(iii) a stretched exponential decay as k−5/3 exp[−μ̂(λk)2/3] of
the spectrum in the dissipative range. We believe that deriving
such analytical solutions, directly from the NS equation, and
not on a phenomenological basis, constitutes a major progress
in the theoretical understanding of isotropic and homogeneous
turbulence, and its modeling at all scales.

It opens perspectives in many respects. An important issue
to be addressed is the numerical integration of the complete
flow equations (in both the small and large wave-number
sectors), to assess intermittency corrections for equal-time
quantities. This analysis would require one to make some
approximations in order to truncate the full flow equations.
Another important direction is the investigation of two-
dimensional turbulence, and the derivation of correlation
functions for scales both below the integral scale (direct
cascade) and above (inverse cascade). Moreover, a promis-
ing perspective is the computation of higher-order structure
functions, and the determination of intermittency effects in
this case, which are expected to be much more pronounced as
the order increases.
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