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The Stokes drag force and the gravity force are usually sufficient to describe the behavior of sub-Kolmogorov-
size (or pointlike) heavy particles in turbulence, in particular when the particle-to-fluid density ratio ρp/ρf � 103

(with ρp and ρf the particle and fluid density, respectively). This is, in general, not the case for smaller
particle-to-fluid density ratios, in particular not for ρp/ρf � 102. In that case the pressure gradient force, added
mass effects, and the Basset history force also play important roles. In this study we focus on the understanding
of the role of these additional forces, all of hydrodynamic origin, in the settling of particles in turbulence. In
order to qualitatively elucidate the complex dynamics of such particles in homogeneous isotropic turbulence,
we first focus on the case of settling of such particles in the flow field of a single vortex. After having explored
this simplified case we extend our analysis to homogeneous isotropic turbulence. In general, we found that the
pressure gradient force leads to a decrease in the settling velocity. This can be qualitatively understood by the
fact that this force prevents the particles from sweeping out of vortices, a mechanism known as preferential
sweeping which causes enhanced settling. Additionally, we found that the Basset history force can both increase
and decrease the enhanced settling, depending on the particle Stokes number. Finally, the role of the nonlinear
Stokes drag has been explored, confirming that it affects settling of inertial particles in turbulence, but only in a
limited way for the parameter settings used in this investigation.
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I. INTRODUCTION

Settling of particles occurs in many industrial and environ-
mental systems. Industrial examples range from spray paint-
ing, combustion engines, and wastewater treatment; see, for
example, Refs. [1,2]. Environmental examples are raindrops in
clouds, sedimentation, resuspension and transport of sand par-
ticles in rivers and estuaries, and plankton transport in oceans.
In these systems turbulence influences the particle dynamics
[3]. For example, it is well known that homogeneous isotropic
turbulence can enhance the settling velocity of particles, as
first shown by Wang and Maxey [4]. Many studies [5–8] have
been done, both numerically and experimentally, to investigate
this phenomenon in more detail. The mechanism proposed
for explaining enhanced settling is the preferential sweeping
effect [4]; see the schematic picture in Fig. 1. Suppose a heavy
inertial particle enters the vortex with clockwise circulation
on top. This particle will preferentially move clockwise while
being spun out of the vortex center. Due to the sweeping effect
it will leave the vortex, on average, at the downward-moving
side of it. A similar conclusion can be drawn when the inertial
particle enters a vortex with counterclockwise circulation.
Summarizing, particles are swept out of the vortices and, with
the help of gravity, tend to end up at the downward-moving
side of the vortices, thus promoting enhanced settling.

Most numerical studies on the behavior of (point) particles
in turbulence have only included the Stokes drag force and
the gravity force in the equations of motion describing the
particle dynamics and evaluating particle trajectories. This
combination of forces is considered adequate when studying
the behavior of particles or droplets with a particle-to-fluid
density ratio ρp/ρf , with ρf the fluid density and ρp the

particle density, above about 1000 (typical for droplets and
solid particles in air). On the other hand, for particles with
density ratios ρp/ρf � O(100) (which we call nonheavy
particles for convenience), this combination of forces is
not sufficient for a proper evaluation of particle trajectories
in turbulent flows [9–11]. For the case of these nonheavy
particles, more terms in the full Maxey-Riley equation need to
be retained [12]. The full Maxey-Riley equation includes, for
example, the pressure gradient force, added mass effects, and
the Basset history force. The implementation of these forces
makes the calculation more complex and computationally
more expensive. Advances in hardware computing power and
algorithm efficiency make the additional computational cost
associated with the evaluation of these forces (and particle
trajectories derived from them) more acceptable compared to
a decade ago [13–15]. Another subtlety is related with the
particle size compared to the Kolmogorov length scale η (or
the dissipation scale) of the turbulent flow. When the particle
radius becomes of the order of or bigger than 8η even the
Maxey-Riley equation (with Faxén correction [16–18]) is not
sufficient anymore; see also Ref. [19]. In this case one needs,
in principle, to conduct fully resolved simulations where both
the shape of the particle and the boundary layer around the
particle are fully resolved. A few recent examples concern
the settling of finite-size particles in homogeneous isotropic
turbulence by means of interface-resolved simulations [20,21].
Although this is, in principle, an accurate approach for this
purpose, it is computationally much more expensive than the
point-particle approach based on the Maxey-Riley equation.
Also the number of particles that can be simulated is greatly
reduced when conducting fully resolved simulations. In our
approach this will not be the case because we assume that the
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FIG. 1. Schematic picture of the trajectory of a settling particle
in homogeneous and isotropic turbulence. The blue and red circles
represent, schematically, vortices with clockwise (+) and counter-
clockwise (−) circulation. Due to preferential sweeping, particles
can obtain an enhanced settling velocity by preferentially selecting
flow regions with downward velocities.

particle radius a is sufficiently small, i.e., a � η. Therefore, a
large number of particles can easily be simulated (typically in
the order of 106 to 107). This is useful in order to explore a large
range of particle properties, yet obtaining enough statistics for
each particle type.

The paper is organized as follows. First, we start by
introducing the equations of motion for both the fluid and the
inertial particles. Second, we investigate a simplified system
where inertial particles are released and subsequently settle in a
two-dimensional flow, which consists of one basic vortex. This
represents a sort of “toy model” useful to elucidate the main
influences of the different hydrodynamic forces on settling
and serves as a building block for the full system consisting
of settling inertial particles in turbulence. Subsequently, we
discuss the influence of the Basset history force and of the
pressure gradient force, in the case of homogeneous isotropic
turbulence. Finally, we consider briefly the effect of the
nonlinear drag force, and we investigate how nonlinear drag
modifies (enhanced) settling of nonheavy inertial particles. We
conclude this paper with a brief summary of the main results.

II. EQUATIONS OF MOTION FOR FLUID
AND INERTIAL PARTICLES

We assume a very dilute dispersed phase with a small
total particle volume fraction φ, typically φ � 10−3. The
particle size is assumed to be small, i.e., smaller than the
smallest length scales in the flow, which, in the case of
homogeneous isotropic turbulence, is the Kolmogorov length
scale η. Under these conditions we can use one-way coupling
[22]. The particles are only influenced by the fluid, but
they do not disturb the fluid flow itself and do not interact
(hydrodynamically or otherwise) with other particles as well.
For the simulation of the flow we use an Eulerian approach. The
flow is computed using a standard pseudospectral code solving
the incompressible Navier-Stokes equations; see Ref. [23]
for some details. The pseudospectral code is fully based on
dimensionless variables. The computational box is (2π )3, and
periodic boundary conditions are applied. The flow is forced by
injecting (dimensionless) energy on the largest scales (smallest

wave numbers). The forcing algorithm inserts energy at a
constant rate; see also Lamorgese et al. [24].

For the particle phase we use a Lagrangian approach.
Particle trajectories in a Lagrangian frame of reference satisfy

dxp(t)

dt
= up(t), (1)

with xp(t) the particle position and up(t) its velocity. Accord-
ing to Maxey and Riley [12], the equation of motion for an
isolated rigid spherical particle in a nonuniform velocity field
u(x,t) is given by

mp

dup

dt
= 6πaμ(u − up) + mf

Du
Dt

− (mp − mf )gez

+ 1

2
mf

(
Du
Dt

− dup

dt

)

+ 3
√

3μamf

∫ t

−∞

du(τ )/dτ − dup(τ )/dτ√
t − τ

dτ

= FSt + FP + FG + FAM + FB. (2)

The equation of motion includes time derivatives of the form
d/dt taken along the particle path and the derivatives of the
form D/Dt taken along the path of a fluid element. The particle
mass is given by mp; a is the radius of the particle; μ =
ρf ν is the dynamic viscosity, with ρf and ν the density of
the fluid and its kinematic viscosity, respectively; mf is the
mass of the fluid element with a volume equal to that of the
particle; and ez is the unit vector in the opposite direction of
the gravitational force. The forces on the right-hand side of
this equation denote, respectively, the Stokes drag force, the
local pressure gradient force (over the particle diameter) in
the undisturbed fluid, the gravitational force, the added mass
contribution, and the Basset history force. For the latter, see
Refs. [25,26]. Although we stick here to the traditional kernel
derived by Basset [25] it should be mentioned that several
other kernels, which are found to depend on the type of flow,
are proposed in the literature; see, for example, the overviews
in Refs. [27,28].

Equation (2) is valid when a � η, although adding the
Faxén correction [16–18] will relax this condition somewhat;
see Sec. I. As in this study we did not consider Faxén
corrections, we will limit ourselves to small a. Furthermore,
the particle Reynolds number must also be small (Rep � 1) to
assume validity of the Maxey-Riley equation [12]. When Rep

becomes larger nonlinear effects are going to play a role, like
nonlinear Stokes drag, and lift forces. We will briefly discuss
the effects of the nonlinear drag in Sec. V.

We rewrite Eq. (2) as follows:

dup

dt
= 1

τp

(u − up) + 1

Rρ

Du
Dt

−
(

1 − 1

Rρ

)
gez

+ 1

2Rρ

(
Du
Dt

− dup

dt

)

+ 3√
2πτpRρ

∫ t

−∞

du(τ )/dτ − dup(τ )/dτ√
t − τ

dτ. (3)
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TABLE I. Conversion between density ratio Rρ and β; see also
Eq. (6). The list includes the three standard cases where the particle
density is much higher than the fluid density, where they are of similar
order, and where the fluid density is much higher than the one of the
particles.

Rρ ∞ 1000 100 10 2 1.2 1 0
β 0 0.0015 0.0149 0.1429 0.6 0.8824 1 3

Here, the two remaining parameters in the Maxey-Riley
equation are the particle response time τp = mp

6πaμ
= 2ν

9a2
ρp

ρf

and the particle-to-fluid density ratio Rρ = ρp

ρf
. This equation

can be rewritten by splitting up the added mass term,

dup

dt
= u − up

τ ∗
p

+ β
Du
Dt

− (1 − β)gez

+
√

3β

πτ ∗
p

∫ t

−∞

du(τ )/dτ − dup(τ )/dτ√
t − τ

dτ

= F∗
St + F∗

P + F∗
G + F∗

B, (4)

where

τ ∗
p =

(
1 + 1

2Rρ

)
τp = 3

3 − β
τp, (5)

β = 3

2Rρ + 1
. (6)

The relation between β and Rρ is also shown in Table I. If
the particle density is much higher than the fluid density, thus
for the limiting situation Rρ → ∞, Eq. (4) simplifies to the
classical expression for heavy particles, with only the Stokes
drag force and the gravity force remaining on the right-hand
side of Eq. (4). In this case, τ ∗

p = τp and β = 0. Decreasing
the density ratio the first term that starts to compete with the
Stokes drag force and the gravity force is the Basset history
force, as this force scales with

√
β. The importance of the

Basset history force for inertial particles in homogeneous
isotropic turbulence has already been shown by several studies
[10,11,29–31]. When decreasing the density ratio Rρ even
further, the pressure gradient force, which scales linearly with
β, also becomes important. Under these circumstances also
the relative importance of the Stokes drag force diminishes as
the effective relaxation time τ ∗

p increases.
In order to get accurate statistics in an efficient way the right

choice of the computational methods is crucial. To calculate
forces like the added mass and the Basset history force, also
the material derivative needs to be calculated, which calls for
highly accurate interpolation methods. The fluid velocity at the
particle center is efficiently calculated by using a sixth-order
B-spline interpolation method. This provides high accuracy
for both the interpolated quantity as well as for its derivatives
[32–34]. Next, the material derivative is calculated with the
method described by Van Hinsberg et al. [32]. The calculation
of the Basset history force is very time consuming, because the
total history of the particle trajectory needs to be considered.
This problem is addressed by using an exponential function

for the tail of the Basset history force [13]. In this way only
a limited number of time steps need to be taken into account,
reducing the total computation time for the evaluation of this
force by more than an order of magnitude. Improving the
accuracy of the numerical calculation of the Basset history
force has been an active field of research in the last decade
[13,14,35,36]. A recent review paper [15] concludes that the
method by Van Hinsberg et al. [13] gives the best balance
between computing time and accuracy.

The combination of these methods allows us to calculate
high amounts of particle trajectories with high accuracy and
efficiency. The high number of particles (typically in the order
of millions) are needed in order to cover the parameter range
of interest and to obtain well-converged statistics.

III. INERTIAL PARTICLES SETTLING THROUGH
A VORTICAL FLOW

In order to understand the influence of the different forces
on the settling of inertial particles in homogeneous isotropic
turbulence, we start by investigating a simple two-dimensional
system. A sketch of this system is displayed in Fig. 2. In
this system we consider a single vortex, centered at position
(x,y) = (0,0), with inertial particles released at y = L (thus
with a minimum distance L to the vortex centre) which
settle due to gravity. Many of these particles are initially
homogeneously distributed in the range −L � x � L. The
particle velocities are initialized with their terminal settling
velocity in a quiescent fluid:

Us = τ ∗
p (1 − β)g. (7)

When the particles reach the vertical location y = −3L, thus
about a distance 3L below the vortex, we check for each
of the particles the arrival time tf . This time is compared
with the time for particles settling with the terminal velocity
and the difference between the two is denoted as the delay time

FIG. 2. Setup for the study of the influence of the different
hydrodynamic forces on the settling of inertial particles in the vicinity
of a single isolated vortex. (a) Schematic setup of the flow domain,
where a single vortex is placed. We locate the origin of our coordinate
system at the center of this vortex. The particles start with their
terminal settling velocity on the top of the domain (at y = L). In
order to make sure that the particles are also in a force equilibrium
when leaving the domain, the domain is made longer in the y direction
(domain size of L above and 3L below the vortex). (b) Azimuthal
velocity vθ as a function of the distance r to the center of the vortex,
with ω0 = 1 and R = 1; see Eq. (9).
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�t , so

�t = tf − 4L/Us. (8)

By using different combinations of particle forces, we can
obtain a qualitative understanding of the influence of the
different forces on particle settling in the vicinity of a single
vortex.

In order to have a localized vortical flow field, a shielded
vortex, characterized by zero total circulation, with a smooth
velocity profile is chosen. Because the vortex is shielded it
must contain both positive and negative vorticity. Although
there are multiple possibilities for a smooth shielded vortex,
we have chosen one of the simplest cases. It is a Gaussian
vortex consisting of a core with positive vorticity surrounded
by a ring of negative vorticity. While the exact quantitative
results on particle settling will depend on the choice of the
vortex, this is not expected for the qualitative results we are
interested in. The velocity field of the Gaussian vortex used in
this study is given by

vθ (r) = ω0r

[
exp

(
− r2

R2

)]
(9)

[see Fig. 2(b)], and the vorticity field ω(r) is, according to the
definition ω(r) = 1

r
d
dr

(rvθ ), given by

ω(r) = 2ω0

(
1 − r2

R2

)
exp

(
− r2

R2

)
. (10)

Here, 2ω0 is the maximum vorticity (at r = 0) and R is the
typical radius (where the vorticity changes sign).

In order to fully characterize the particles in the system,
we need three dimensionless parameters. We use one of the
quantities Rρ or β together with

St∗ = τ ∗
p

τ
,

Sv∗ = Us

U
= τ ∗

p (1 − β)g

U
. (11)

For the Stokes number St∗, the particle response time τ ∗
p is

compared with a typical time scale τ of the flow. For the settling
number Sv∗ the terminal settling velocity Us is compared with
a typical velocity of the flow U .

We start with investigating the case of Rρ = ∞ or β = 0.
In this case τ ∗

p = τp and

St = St∗(β = 0) = τp

τ
,

Sv = Sv∗(β = 0) = Us(β = 0)

U
= τpg

U
. (12)

Furthermore, the particles are fully characterized by only two
dimensionless parameters, namely St and Sv and the particle
equations reduce to contain only the Stokes drag force and
the gravity force. For the characteristic time and velocity
scale we use τ = 1/ω0 and U = Rω0, respectively. During
the computation we use the following parameters: ω0 = 1,
R = 1, and L = 5. As a typical example, we show in Fig. 3 the
results (particle trajectories and delay time �t) for St = 0.5
and Sv = 0.2. From these results we can learn that most of
the trajectories result in a negative �t , in agreement with the
standard concept of enhanced settling induced by preferential

FIG. 3. Inertial particles with β = 0 settling in a stationary
velocity field induced by an isolated vortex with positive core
vorticity; see Fig. 2. The particle parameters are St = 0.5 and
Sv = 0.2. (a) Visualization of the inertial particle trajectories.
(b) Delay time �t of the particles (plotted as a function of the starting
position x) between the actual settling time compared with the time
needed for the particle when it falls with the terminal settling velocity
Us ; see Eq. (8).

sweeping [4]. Additionally, there is a stagnation point in the
field of particle trajectories just left of and above the vortex,
resulting in some particle trajectories giving a positive �t . It is
important to realize that there is no stagnation point in the flow
field itself and the existence of the stagnation point in particle
trajectories is caused by particle inertia. If one would average
�t over the different particles (basically integrating the delay
time �t , shown in the right panel of Fig. 3, from x = −L up
to x = L), it is not immediately clear in advance if the result
would be positive or negative as we have to take into account
the asymptote due to the stagnation point. However, we do
not start an investigation on the influence of this stagnation
point as it is not relevant when comparing it to the case of
homogeneous isotropic turbulence (although we should not
exclude the possibility that it might have some minor statistical
influence). In the case of homogeneous isotropic turbulence
such a stagnation point could only survive for a limited amount
of time as the flow removes such points almost immediately.
Moreover, any statistical analysis would require allocation of
these stagnation points in the course of time together with
sufficient events of these stagnation points to acquire sufficient
statistics. Therefore, we only consider a qualitative discussion
of the results of settling particles affected by a single vortex,
which will give meaningful insight into the effect of the
different forces on particle dynamics and (enhanced) settling.

To investigate the influence of the different hydrodynamic
forces, we consider an extreme case: Rρ = 1.2 with St∗ =
2 and Sv∗ = 0.4. Note that the radius of the particle is not
allowed to become too large, as it should be smaller than the
smallest length scale of the flow (in the single-vortex case we
only have the vortex radius R as a length scale). Figure 4(a)
shows the particle trajectories when all the forces are included.
Furthermore, the right panel in the figure shows the delay time
�t [see Eq. (8)] for different combinations of hydrodynamic
forces. From the trajectories it can be observed that some
particles can end up in stable orbits around the center of the
vortex. This cannot be observed when only the Stokes drag
force and the gravity force are active. When adding the pressure
gradient force this behavior emerges; the pressure gradient
force is directed to the center of the vortex, where the pressure
is lowest, thus counteracting outward motion due to inertia,
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FIG. 4. Inertial particles with Rρ = 1.2 settling in a stationary
velocity field [see Eq. (2)] induced by an isolated vortex with positive
core vorticity. The particle parameters are St∗ = 2 and Sv∗ = 0.4.
(a) Visualization of inertial particle trajectories. (b) The delay time �t

as a function of the starting position x when different combinations of
hydrodynamic forces are included, indicated by the different colors.
ST, Stokes drag force; G, gravity force; Press or P, pressure gradient
force; Basset or B, Basset history force.

making a stable orbit possible. The Basset history force, on
the other hand, decreases the chance of particles ending up
inside the vortex, which is nicely illustrated in Fig. 4(b), where
the width of the peak becomes substantially narrower when the
Basset history force is included (on top of the pressure gradient
force).

To conclude, we have seen that for heavy particles, with
β = 0, we find an enhanced settling for most of the trajectories.
Increasing β shows that this behavior can be either decreased
or increased by the other forces. The pressure gradient keeps
the particles longer inside the vortex (decreasing the settling
velocity), while the Basset history force can counteract this
behavior (thus increasing again the settling velocity). In the
next section we will compare the present observations from
our simplified toy model with results from the case of settling
particles in homogeneous isotropic turbulence.

IV. INERTIAL PARTICLES IN HOMOGENEOUS
ISOTROPIC TURBULENCE

The most important parameter characterizing homogeneous
isotropic turbulence is the Taylor-Reynolds number, defined
as Reλ = u2

r.m.s.

√
15/(νε). Here, ε is the dissipation rate,

u2
r.m.s. = 1

3 (〈u2
x〉 + 〈u2

y〉 + 〈u2
z〉) is the mean-squared velocity

of the turbulent flow, and 〈· · ·〉 denotes the spatial and time
average [all flow characteristics are represented in Table II;
note that all quantities are already in dimensionless form
(see Sec. II)]. The (dimensionless) Kolmogorov length is
η = (ν3/ε)1/4 = 0.019, which leads to kmaxη = 1.7, ensuring
sufficient resolution at small scales. Furthermore, we have put
different types of particles in the flow. Each type, denoted by

TABLE II. Dimensionless flow characteristics for the DNS of
homogeneous isotropic turbulence, with ur.m.s. the root-mean-square
velocity of the turbulent flow, ν the kinematic viscosity, ε the
dissipation rate, η the Kolmogorov length scale, τη the Kolmogorov
time scale, and Reλ the Taylor-based Reynolds number.

Domain size Grid points ur.m.s. ν ε η τη Reλ

(2π )3 2563 1.4 0.005 1 0.019 0.072 103

FIG. 5. The normalized enhanced settling velocity Ues/ur.m.s. of
inertial particles as a function of St∗ and Sv∗. Two density ratios are
shown: (a) Rρ = ∞ (i.e., β = 0; for this particular case St∗ = St and
Sv∗ = Sv) and (b) Rρ = 10. For Rρ = 10 not all Stokes numbers
have been simulated as the particle radius becomes bigger than the
smallest length scale in the flow, as a > η for St∗ � 1.

P , consist of 5120 inertial particles with the same physical
properties. In order to get sufficient statistics, we simulated
the flow with particles for 1000 large-eddy turnover times and
started measuring the statistics after 100 large-eddy turnover
times in order to discard the startup phase of the flow. In order
to quantify St∗ and Sv∗ with the definitions given in Eqs. (11)
and (12), respectively, we need a typical time and velocity
scale. We will use τη and ur.m.s., respectively, where τη is the
Kolmogorov time scale defined as τη = √

ν/ε.
We start again with investigating the case where Rρ = ∞ or

β = 0. We measure the enhanced settling velocity Ues , defined
as

Ues = 〈−up,z〉P − Us. (13)

Here up,z is the particle velocity in the z direction, Us is defined
in Eq. (7), and 〈· · ·〉P denotes an average over the inertial
particles belonging to one particular type P and over time.
In Fig. 5(a) the enhanced settling velocity relative to ur.m.s.

is shown as a function of St and Sv. Around St ≈ 1.5 and
Sv ≈ 0.5 we see a maximum in the enhanced settling velocity.
It turns out to be approximately 20% of the root-mean-square
velocity of the turbulent flow. In Fig. 6(a) we show the same
data but now the relative enhanced settling velocity Ues/Us .
The maximum occurs now for St ≈ 1.0 and Sv ≈ 0.1 and in
terms of the terminal settling velocity in a quiescent fluid the
increase is about 60%.

Next we decrease the density ratio to Rρ = 10; see right
panels in Figs. 5 and 6. Note that we have to make sure that
a < η; see discussion in Sec. II and Ref. [12]. Calculation of

FIG. 6. The relative enhanced settling velocity Ues/Us . In this
figure the same data set as in Fig. 5 has been used.
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FIG. 7. Relative enhanced settling velocity for different density
ratios (a) as a function of St∗ with Sv∗ = 0.4 (horizontal cut of
Fig. 6) and (b) as a function of Sv∗ with St∗ = 0.3 (vertical cut of
Fig. 6).

a/η gives

a

η
= 3

√
St∗

1 + 2Rρ

. (14)

So, in order to maintain a/η small enough, when decreasing
Rρ , we also need to decrease the maximum value of St∗

(see Figs. 5 and 6). It should be noted that our choice for
St∗ turns out to be somewhat conservative (upper bounds are
St∗ ≈ 2.3 for Rρ = 10, St∗ ≈ 0.6 for Rρ = 2, and St∗ ≈ 0.4
for Rρ = 1.2). From Figs. 5 and 6, one can observe that
the enhanced settling velocity is somewhat decreased for
Rρ = 10. The location of the maximum in (St∗,Sv∗) parameter
space is similar as for Rρ = ∞, and the maximum values
of the enhanced settling velocity are about 15% and 50%
for Ues/ur.m.s. and Ues/Us , respectively. Basically, it shows
a decrease of about one-fifth compared with the respective en-
hanced settling velocities of the heavy-particle case discussed
in the previous paragraph. In order to get a better view on
the effect of decreasing Rρ we take a horizontal and vertical
cut of Fig. 6, which is shown in Figs. 7(a) and 7(b), where
also results with Rρ = 100, 2 and 1.2 (only left panel) are
included.

From Fig. 7 we can clearly see that the enhanced settling
is reduced when lowering Rρ . This is in agreement with the
results for the single vortex case, where we see that the pressure
gradient force keeps the particles longer inside the vortices.
To investigate this in somewhat more detail, we explore the
influence of the contributions from different combinations of
hydrodynamic forces; see Fig. 8.

In Fig. 8 we illustrate the influence of the pressure gradient
force and the Basset history force (in four combinations)
on enhanced settling for Rρ = 100 and Rρ = 10. In the
case where Rρ = 100 the Basset history force is much more
important than the pressure gradient term (which has been
reported before for nonheavy particles in isotropic turbulence;
see Ref. [37]). Adding the pressure gradient force while the
Basset history force was already taken into account does not
change significantly the enhanced settling velocity over the full
range of St∗. As explained before, we expected this behavior
from the equations of motion; the Basset history force scales
with

√
β and the pressure gradient force with β. Furthermore,

the Basset history force can both increase and decrease the
enhanced settling velocity, depending on the value of the
Stokes number. For the case with Rρ = 100 [see Fig. 8(a)],

FIG. 8. Relative enhanced settling velocity is shown as a function
of St∗ with Sv∗ = 0.4 (horizontal cut of Fig. 6). The different
lines correspond to different combinations of hydrodynamic forces
(in particular, the pressure gradient force and the Basset history
force), in order to investigate the influence of these forces. Two
different density ratios are used, and shown in (a) Rρ = 100 and
(b) Rρ = 10.

the Basset force contributes to an increase of the enhanced
settling velocity for St∗ � 1.5 and to a decrease otherwise. In
the numerical experiment with the single vortex we already
observed that the enhanced settling velocity can be increased
by the Basset history force, but the turbulence simulations
clearly show that for smaller Stokes numbers a decrease is also
possible. This might be due to the suppression of the inertial
effects by the Basset force. Previous studies [37] have shown
for almost neutrally buoyant particles in isotropic turbulence
that both the Basset and the Stokes drag forces decrease the
relative velocity of the particles. These results are consistent
with those reported by Candelier et al. [38]. They show that just
neglecting the Basset force leads to an overestimation of the
ejection of nonheavy particles out of vortex cores. We expect
that this particular role of the Basset force will be reflected in a
slight shift to the right of the enhanced settling velocity curve
(as function of the Stokes number), as shown in Fig. 8(a) when
the Basset force is included.

As expected for Rρ = 10, see Fig. 8(b), the pressure
gradient force becomes more important as it significantly
affects enhanced settling even when added while the Basset
history force was already included. The pressure gradient force
decreases the enhanced settling velocity, as it forces particles
toward the center of a vortex, keeping them there for a longer
time.

V. THE INFLUENCE OF THE NONLINEAR DRAG FORCE

The Maxey-Riley equation, Eq. (4) in the form as we use
it, holds provided the particle Reynolds number Rep remains
small enough, basically Rep � O(1). For heavy particles in
turbulence this is confirmed by Wang and Maxey [4] and
also by Yang and Shy [39]. If the particle Reynolds number
becomes of order one, nonlinear effects become important. In
this section we are going to explore briefly the influence of the
nonlinear drag force in order to validate the results presented in
Sec. IV (i.e., to show that the relative contribution of nonlinear
drag to enhanced settling is limited for the parameter regime
under consideration). In order to investigate this behavior, we
use a slightly modified version of the equation of motion for
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FIG. 9. Relative enhanced settling velocity Ues/Ut . Both plots
are taken with Rρ = 100 and as functions of St∗ and Sv∗.
(a) Linear Stokes drag and (b) nonlinear Stokes drag. Although the
differences in the relative settling velocity between the plots are small,
the settling velocity itself changes more drastically, because Ut is
changed.

the particles,

dup

dt
= f

u − up

τ ∗
p

+ β
Du
Dt

− (1 − β)gez

+
√

3β

πτ ∗
p

∫ t

−∞

du(τ )/dτ − dup(τ )/dτ√
t − τ

dτ, (15)

where the factor f is included to account for nonlinear
drag effects. Several empirical drag laws are available in the
literature, among those the nonlinear drag law proposed by
Schiller and Neumann [40],

f = 1 + 0.15Re0.687
p , (16)

which is appropriate for particle Reynolds numbers up to
800 [41]. We will use Eq. (16) if we refer to the case of
nonlinear drag and f = 1 in case of linear drag. Note that
by introducing the nonlinear drag the terminal velocity also
changes; therefore, we introduce Ut as the actual terminal
velocity (used for the relative enhanced settling velocity),
while we keep the definition of Us the same as in Eq. (7) (used
for the definition of St∗ and Sv∗). So, in case of nonlinear drag,
Ut can be calculated by solving the equation[

1 + 0.15

(
2a

ν
Ut

)0.687]
Ut = τ ∗

p (1 − β)g, (17)

and in the case of linear drag Ut = Us because a → 0 for
f = 1. Because of this we start by investigating the case of
Rρ = 100 and not Rρ = ∞ as in the case Rρ → ∞ also a

η
→ 0

[see Eq. (14)], and nonlinear drag is absent.
From Fig. 9 we can observe that the relative enhanced

settling velocity has not changed much by introducing the
nonlinear drag force. In absolute terms the enhanced settling
velocity has decreased significantly due to the nonlinear drag
force; hence, f > 1. In Fig. 10 we show horizontal and vertical
cuts of Fig. 9 (and added also results for other values of Rρ).
In Fig. 10(b) we observe a slight decrease of the enhanced
settling velocities for small Sv∗ when nonlinear effects are
included. However, for high gravity, Sv∗ � 1, and low density
ratios, here Rρ = 2, we observe a relatively large increase in
the enhanced settling velocity due to nonlinear effects. This
should be considered with care and could be due to the specific
definition of St∗ and Sv∗ (and is possibly an artifact).

FIG. 10. Relative enhanced settling velocity for different density
ratios. The solid lines are obtained excluding the nonlinear drag, while
the dashed lines include the nonlinear drag. For Rρ = ∞ the dashed
and solid lines are exactly the same (here, a

η
→ 0 resulting in the

linear drag regime). (a) Ues/Ut as a function of St∗ with Sv∗ = 0.4
(horizontal cut of Fig. 9), and (b) Ues/Ut as a function of Sv∗ with
St∗ = 0.3 (vertical cut of Fig. 9).

In conclusion, although the influence of the nonlinear drag
on the absolute value of the settling velocity is substantial, on
the relative enhanced settling velocity it is small.

VI. CONCLUSION

We investigated the influence of different forces acting on
settling particles in homogeneous and isotropic turbulence.
We showed that the Maxey-Riley equation can be rewritten
in a form where we have only the Stokes drag force, the
pressure gradient force, gravity, and the Basset history force.
The relative influence of the pressure gradient force and the
Basset history force becomes more important when decreasing
the particle-to-fluid density ratio Rρ . Furthermore, the influ-
ence of the different forces on the settling velocity in the case
of homogeneous isotropic turbulence is also reflected by the
following observations. For Rρ = 100 the Basset history force
is much more important than the pressure gradient force. The
Basset history force increases the enhanced settling velocity
for high Stokes numbers but decreases it for smaller Stokes
numbers. Second, the pressure gradient force only decreases
the settling velocity by keeping the particles longer inside
the vortices, as illustrated by the single vortex case. The
decrease is mostly observed for Rρ = 10 and lower. Finally,
although the nonlinear drag force is important for the absolute
value of the settling velocity, it is less important for the
relative enhanced settling velocity for the current parameter
settings.
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