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Periodic orbits in tall laterally heated rectangular cavities
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This study elucidates the origin of the multiplicity of stable oscillatory flows detected by time integration in
tall rectangular cavities heated from the side. By using continuation techniques for periodic orbits, it is shown
that initially unstable branches, arising at Hopf bifurcations of the basic steady flow, become stable after crossing
Neimark-Sacker points. There are no saddle-node or pitchfork bifurcations of periodic orbits, which could have
been alternative mechanisms of stabilization. According to the symmetries of the system, the orbits are either
fixed cycles, which retain at any time the center symmetry of the steady flow, or symmetric cycles involving
a time shift in the global invariance of the orbit. The bifurcation points along the branches of periodic flows
are determined. By using time integrations, with unstable periodic solutions as initial conditions, we determine
which of the bifurcations at the limits of the intervals of stable periodic orbits are sub- or supercritical.
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I. INTRODUCTION

Thermal convection in enclosed cavities with either vertical
or horizontal heating has long been studied because of
its relevance in industrial applications, for instance, in the
successful liquid encapsulated growth of single crystals [1].
Convective motions must be damped in order to maintain the
melt as steady as possible and avoid the growth of perturbations
leading to transitions to time-dependent flows [2]. Other
examples of the interest of this problem are the design of
large-scale laser systems in order to minimize the optical
distortion due to the buoyancy-driven flow [3] or the optimal
heating or cooling and isolation of buildings.

The initial convective flow, in rectangular laterally heated
cavities, consists of a single steady vortex, which fills the
domain. The first instability of this flow breaks its center
symmetry for any aspect ratio I (defined in this work as the
ratio of the height of the box, 4, to the width, d). However
the source of instability leading to time periodic dynamics is
different depending on this parameter, so the frequencies of the
bifurcated solutions are also very different. The first oscillatory
motions, in the case of air (Prandtl number Pr = 0.71) and
1 < T' < 3, are due to the instability of the detached flow from
the boundary layers near the corners of the box. It gives rise to
internal waves. In contrast, for 4 < I' < 8 the first bifurcation
of the steady state leads to the appearance of traveling waves
in the boundary layers with frequencies ten times higher than
those of the internal waves. In the range 2.8 < T' < 4 the first
branch of steady solutions is double-folded and both types of
time-dependent dynamics can coexist. For more details see
Ref. [4] and references therein.

The transition from the steady flow to periodic solutions
has been studied by several authors, mainly for I' < 8, either
by using time integration, as for instance in Ref. [5], or by
computing the stability of the fixed points obtained by continu-
ation methods (see Refs. [4,6-9], among others). In Ref. [6] an
enclosure of I' = 1/4 filled with a liquid metal was considered,
and the influence of different boundary conditions and Pr on the
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onset of the oscillations was analyzed. A thorough description
of the steady states of the convective flows of low Pr, for
1/11 < T" < 1, including the stability regions, was given in
Ref. [7]. On the other hand, three-dimensional computations
of the first instability were presented in Ref. [9]. Several boxes
of 1/5<TI <1/2 and 1/6 < TI'y <1 and Prandtl numbers
in the range 10~7 < Pr < 0.03 were considered. The aspect
ratios were definedas I' = h/d and Iy = h/L,, L, being the
depth in the transverse direction. It was shown that, at low Pr,
the type of transition (steady or oscillatory) depends on the size
of the box and on the symmetries broken at the bifurcation.

Some direct numerical simulations analyzing the routes
from periodic flows to chaos have been published recently. A
complete description of the transition to turbulence is given
in Ref. [10] for air-filled 2D containers of I' = 2, under
a dynamical systems point of view. Two main routes that
gradually break the symmetries of the solutions as sets were
found. Finally, for Rayleigh numbers higher than 10® the two
paths collide, and a single hyperchaotic attractor with restored
global symmetry is attained. The three-dimensional dynamics
of air between two vertical parallel planes at distance d, with
spatial periods £ and L, in height and depth, respectively, was
studied in Ref. [11] forI'y = L, /d =1 and "' = h/d = 2.5.
It was found that, as the Rayleigh number, Ra, was increased,
a sequence of period-doubling bifurcations led to chaos. An
intermittent orbit visiting two unstable symmetric solutions
was detected for higher Ra.

Numerical simulations in tall laterally heated rectangular
domains showed the coexistence of various branches of
periodic orbits (POs), origin of which was guessed in Ref. [4]
from the comparison of the critical eigenfunction of the steady
solutions at the bifurcating points with the spatial and temporal
structure of the periodic orbits. The present paper focuses
on the computation of the branches of periodic flows by
continuation methods and on the location of the limits of
their regions of stability by computing the leading Floquet
multipliers. For this purpose a cavity of I' = 8 filled with air is
considered. This problem was proposed as a benchmark to test
different time integration codes in the First MIT Conference on
Computational Fluid and Solid Dynamics in June 2001. The
contributions by several authors were published in a special
issue of the International Journal for Numerical Methods i
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Fluids (see Refs. [3,8,12—15], among others). To compare the
results several point data, temporal and spatial time averages,
and fluctuations with respect to the mean values of the velocity,
vorticity, pressure differences, and temperature were supplied
by the contributors, in addition to the period, mean heat flux
transport on the lateral boundaries, or a metric to measure the
loss of the center symmetry of the temperature field, although
the full description of the solutions of this problem remained
open. For example, it was not clear if the multiple stable POs
appear after the stabilization of unstable ones via saddle-node
or symmetry-breaking bifurcations.

The physical interest of the two-dimensional (2D) ap-
proximation is not worthless. As shown in Ref. [16] the
internal core of the fluid remains, in general, almost stably
stratified. The onset of time-dependent flows is bidimensional
for boxes of large aspect ratios if there is enough space in the
periodic transverse direction and is nearly 2D when I" < 7. For
instance, in the latter case, and enforcing transverse periodicity,
only very low amplitude and frequency structures travel in this
direction before the boundary layer instability arises.

Continuation methods have several main advantages versus
more usual time-dependent simulations. The critical parame-
ters corresponding to the threshold are only affected by the
truncation error. They are obtained faster than if they are
inferred from the transients of the time integrations, especially
when oscillatory flows are involved. Another advantage is that
the computation of unstable branches of orbits allows one to
understand more easily the transients among branches and the
origin of some stable flows found by time evolution.

The remainder of the paper is organized as follows. The
equations, their numerical treatment, and the testing of the
codes are discussed in Sec. II. Section III contains a brief
revision of the stability of the basic steady solution and of
the symmetries of the eigenfunctions, extending previous
results. The periodic flows bifurcated from the branch of
steady solutions, and computed by means of continuation
methods, are described in Sec. IV. Their stability is analyzed
in the same section determining the bifurcation points where
quasiperiodic flows arise. Some characteristics of the two-
and three-frequency solutions are also studied. The paper
concludes in Sec.V with a summary of the results obtained.

II. MATHEMATICAL FORMULATION

The thermal convection of a fluid of Prandtl number Pr =
0.71, filling a rectangular cavity, €2, of aspectratio I' = 8, with
a nonslip boundary is studied. The side walls are maintained
at uniform temperatures, the left higher than the right. The
top and bottom walls are insulating, and the fluid is subject
to a vertical gravity, g = —gj, j being the unit vector pointing
upwards.

The Boussinesq approximation of the mass, momentum,
and energy equations is used. They are nondimensionalized by
taking the width of the box, d, the difference of the temperature
between the left and right sides, A7 > 0, and d? /K, k being
the thermal diffusivity, as distance, temperature, and thermal
time scales, respectively. In nondimensional units 2 = [0,1] x
[0,T].

Let x and y be the horizontal and vertical coordinates,
respectively. The system is written by splitting the temper-
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ature as 7 (x,y,r) = (1 — x) + ©(x,y,?), in order of having
homogeneous boundary conditions on the vertical walls. It
follows that

V.v=0, (1)
0 +v-V)v=—-Vrg 4+ PrAv+ RaPr(—x + )y, (2)

B, +Vv-V)O = A® +u, A3)

where v = (u,v) is the velocity field, and the gradient of
w=(p/po) + (1 +aTy—aATd?/k?)gy gives the modified
pressure term, which includes two terms coming from the
Boussinesq approximation, and the last from the splitting of
the temperature. The constant « is the thermal expansion
coefficient, and py is the constant density at the reference
temperature 7.
The problem depends on the Rayleigh and Prandtl numbers
defined as
agATd? v
Rai=—— and Pr=—,
KV K
where v is the kinematic viscosity. The former, which is
proportional to the difference of temperature between the
lateral walls, will be the control parameter.
The boundary conditions for the velocity and temperature
fields are

v=0on 92, ®=0o0nx=0,1, and 4)

0,0 =0o0ny=0,. (®))

Equations (2) and (3) are rewritten in terms of a stream
function, v, related to the velocity field by v = (d,, — dx¥).
They become

Ay — J(W,A¥) = PrA®y + RaPr(1 — 3,0),  (6)

0,0 — J(¥,0) = AO + 9,V, @)

with J(f,g) = 9, fdyg — 9, fd,g, and the boundary condi-
tions are

Y =0,¢Y =0o0n y=0,T,
and ¥ =0,y =0 on x =0,1, (8)
®=0onx=0,1, and 9,0 =00n y=0,I". (9

In this way the incompressibility condition is identically
fulfilled, and the number of unknowns is reduced.

System (6)—(9) is 2, equivariant. It remains invariant under
the center symmetry:

S:(tx,y,¥,0)— (t,1—x,I —y, ¥, —0O). (10)

Assaid in Sec. I, the basic flow of this system is a single vortex,
which fills the domain [see Fig. 1(a)]. It is invariant by S, i.e.,

I/f(fvl_x,r—)’)=\”(t»x»)’)’ (11)

O, 1 —x,I —y) = —O(t,x,y), (12)
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FIG. 1. (a) Stream function, v, and temperature, 7, of a stable steady flow at Ra = 306 147.31, and stream function and perturbation of
the temperature, ®, of the real part of the critical eigenfunctions at the (b) first, (c) second, (d) third, (e) fourth, (f) fifth and (g) sixth Hopf
bifurcation points on the steady branch of solutions. Online, red means positive (hot) and blue negative (cold).

which also means

u(t,1 —x,I' —y) = —u(t,x,y), (13)
v(t,1 —x,I' —y) = —v(t,x,y). (14)

This symmetry is broken at some of the Hopf bifurcations
found on the branch of steady flows.

To obtain the numerical solutions, the functions ¥ and ®
are approximated by a pseudospectral collocation method on a
mesh of n, horizontal and n,, vertical Gauss-Lobatto points. A
resolutionof n, x n, = 40 x 140 was used. This means a total

of 11200 degrees of freedom. However, in the preliminary
tests of the code, other grids were also used to ensure that
40 x 140 points were enough to attain a dynamics independent
of the mesh size. The spatial operators are then transformed
into matrices operating on the values of the functions at
the collocation mesh points. Their actions are calculated by
means of matrix-matrix products using a high-performance
implementation of the DGEMM subroutine of the BLAS library
[17]. The stiff system of ordinary differential equations
obtained after the spatial discretization is integrated by
means of high-order semi-implicit backward-differentiation-
extrapolation formulas as described, for instance, in Ref. [18].

023102-3



MARTA NET AND JUAN SANCHEZ UMBRIA

The branches of steady and periodic solutions were cal-
culated by means of continuation methods based on the
Newton-Krylov techniques proposed in Refs. [19-21], with the
linear systems solved by iterative methods. Let X = (v;;,0;;)
be a vector containing the values of ¢ and ® at the collocation
points and ¢(#,X,Ra) be the solution of the discretization of
the system (6)—(9), at time ¢, for an initial condition X at
t = 0, and for a fixed value of the parameter Ra. A point X on
a periodic orbit and its period T are solutions of the system

X — (T, X,Ra) = 0,
f(X)=0,

where f(X) =0 is a phase condition which selects one of
the points on the periodic orbit. We have used a Poincaré
condition, i.e., the equation of a hyperplane normal to the
previously computed cycle. The system defines, by letting Ra
be a free parameter, a curve of solutions to which continuation
methods are applied. As a by-product, one obtains a method to
compute equilibria. They are solutions of X — ¢(T,X,Ra) =0
for any value of 7', which is now a parameter to be fixed. A
characteristic time of the problem can be used. In our case
it was of the order of the period of the POs of the problem.
The phase condition is now not required. In this way the need
to write two different codes for fixed points and POs, and
the requirement of a good preconditioner to accelerate the
convergence of the linear solver in the case of equilibria are
avoided.

III. STEADY FLOW AND ITS STABILITY

The branch of steady flows was first computed up to
Ra = 6 x 10%. Since convection is present for any value of
Ra, no matter how small, the continuation was started with the
trivial state, ¥ = 0 and ® = 0, for Ra = 0. The steady flow
loses stability in a Hopf bifurcation at Ra = 306 192.6. In order
to check the code, the critical parameters for the appearance of
oscillatory flows were compared with those given in Ref. [15],
where primitive variables to formulate the problem and a
code for the continuation of fixed points were used. Some
of them are shown in Table I. They were found by inverse
polynomial interpolation of degrees from 1 to a maximal value
which oscillates from 4 to 10, depending on the position of
the bifurcation points. To facilitate the comparison, all the
frequencies are expressed in thermal units taking into account
that wys = ~/RaPrwy o, where the subscript N § refers to the
adimensionalization of the present paper and X Q to that of
Ref. [15]. With any of the two resolutions shown, the relative
errors of the critical Rayleigh numbers, Rai.,i =1,2,3, and
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frequencies !, i = 1,2, are below 0.01%, and only w? differs
by 0.5%. The critical eigenfunctions at these points have
also been compared and can be seen in Ref. [15] and in
Figs. 1(b)-1(d). Figure 1(a) shows the contour plots of
(left) and 7 (right) of the steady solution at Ra = 306 147.31.
The next three pairs correspond to the real part of the critical
eigenfunctions at the first three bifurcations. The left and right
plots of each pair show i and ®, respectively.

Seven more Hopf bifurcations have been detected up to
Ra = 6 x 10°. The next three are located at Ra} = 368 936.3,
Rai =413526.3, and Raf = 466369.1, with frequencies
w? = 1063.4903, w2 = 1189.4200, and w® = 1329.6705. The
corresponding eigenfunctions are shown in Figs. 1(e)-1(g). As
can be seen, the second, fourth, and sixth bifurcations keep the
center symmetry of the steady flow, and the bifurcations give
rise to the appearance of POs that are symmetric at any instant
of time (F-cycles). The first, third, and fifth bifurcations are
antisymmetric, and the bifurcated branches of POs retain the
following spatiotemporal symmetry:

v, —x, —y)=v@t+T/2,x,y), (15)
ot,1—x,T —y)=-0¢+T/2,x,y), (16)

which also means

u(t,1 —x,I' —y)=—u(t+T/2,x,y), 17
v(it, 1 —x, —y)=—v(t +T/2,x,y). (18)

These orbits are said to be symmetric cycles (S-cycles).

The spatial structure of the eigenfunctions consists of
vortices of width not larger than d/2, attached to the lateral
walls. Their number depends on the eigenfunction. For each set
of eigenfunctions sharing the same symmetry, it increases with
the corresponding Ra,. By comparing the contour plots of the
left Figs. 1(b), 1(d), and 1(f) on the one side and Figs. 1(c), 1(e),
and 1(g) on the other, it can be seen that the additional vortices
appear in the center of the cavity, and they are weak. By looking
at how they evolve during the critical period T, = 27 /w,, it is
seen that they grow as they travel upwards on the left side and
downwards on the right. When they reach the corner they slow
down, and their intensity diminishes. Therefore, the instability
of the steady flow gives rise to oscillations of small amplitude
that propagate in the thin lateral boundary layers, upwards near
the hot wall and downwards near the cold one. The number of
wavelengths on each side is given by the number of pairs of
vortices of the eigenfunction.

TABLE I. Comparison of the critical Rayleigh number and frequency of the first three Hopf bifurcations found on the basic branch of
steady solutions with those reported in Ref. [15]. The parameters are Pr = 0.71 and I' = 8, and the frequencies are expressed in thermal units,

d*/k.

Ny X Ny Ra,' o] Ra,? w? Ra? w?
XQ02 32 x 120 306 180.6 796.8574 311 164.6 862.4621 333 899.6 957.3020
NS16 32 x 128 306 199.1 796.8833 311 176.2 862.4814 333 908.6 953.4198
XQ02 40 x 140 306 191.6 796.8732 311 169.8 862.4722 — -
NS16 40 x 140 306 192.6 796.8746 311 170.2 862.4730 333 899.4 953.4063
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TABLE II. For i =0, critical Rayleigh number, Ra? x 1073,
and frequency, w?, of the points where the POs bifurcate from the
steady state. The capital letters S or F beside the corresponding
values state if the POs arising from this point are S-cycles or
F-cycles, respectively. For i =1,....9, Rai. x 1075 and argument
of the multiplier of positive imaginary part, 6!, at the bifurcation
points of the branches of POs. The symbols (e/0) indicate whether
the critical multiplier gets in or out of the unit circle, respectively.

i/Branch First Second

0 (3.0619, 796.875) S (3.1117, 862.473) F
1 (3.3041, 0.464 73) o (3.1296, 0.430 48)
2 (3.6271,0.901 92) o (4.0436, 0.406 36) o
3 (4.0219, 1.295 87) o (4.1017,0.82291) o
4 (4.2913, 1.682 54) o (4.3193,1.22987) o
5 (4.7206, 2.033 23) o (4.5202, 1.650 50) o
6 (5.1987, 2.409 26) o (4.9887, 2.104 66) o
7 (5.9614,2.799 64) o (5.1067,4.308 90) o
8 (5.1827,3.141 59) o
9 (5.2156,2.785 89) o
i/Branch Third Fourth

0 (3.3390, 953.406) S (3.6894, 1063.49) F
1 (3.4098, 0.80539) o (3.8052, 1.125 36)
2 (3.4450,0.39057) o (3.8641,0.753 26)
3 (5.3385,2.97307) o (3.9003,0.35041)
4 (5.6356,2.673 61) o (4.7024, 1.256 49) o
5 (5.6390, 2.387 47) o (5.0012, 1.688 81) o
6 (5.8189, 2.057 50) o (5.4945,2.165 62) o
7 (5.7234,3.141 59) o
8 (5.9320,2.20893)
i/Branch Fifth Sixth

0 (4.1353,1189.42) S (4.6637, 1329.67) F
1 (4.2601, 1.397 30) o (4.8069, 1.612 26) o
2 (4.4056, 1.061 44) o (5.0218,1.32725)
3 (4.4181,0.708 99) o (5.0424, 0.301 56)
4 (4.4484,0.32045) o (5.0654,0.67773) @
5 (4.8012, 1.140 20) o (5.2305,1.38284) o
6 (4.8812,1.51345) o (5.5935,1.786 11) o
7 (5.2094, 1.938 42) o (5.8085, 2.165 65) o
8 (5.4450, 2.346 16) o (5.9314,2.51597) o
9 (5.7200, 2.731 54) o

IV. PERIODIC ORBITS AND THEIR STABILITY

As said before, the stable and unstable POs are computed
by Newton-Krylov continuation methods. Their stability is
analyzed by means of the ARPACK package, based on Arnoldi
algorithms (see Ref. [22]). The leading spectra (Floquet mul-
tipliers of largest modulus) are calculated from the bifurcation
points up to Ra = 6 x 10° or to Ra values from which some
multipliers seem to separate definitively from the unit circle
(see the last value of each branch in Table II). The bifurcations
found are of the Neimark-Sacker type, except two of them
which are period doublings (see below for more details).

Figure 2 shows a bifurcation diagram of the POs emerging
at the Hopf bifurcations of the steady solutions. A schematic
diagram illustrating the connections between unstable POs and
the final stable states is also included later in this section. The
periods on each branch of POs, T;, fori = 1, ... ,6, are plotted
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FIG. 2. Period, T, versus the Rayleigh number, Ra, of the first six
branches of POs bifurcating from the steady state. Solid lines mean
stable solutions and dashed lines unstable. The solid circles and the
corresponding labels indicate the points where the POs stabilize (is)
and destabilize (id),i =1, ...,5.

versus the Rayleigh number, Ra, starting at the critical points.
The top (black online) curve is the first bifurcated branch,
and the bottom (brown online) curve is the sixth. Solid and
dashed lines mean stable and unstable solutions, respectively.
Only the first branch of periodic solutions is stable from the
bifurcation point. Each one of the following has, initially, a
pair of complex-conjugate multipliers outside the unit circle
more than the preceding branch. This means, for instance,
that the sixth branch has, at its origin, five pairs of unstable
multipliers. However, from the second to the fifth branch, they
are very close to the unit circle, and when Ra is increased
they move back and stabilize the orbits. The initial unstable
segment of the second curve (red online) is so short that it
cannot be clearly seen in the figure. Figure 3 contains some
spectra of cycles on the fifth branch, illustrating the evolution
of the multipliers. They remain so close to the unit circle that
it is difficult to see in the plots if some of them are inside or
outside. Therefore, the multipliers that are outside are marked
with solid circles (and red online). The spectrum of Fig. 3(e)
corresponds to a stable solution.

The rows of Table II labeled i = 0 contain the critical values
of the bifurcation points where the POs arise and their type of
global symmetry (see table caption). The other rows show the
critical Rayleigh numbers, Rai x 1073,i =1,...,6, and the
argument of the critical multipliers of positive imaginary part,
6!, at the bifurcation points found on the branches of Fig. 2,
in the above mentioned range. solid and empty circles beside
a pair (Ra’, 67) mean that the critical complex multipliers get
in or out of the unit circle, respectively. Therefore, the second,
third, fourth, and fifth branches stabilize at 3.1295 x 10°,
3.4450 x 10°, 3.9003 x 10°, and 4.4484 x 10°, respectively,
and are stable up to 4.0436 x 10°, 5.3384 x 10°, 4.7024 x
103, and 4.8012 x 10°. The sixth branch does not become
stable because only the first four pairs of Floquet multipliers
enter the unit circle. The second in crossing is the first that
increases its modulus and crosses out again. Notice also that
the phase of the eighth critical multiplier on the second branch
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FIG. 3. One hundred fifty first Floquet multipliers of orbits taken
on the fifth branch of POs at (a) 424 068.51, (b) 438 800.39, (c)
440 855.31, (d) 442 859.91, (e) 446 238.27, and (f) 500 000.00. The
solid circles (red online) indicate the multipliers that are outside the
unit circle (solid black curve).

of POs, and the seventh on the fourth, is 7. This means
that they are real and cross the unit circle by —1; therefore
these transitions are the only two period-doubling bifurcations
found. According to bifurcation theory, S-cycles cannot have
a simple multiplier © = —1 (see Ref. [23]).

The first branch is stable only up to 3.3041 x 10°. It was
checked that the stable periodic orbit calculated in the MIT
Conference (see the Introduction) for 3.4 x 10° belongs to the
second branch of Fig. 2, by comparing the averaged heat flux
transport,

1 T r
0,7]=— 0,7 dydt, 1
[0, 7] TF/O /0 ydt (19)

across the vertical section x = 1, and the period of the
orbit of the benchmark with those of Fig. 2. It was found
that [0, 7 ],—; = 4.579460 and T = 6.943 542 x 103, which
agree very well with the values of Table III of Ref. [3], mainly
with those of the last row corresponding to the calculations
by S. Xin and P. Le Quéré, considered by the authors
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of the comparison as the reference solution. The maximal
deviations found for [0, 7 ],_; and T, with respect to the results
contributed by the participants in the study, are 2% and 4%,
and the minimal deviatons are 0% and 1073%, respectively.

Figure 4 shows a time evolution of a stable symmetric
periodic solution during a period 7 (see also Ref. [24]).
Contour plots separated by 7/2 are related by the center
symmetry defined by Eqgs. (15) and (16), for instance, those
correspondingtot = Oand 7/2,t = T /8 and 5T /8, and so on.
As said before the periodic flow consists of the propagation of
a wave of small amplitude in the boundary layer, upwards on
the left side of the domain, and downwards on the right. The
vortices and cells generated in the middle of the box deform
the boundary layer, but since they weaken near the corners the
hottest and the coldest fluid do not mix much. The advection
transports small bubbles of cold and hot fluid upwards and
downwards, but the thermal diffusivity is large enough to
homogenize the temperature with that of the surrounding
before the bubbles turn to the other side and start to descend
dragged by the general circulation. In this way the nearly
horizontal stratification of the steady state is only slightly
perturbed.

The first five branches of POs of Fig. 2 stabilize and
destabilize via Neimark-Sacker bifurcations. The appearance
of a second frequency generates in the flow a modulation of
the wave traveling along the boundary layer. Its amplitude,
extent, and wavelength depend on the branch of POs and the
secondary bifurcation considered. To try to find out if these
bifurcations are sub- or supercritical, i.e., if the emerging
quasiperiodic flows are stable or unstable, system (6)—(9)
was integrated with initial conditions selected very near the
bifurcation points, until the trajectories reached an attractor.
Then the frequency of the initial periodic orbit was compared
with the frequency(frequencies) of the final solution. The
connections between the initial and final states are indicated
by vertical arrows in the sketch of the bifurcation diagram
of Fig. 5. The bifurcations labeled as 1d, 2d, 4s, Ss, and
5d in Fig. 2 are subcritical. In the first case, taking as
initial conditions unstable POs at Ra > 3.31 x 10°, stable
POs of the second branch are reached after a transient. The
same occurs in the second case (2d), for Ra 2 4.05 x 109,
the final states being stable POs of the third branch. If an
initial condition is taken at Ra = 389 814.62, before point
4s, a stable quasiperiodic orbit of frequencies v; = 174.54
and v, =9.7847 is reached. The first frequency is very
close to that of the periodic orbit at the bifurcation point,
therefore the bifurcation must be subcritical. The same
happens if initial conditions are taken at Ra = 444759.95,
near bifurcation 5s. The frequencies of the stable quasiperiodic
orbit are now v; = 197.26 and v, = 10.089. Finally, the time
integration with an initial condition at Ra = 481 898.16, after
the point 5d, converges to a three-frequency torus bifurcated
from the fourth branch. The frequencies are v; = 196.78,
vy = 39.006, and v; = 1.8437. On the other hand, the time
integrations of unstable POs near points 3d and 4d lead to
the corresponding bifurcated stable quasiperiodic orbits, and
those of unstable POs before points 2s and 3s lead to the
stable first and second branches of POs, respectively, so both
bifurcations give rise to unstable supercritical quasiperiodic
orbits.

023102-6



PERIODIC ORBITS IN TALL LATERALLY HEATED ... PHYSICAL REVIEW E 95, 023102 (2017)

FIG. 4. Snapshots of the stream function (upper row) and the temperature of a stable S-cycle of the third branch of Fig. 2, taken at
t=0,7/8,...,7T/8, T.Ra=5 x 10°. Dark grey means minimal values of ¢ and extreme values of 7. (Online, dark blue means minimal
values of i, and red/blue means hot/cold fluid).

According to equivariant dynamical systems theory [23], tori, then so is SX. To check this and what happens with
the tori arising from the Neimark-Sacker bifurcations of the the stable three-frequency tori (see Fig. 5), we proceed as in
F- or S-cycles are invariant by the original symmetry S of  Refs. [25,26]. A trajectory is started with an initial condition
Egs. (6)—(9). This means that if X is a point on one of these X(0) on a torus, obtained after eliminating the transients
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FIG. 5. Sketch of the bifurcation diagram. It shows the type of
Neimark-Sacker bifurcations (sub- or supercritical) found when the
POs lose or gain stability. The lower curve corresponds to the branch
of equilibria from which the POs arise. The label EQ means equilibria,
and T2 and T3 mean two- and three-frequency tori, respectively.
The vertical arrows indicate the connections between unstable initial
conditions and their final states.
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FIG. 6. (a)Relative distances of the transformations Z (black lines
online) and S (red dotted lines online) of an initial condition, X (0),
on a torus, bifurcated from the fourth branch of POs, to a generic
point of the trajectory X(¢) for Ra = 485 000. (b) Detail of the FFT
of a component of the trajectory.
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FIG. 7. Same as Fig. 6 but for a three-torus at Ra = 500 000.

by a long time integration. The relative distance functions
dt) = ||LXO0) — X()|I/IIX(@®)| are then computed for the
linear transformations £ = 7, 7 being the identity,and £ = S.
They are represented in Fig. 6(a) with solid and dotted lines
(black and red online), respectively, for values below 0.01,
and for a two-dimensional torus at Ra = 485 000. It bifurcates
from the segment of stable POs of the fourth branch (see
Table ITand Figs. 2 and 5). A detail of the fast Fourier transform
(FFT) of one component of the trajectory is shown in Fig. 6(b).
The first plot indicates that the torus is invariant with respect
to the symmetry S since the dotted line (red online) peaks
near zero every At &~ (.52 thermal units. More precisely, time
intervals oscillating between 0.511 and 0.526 were found. This
is also the time between visits to the initial condition (black
lines). All the peaks of frequencies f; of Fig. 6(b) satisfy
relations of the form kY f; = k!v; + k?vp, with vy = 196.92
and v, = 1.9107 and integers k", k!, and k2. The inverses of the
two basis frequencies 77 = 5.0782 x 103 and T» = 0.523 37
are associated, respectively, with the period of the basic PO
(see Fig. 2) and with the time between consecutive visits to
the initial condition as can be checked in Fig. 6(a).

Figure 7 contains the same information but for a three-
dimensional torus at Ra = 500000, bifurcated from the
previous branch of two-dimensional tori after a third Hopf
bifurcation. It has been checked that the frequencies of the
FFT satisfy k?f,- = kl.lvl + kfvz + k?\g, with v; = 202.00,
vy = 2.0085, and vy = 9.8775 x 1072 and integers k7, k/,
kiz, and ki3. The first two basis frequencies and its inverses,
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T) = 4.9505 x 1073 and T, = 0.497 87, are close to those
of the previous case. The third quasiperiod, 73 = 10.124, is
associated with the new time between consecutive visits to the
initial condition or to the transformed point S X (0), which can
be seen in Fig. 7(a). Therefore, the three-frequency tori on this
branch are still symmetry invariant.

Like the fourth branch, the third branch of POs lose
stability through a Neimark-Sacker bifurcation, and when the
quasiperiodic flow destabilizes it also gives rise to a stable
three-frequency torus. For instance, at Ra = 5.6 x 10° the
basis frequencies are v; = 199.44, v, = 11.010, and v; =
1.6265. This third frequency is one order of magnitude smaller
than that found in the three-frequency flows of the fourth
branch. We have checked that it is symmetry invariant. This is
the reason why there is no chaos after the appearance of the
third frequencies.

V. CONCLUSIONS

The bifurcation diagram of the branches of periodic flows
for a rectangular cavity of aspect ratio I' = 8, differentially
heated from the side, has been unfolded. It confirms that the or-
bits detected previously by time evolution (and other branches
detected here) arise directly from the basic steady flow
without intermediate turning points or symmetry-breaking
bifurcations. Only the first Hopf bifurcation gives rise to stable
solutions, but four of the initially unstable branches of POs
stabilize via several inverse Neimark-Sacker bifurcations. In
addition, all the bifurcation points on the branches of POs have
been determined with precision for a broad range of Rayleigh
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numbers. These results clarify the confusing behavior obtained
just using time integrations. In particular, the number of stable
periodic flows for a given Ra has been stated, and the POs have
been classified according to their spatiotemporal symmetries.
Moreover, we have checked, by using direct simulations, that
the two subsequent Hopf transitions globally maintain the
symmetry.

The spectra of the POs in tall lateral heated domains are
not so clustered around the origin as in barotropic thermal
convection problems. Although theoretically a good perfor-
mance of Krylov techniques requires a clustered spectrum
[19], and the present configuration is not an ideal case, we
have not found any problem in the computation of the POs and
their stability. The only difference has been an increase of the
number of iterations needed to solve the linear systems and to
apply Arnoldi’s method.

The modulus of the largest multiplier of the unstable POs
is very small, even at the last value computed (Ra = 600 000).
For instance, in the first branch it is 1.1932, but in the fifth
it is only 1.0476. Therefore, very long time integrations are
needed to pass the transients, which indicates the convenience
of using continuation techniques to deal with periodic flows in
this problem or in the full three-dimensional version.
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