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Modeling flow in porous media is usually focused on the governing equations for mass and momentum
transport, which yield the velocity and pressure at the pore or Darcy scales. However, in many applications, it
is important to determine the work (or power) needed to induce flow in porous media, and this can be achieved
when the mechanical energy equation is taken into account. At the macroscopic scale, this equation may be
postulated to be the result of the inner product of Darcy’s law and the seepage velocity. However, near the porous
medium boundaries, this postulate seems questionable due to the spatial variations of the effective properties
(velocity, permeability, porosity, etc.). In this work we derive the macroscopic mechanical energy equation using
the method of volume averaging for the simple case of incompressible single-phase flow in porous media. Our
analysis shows that the result of averaging the pore-scale version of the mechanical energy equation at the Darcy
scale is not, in general, the expected product of Darcy’s law and the seepage velocity. As a matter of fact, this result
is only applicable in the bulk region of the porous medium and, in the derivation of this result, the properties of
the permeability tensor are determinant. Furthermore, near the porous medium boundaries, a more novel version
of the mechanical energy equation is obtained, which incorporates additional terms that take into account the
rapid variations of structural properties taking place in this particular portion of the system. This analysis can be
applied to multiphase and compressible flows in porous media and in many other multiscale systems.
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I. INTRODUCTION

The mechanical energy equation is, together with the total
mass and momentum equations, a key relationship for the
study of fluid dynamics in many systems. As a matter of
fact, the study of many engineering systems requires the
use of the macroscopic versions of these three equations
[see Chapter 7 in Ref. [1]]. In the particular case of the
macroscopic mechanical energy equation, a challenge usually
lies on the prediction of the rate at which mechanical energy
decreases in a system due to viscous dissipation. Interestingly,
in natural porous systems, such as geological media, the
information provided by the mechanical energy equation is
usually not crucial, as, for instance, in the macroscopic study
of groundwater flow. Therefore, the focus is directed to the
macroscopic conservation equations of mass and momentum,
i.e., the continuity equation and Darcy’s law. This is due to the
interest on the prediction of the piezometric head, which can be
experimentally measured [see Chapter 4 in [2]]. However, as
emphasized by Celia and Norbotten [3] in engineering systems
such as geothermal engineering, enhanced oil recovery, or
geological CO2 sequestration, the use of the continuity
equation and Darcy’s law is insufficient and it is necessary to
take into account the information provided by the macroscopic
mechanical energy equation, which is related to the total head
[see Eq. 4.1.5 in Ref. [2]]. In addition, in applications such
as the disposal of high-level radioactive wastes, understanding
of the thermohydromechanical processes taking place in the
porous medium is crucial as remarked by Chen et al. [4].
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Furthermore, the study of the viscous dissipation term in the
mechanical energy equation is also relevant in the study of
nanofibrous media, in specific when the goal is to achieve
outstanding properties such as stiffness, strength, and impact
resistance [5].

The derivation of the macroscopic version of the mechani-
cal energy equation has been scarcely addressed in the litera-
ture. Some relevant works are those by Cushman [6], who used
the formalism of statistical mechanics to derive the average
version of the total energy equation. A more recent derivation
is available from the thermodynamically constrained averaging
theory (TCAT) [7] by Gray and Miller, where this equation is
used together with those from momentum and mass transport
in order to derive a constrained entropy inequality, which is a
key part of the TCAT theory. Following also a thermodynamic
approach, Borja [8] analyzed the mechanical energy equation
for unsaturated porous media. Furthermore, Zhu et al. [9],
using the volume averaging method [10], showed that the
macroscopic form of the mechanical energy equation is
equivalent to the result of taking the inner product of the
seepage velocity with Darcy’s law for single-phase unsteady
flow in homogeneous porous media. In their analysis, they
found that the term related to the rate of viscous dissipation is
equal to Darcy’s term dotted with the seepage velocity. Nev-
ertheless, this result may not necessarily hold near the porous
medium boundaries, where rapid variations of the effective
properties (velocity, permeability, porosity) take place as it is
the case in many engineering applications. In addition, if more
complicated situations are considered, such as multiphase flow
or compressible flow, there are more reasons to doubt that the
macroscopic energy equation in porous media is simply the
result of the inner product of Darcy’s law with the seepage
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velocity. Despite the plausible interest in these and other
more complicated situations, the focus in this work is on the
derivation of the mechanical energy equation using the method
of volume averaging in the case of single-phase and steady-
state flow of an incompressible fluid that saturates a rigid
porous medium. As a first approach, isothermal conditions
are assumed, so only the mechanical part of the total energy
equation is justified. Our aim is to first derive an expression
for momentum transport that is sufficiently general so it can
be applied everywhere in the system, i.e., in the bulk and near
the porous medium boundaries, through which momentum
exchange can occur (e.g., between a porous medium and a
fluid or between two porous media). This expression can
be subsequently simplified by imposing pertinent scaling
postulates so the Darcy-Brinkman-Forchheimer (DBF) or just
the Darcy-Forchheimer (DF) equations can be deduced from
this general model. A relevant question to be addressed is if the
result of upscaling the pore-scale mechanical energy equation
is compatible with the result of taking the inner product of the
DBF equation with the seepage velocity. This will allow us to
determine up to which point the result from Zhu et al. [9] is
valid and to provide a more general form.

The paper is organized as follows: first, we present
the governing equations and boundary conditions for mass,
momentum, and mechanical energy at the pore scale. The
main steps involved in the volume averaging method are
then recalled. Since our interest lies in the correspondence
between the macroscopic mechanical energy and momentum
transport equations (both near the boundaries and in the porous
medium bulk) at the Darcy scale, we first direct the attention
to the averaging of the momentum transport equation and
then apply the volume averaging method to the mechanical
energy equation. Finally, the corresponding discussions and
conclusions are provided, taking into account extensions to
other flow situations.

II. PORE-SCALE MODEL

Let us consider the steady, incompressible, and Newtonian
flow of a single fluid-phase β saturating a rigid and homoge-
neous porous medium, as shown in Fig. 1. Flow is assumed to
take place in a range of the Reynolds number, justifying that
both inertial and viscous forces play a significant role and the
no-slip boundary condition is assumed to be applicable at the
solid-fluid interface. On the basis of these starting assumptions,
the governing equations for total mass and momentum in the
β-phase are

∇ · vβ = 0, (1a)

ρvβ · ∇vβ = −∇pβ + ρβg + μ∇2vβ. (1b)

The fluid velocity is subject to the interfacial boundary
condition:

vβ = 0, at Aβσ . (1c)

To complete the statement of the boundary-value problem,
it is necessary to provide the boundary conditions at entrances

FIG. 1. Sketch of a porous medium including the averaging
domain and the characteristic lengths.

and exits of the macroscopic system (Aβ,e), which can be
written as

vβ = vβ,e, at Aβ,e, (1d)

where vβ,e is assumed to be a known function of position.
The solution of this boundary value problem provides the

pressure and velocity fields everywhere in the β-phase from
which one could analyze the different terms in the pore-scale
mechanical energy equation that is formally obtained after
a dot product of the momentum equation with the velocity,
yielding

ρ

2
∇ · (

v2
βvβ

) = − ∇ · (pβvβ) + ρg · vβ

+ 1

2
μ∇2v2

β − μ∇vT
β : ∇vβ. (2)

Here, as in the remainder of the development, the nested
convention is adopted for the double inner products, i.e.,
A : B = AijBji (= B : A). In addition, fluid density and

viscosity are assumed to be constants.
Although achievable, the pointwise detailed solution on pβ

and vβ may not be of interest while a macroscopic description
is more relevant. As a consequence, there is a necessity for
a systematic filtering of nonredundant information arising
from the pore-scale model, a procedure that is referred to
as upscaling [11]. In this way, it is desirable to derive
upscaled models starting from the pore-scale equations by
means of a convenient averaging procedure. There are many
methodologies to carry out this task such as the method
of moments, homogenization, or, more recently, the ther-
modynamically constrained averaging theory. In this work,
the method of volume averaging is employed to derive the
upscaled models that are valid both at the porous medium bulk
and near its boundaries. Some salient features of this method
is that it not only provides the means to derive the upscaled
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models but also allows us to clearly identify the associated
scaling postulates involved in the derivation of the models
and incorporates a closure scheme to predict the associated
macroscopic coefficients appearing in the model [12]. To have
a clear view of the above, the main steps of the method of
volume averaging are described in the following section.

III. OVERVIEW OF THE VOLUME AVERAGING METHOD

In Fig. 2 we show a scheme that describes the method
of volume averaging. This scheme should be read from up
to down and from left to right. In the latter case, the colors
illustrate the systematic loss of redundant information, which
we refer to as upscaling. Throughout this work, we will follow
Wood [11] and make a distinction between the mathematical
operation of averaging and upscaling, because the first one
does not require any reduction in the number of degrees of
freedom involved in the model. For this reason, Fig. 2 shows
two routes that can be followed to obtain different average
models. The first route is followed by the continuous lines
and it describes the classical method of volume averaging as
used in Ref. [10], which leads to a closed upscaled model.
The dashed lines in Fig. 2 indicate a second route that leads
to an average equation that does not involve upscaling and is
known as the one-domain approach [13], which can be further
simplified to also yield a closed upscaled model as in the first
route. In this work, we will follow this last approach. The rest
of this section is devoted to explain in more detail each step
represented in Fig. 2.

The first step of the method is the statement of the pore-scale
model, which relies on a set of starting assumptions (number 1
in Fig. 2); this step was already described with the associated
hypotheses in the previous section. Next, an averaging domain,
V (of norm V ), such as the one shown in Fig. 1, is defined in
such a way that it contains portions of all the phases involved
in the analysis (i.e., V = Vβ + Vσ ) (letter a in Fig. 2). In
terms of the averaging domain, the superficial and intrinsic
averaging operators are introduced for a piecewise function
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Exact
closure
problem

One-
domain

approach

Simplified
closure
problem

Closed
upscaled
model

Simplified
upscaled
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2

3
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c
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Upscaling

Assumptions

1. Starting assumptions 
2. Scaling postulates 1 
3. Scaling postulates 2

Tools
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c. Spatial decomposition 
d. Substitution in filters

d

d

FIG. 2. Diagram of the volume averaging method. The continu-
ous lines and arrows lead to the classical approach whereas the dashed
lines and arrows lead to the one-domain approach.

FIG. 3. Position vectors associated to the averaging domain.

defined everywhere in the β-phase, ψβ , as follows:

〈ψβ〉|x = 1

V

∫
y∈Vβ (x)

ψβ |rdV, (3a)

〈ψβ〉β |x = 1

Vβ(x)

∫
y∈Vβ (x)

ψβ |rdV. (3b)

Throughout this work, the equations written in terms of the
piecewise function ψβ are applicable to scalar, vectorial, or
tensorial quantities. In the above equations, the vector x locates
the position of the centroid of the averaging domain whereas
the position vectors y and r locate points in the β-phase relative
to x and to an arbitrary reference system, respectively, as shown
in Fig. 3. The superficial and intrinsic averaging operators are
related by the Dupuit-Forchheimer equation:

〈ψβ〉|x = ε(x)〈ψβ〉β |x, (4)

where ε(x) ≡ Vβ(x)/V is the volume fraction of the β-phase
contained in the averaging domain.

The superficial averaging operator is subsequently applied
to the governing equations at the pore scale. This operation
requires interchanging differentiation and integration (letter b
in Fig. 2), which can be achieved by means of the general
transport theorem [1],

〈
∂ψβ

∂t

〉∣∣∣∣
x

= ∂〈ψβ〉|x
∂t

− 1

V

∫
y∈Aβσ (x)

n · ψβwdA, (5a)

w being the velocity of Aβσ , and the spatial averaging theorem
[14]:

〈∇ψβ〉|x = ∇〈ψβ〉|x + 1

V

∫
y∈Aβσ (x)

nψβdA. (5b)
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For the case of the average of the divergence of a vectorial
function, the spatial averaging theorem is slightly modified as
indicated in Eq. (1.2-23) in Ref. [10]. It is worth mentioning
that the interfacial integrals involved in the above theorems
often allow direct substitution of the corresponding boundary
conditions. At this point in the analysis, the average model
involves integrals of pore-scale quantities and their averaged
counterparts. We will refer to the integrals of pore-scale
quantities as filters of information as suggested by Whitaker
[10]. To eliminate the remaining pore-scale functions, the
spatial decomposition introduced by Gray [15] is used (letter
c in Fig. 2):

ψβ |r = 〈ψβ〉β |r + ψ̃β |r. (6)

For the remaining of this work, we will make a distinction
between average quantities evaluated at r or at x, but we will
no longer specify that pore-scale quantities (i.e., ψβ and ψ̃β)
are evaluated at r.

In this way, the resulting average model is unclosed
because it involves two unknowns (the deviations and average
quantities) and only one equation. To overcome this issue, it
is necessary to derive and formally solve a boundary-value
problem for the deviations fields, which we refer to as a
closure problem. This is achieved on the basis of the spatial
decomposition given by Eq. (6) and we will illustrate this in
the following section. If no assumptions are made, then we can
qualify this closure problem to be exact because it contains all
the information from the pore scale. As explained by Wood
and Valdés-Parada [12], despite the considerable complexity
of this problem, it is possible to formally solve it using
integral equation formulations based on Green’s functions.
If this solution is substituted into the filters of the unclosed
model (letter d in Fig. 2), then the resulting average (but
not upscaled) equation is the so-called one-domain approach
because it can be applied everywhere in the system, i.e., in
the bulk of the porous medium and near its boundaries. This
completes the nonclassical route of application of the volume
averaging method as explained above. Certainly, one may
apply scaling postulates in order to obtain simplified versions
of the one-domain approach and to even obtain the resulting
simplified upscaled model that is only applicable in the bulk
of the porous medium.

Analyzing this modeling approach, it is not hard to deduce
that the kernel of the upscaling process relies on the systematic
reduction of the information contained in the closure problem
solution. Therefore, if reasonable scaling postulates (usually
in the form of length-scale constraints and assumptions) are
adopted (number 2 in Fig. 2), then one may significantly
reduce the amount of information carried by the deviations
variables and yet still capture the essential (i.e., nonredundant)
information from the pore-scale model. The formal solution
of this simplified closure problem can be substituted into
the filters of the unclosed average model (letter d in Fig. 2)
to obtain its closed form. However, the resulting model is
still subject to additional simplifications that are based on
complementary scaling postulates (number 3 in Fig. 2) in
order to obtain a simplified closed upscaled model. In the
following section, we will follow the methodology outlined
here, i.e., we first derive the one-domain approach models for
mass and momentum transport in porous media. Afterwards,

pertinent scaling postulates are introduced in order to derive
the corresponding models that are valid only in the bulk of
the porous medium. Then a similar procedure is applied to the
mechanical energy equation.

IV. UPSCALING MASS AND MOMENTUM TRANSPORT

A. Averaging

Let us, for the moment, direct the attention to mass transport
and apply the superficial averaging operator as defined by
Eq. (3a) to Eq. (1a). The resulting equation is

〈∇ · vβ〉|x = 0. (7)

As explained in the previous section, with the aim of
interchanging spatial differentiation and integration, we use
the spatial averaging theorem in order to obtain:

∇ · 〈vβ〉|x = 0. (8)

Here we have taken into account the nonslip boundary
condition that was imposed at the solid-fluid interface. It
should be noted that this result is written in terms of the seepage
velocity, which is the common form of averaging for the
velocity found in the literature. As will be shown below, for the
derivation of the closure problem, it is necessary to express the
continuity equation in terms of the intrinsic averaged velocity.
This is easily achieved by means of the Dupuit-Forchheimer
relation [Eq. (4)]:

∇ · 〈vβ〉β |x = −∇ ln ε · 〈vβ〉β |x. (9)

Directing the attention to momentum transport, let us apply the
superficial averaging operator to Eq. (1b), taking into account
the continuity equation, to obtain:

ρ〈∇ · vβvβ〉|x = −〈∇pβ〉|x − ερg + μ〈∇2vβ〉|x. (10)

The result of using the spatial averaging theorem to the
transport terms in the above equation is

ρ∇ · 〈vβvβ〉|x = − ∇〈pβ〉|x + ερg + μ∇2〈vβ〉|x
+ 1

V

∫
y∈Aβσ (x)

n · (− Ipβ + μ∇vβ)dA

(11)

or, in terms of intrinsic averages,

ρ∇ · (ε〈vβvβ〉β |x) = − ε∇〈pβ〉β |x + ερg + με∇2〈vβ〉β |x
+ μ∇ · (∇ε〈vβ〉β |x)

+ 1

V

∫
y∈Aβσ (x)

n · [− I(pβ − 〈pβ〉β |x)

+ μ∇(vβ − 〈vβ〉β |x)]dA. (12)

With the aim of eliminating the pore-scale pressure and
velocity contained in the surface and volume integrals (i.e., the
filters) from this expression, we use the spatial decomposition
defined in Eq. (6) so the result can be written as

ρ∇ · (ε〈〈vβ〉β |r〈vβ〉β |r + 〈vβ〉β |rṽβ + ṽβ〈vβ〉β |r + ṽβ ṽβ〉β |x)

= −ε∇〈pβ〉β |x + ερg + με∇2〈vβ〉β |x + μ∇ · (∇ε〈vβ〉β |x)

023101-4



MACROSCOPIC MOMENTUM AND MECHANICAL ENERGY . . . PHYSICAL REVIEW E 95, 023101 (2017)

+ 1

V

∫
y∈Aβσ (x)

n · [− I(p̃β + �〈pβ〉β)

+ μ∇(ṽβ + �〈vβ〉β)]dA. (13)

It should be noted that each term in the above equation is
evaluated at x. In addition, in the surface integral of the above
equation, we used the following definition:

�〈ψβ〉β = 〈ψβ〉β |r − 〈ψβ〉β |x, ψβ = pβ,vβ. (14)

B. Exact closure problem

Equation (13) is the unclosed average model. Our goal
now is to derive expressions for the velocity and pressure
deviations. With this in mind, it is necessary to derive and
formally solve the boundary-value problem that governs the
fields of p̃β and ṽβ . Substitution of Eq. (6) into the pore-scale
continuity equation [Eq. (1a)] yields

∇ · ṽβ = −∇ · 〈vβ〉β |r︸ ︷︷ ︸
volumetric

source

. (15a)

Directing the attention to the momentum transport equation,
let us divide Eq. (13) by ε, evaluate the resulting expression at
x = r and subtract it to Eq. (1b) in order to obtain:

ρ ∇ · [〈vβ〉β |r〈vβ〉β |r]︸ ︷︷ ︸
volumetric source

+ ρ∇ · [〈vβ〉β |rṽβ + ṽβ〈vβ〉β |r + ṽβ ṽβ]

− ε−1ρ (∇ · [〈〈vβ〉β |z〈vβ〉β |z〉|r]︸ ︷︷ ︸
volumetric source

+ ∇ · [〈〈vβ〉β |zṽβ + ṽβ〈vβ〉β |z + ṽβ ṽβ〉|r])

= −∇p̃β + μ∇2ṽβ − με−1∇ · (∇ε〈vβ〉β |r)

− 1

Vβ

∫
z∈Aβσ (r)

n · [− Ip̃β + μ∇ṽβ]dA

− 1

Vβ

∫
z∈Aβσ (r)

n · [− I�〈pβ〉β + μ∇(�〈vβ〉β)]dA

︸ ︷︷ ︸
volumetric source

.

(15b)

In this last result, we introduced the dummy vector z, in order to
make a distinction with the position vector r in the volumetric
and interfacial integrals.

The corresponding boundary conditions for the deviations,
which result from substituting the spatial decomposition as
given by Eq. (6) into Eqs. (1c) and (1d), are

ṽβ = −〈vβ〉β |r, at Aβσ , (15c)

ṽβ = vβ,e − 〈vβ〉β |r, at Aβ,e. (15d)

The formal solution of this problem is feasible using inte-
gral equations formulations based on Green’s functions, as

explained in Ref. [12], and it can be expressed as follows:

ṽβ = −
∫

y∈Vβ (x)

Gv · rβdV

︸ ︷︷ ︸
Influence of volumetric sources

−
∫

y∈Aβσ (x)

n · μ∇ Gv · 〈vβ〉β |ydA

︸ ︷︷ ︸
Influence of the interfacial source

+
∫

y∈Aβ,e(x)

n · μ∇ Gv · (vβ,e − 〈vβ〉β |y)dA

︸ ︷︷ ︸
Influence of the entrances and exits

, (16a)

p̃β = −
∫

y∈Vβ (x)

gp · rβdV

︸ ︷︷ ︸
Influence of volumetric sources

−
∫

y∈Aβσ (x)

n · ∇gp · 〈vβ〉β |ydA

︸ ︷︷ ︸
Influence of the interfacial source

+
∫

y∈Aβ,e(x)

n · ∇gp · (vβ,e − 〈vβ〉β |y)dA

︸ ︷︷ ︸
Influence of the entrances and exits

. (16b)

In the above equations, Gv and gp represent the corresponding
Green’s functions for the velocity and the pressure, respec-
tively, and rβ represents a linear combination of the volumetric
source terms identified in the differential equations (15a) and
(15b).

C. One-domain approach

Now that we have the solution of the closure problem,
the average model given by Eq. (13) is complete. For the
sake of simplicity in presentation, we introduce the following
definition:

fβ(x) = − ρ∇ · (ε〈〈vβ〉β |rṽβ + ṽβ〈vβ〉β |r + ṽβ ṽβ〉β |x)

+ 1

V

∫
y∈Aβσ (x)

n · [− I(p̃β + �〈pβ〉β)

+ μ∇(ṽβ + �〈vβ〉β)]dA, (17)

which, once inserted into Eq. (13), yields the final form:

ρ∇ · 〈〈vβ〉β |r〈vβ〉β |r〉|x
= −ε∇〈pβ〉β |x + ερg + μ∇2〈vβ〉|x

− μ∇ε · ∇(ε−1〈vβ〉|x) + fβ(x). (18)

The structure of this equation resembles its pore-scale
counterpart, as given by Eq. (1b); however, it is important
to clearly identify the physical meaning of each term in the
above equation. The term in the left-hand side, although not
written in the traditional form, is the macroscopic inertial term
due to the macroscopic convective acceleration; the first term
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in the right-hand side corresponds to the macroscopic normal
surface force due to the pressure gradient; the next one is
due to volume forces in the fluid phase (gravity). The term
μ∇2〈vβ〉|x is usually known in the porous media literature
as the Brinkman correction term and it partially captures the
macroscopic viscous forces. The term μ∇ε · ∇(ε−1〈vβ〉|x)
has been identified as the second Brinkman correction by
Ochoa-Tapia and Whitaker [16]. It complements the mapping
of the viscous forces by taking into account also the spatial
variations of ε. It is worth noting that this term is not present
in the Navier-Stokes equations and it is thus a consequence of
the averaging process. This characteristic is also shared by the
term fβ in which all the contributions involving deviations, as
defined in Eqs. (6) and (14), are gathered. As it will be shown
later, all the terms involving spatial variations of the porosity
and macroscopic velocity vanish in the porous medium bulk;
however, the same is not true for fβ because the deviations of
the averages from their pore-scale counterparts are still present
in the bulk. As a matter of fact, only in single-phase systems
can this term be safely discarded.

It should be noted that, up to this point, no scaling postulates
have been introduced for the derivation of the average model,
being consistent with the one-domain approach route depicted
in Fig. 2. On the one hand, we have gained generality in the
sense that the average model is applicable everywhere in the
system; on the other hand, the complexity of this model may
prevent its use in practical applications. Indeed, it appears to be
simpler to perform direct numerical simulations from which
the fβ term can be computed than using the solutions given
in Eqs. (16). Motivated by this, we will systematically adopt
scaling postulates with the aim of reducing the complexity of
the one-domain approach model in the rest of this section.

D. Scaling postulates 1 and simplified closure problem

From the scheme illustrated in Fig. 2, a first set of
scaling postulates can be imposed to simplify the closure
problem (number 2 in Fig. 2). Therefore, as a first point
of simplification, let us constrain the size of the averaging
volume, r0, to obey the inequality

	 � r0 � L, (19)

where 	 represents the largest of the characteristic lengths
associated to the pore scale while L denotes the smallest
of the characteristic lengths associated to the macroscale.
In this way, 	 = max(	β,	σ ), where 	β and 	σ denote the
characteristic lengths associated to each phase as sketched in
Fig. 1. It is worth mentioning that, using a phase-indicator
function, it is possible to define additional relevant quantities
such as the variance and the autocorrelation function, which
allow determining the characteristic length scales in a more
precise manner as explained by Wood and Valdés-Parada
[12]. The interested reader is referred to this work for further
details. Moreover, it is crucial pointing out that if there is no
separation of length scales, then it is not possible to define a
representative averaging domain and no further simplifications
can be applied to the derivations. As explained by Quintard and
Whitaker [17], for disordered media it is reasonable to assume
that the size of the averaging domain must be several orders
of magnitude larger than the characteristic length associated

to the pore scale. However, there may be situations, such
as fractal media, in which this assumption can fail. The
remainder of this work is thus limited to systems in which
it is reasonable to assume that the separation of length scales
given in (19) is applicable. Under these conditions, we may
refer to the averaging domain as a representative elementary
volume (REV) [2].

Analyzing Eq. (18), taking into account the definitions
given in Eq. (17), we observe that the one-domain approach
model contains average quantities evaluated at r and at x.
Actually, one may use Taylor-series expansions in order to
express average quantities evaluated at r only in terms of
average quantities evaluated at x [10], that is,

〈ψβ〉β |r =〈ψβ〉β |x + y · ∇〈ψβ〉β |x
+ 1

2 yy : ∇∇〈ψβ〉β |x + · · · . (20)

Performing an order-of-magnitude analysis to the second and
third terms on the right-hand side of this result leads to

y · ∇〈ψβ〉β |x = O
(

r0

L〈ψβ 〉β
〈ψβ〉β |x

)
, (21a)

yy : ∇∇〈ψβ〉β |x = O
(

r2
0

L∇〈ψβ 〉β L〈ψβ 〉β
〈ψβ〉β |x

)
, (21b)

where Li is the characteristic length associated to the spatial
variations of the i quantity (i = 〈ψβ〉β,∇〈ψβ〉β). To avoid
oversimplifications for the problem under consideration, we
associate the characteristic lengths L∇〈ψβ 〉β and L〈ψβ 〉β to the
width of the transition zone near the porous medium boundary,
say, δωη. As determined by Valdés-Parada et al. [18], the width
of this zone is roughly 20r0, indicating that there is at least one
order of magnitude of difference between δωη and r0. On this
basis, we may accept the approximation

〈ψβ〉β |r ≈ 〈ψβ〉β |x. (22)

This implies that the average term on the right-hand side of the
spatial decomposition given in Eq. (6) can now be evaluated
at x. This allows us to consider average quantities as constants
within (surface or volumetric) integrals. A direct consequence
of this approximation is the following average constraint for
the deviations fields:

〈ψ̃β〉β |x = 0. (23)

Under these conditions, the closure problem can be signifi-
cantly reduced. The details of this simplification are given in
Appendix, and it suffices here to present the simplified closure
problem as

∇ · ṽβ = 0, (24a)

ρvβ · ∇ṽβ = −∇p̃β + μ∇2ṽβ

− 1

Vβ

∫
y∈Aβσ (x)

n · (− Ip̃β + μ∇ṽβ)dA, (24b)

ṽβ = −〈vβ〉β |x, at Aβσ . (24c)

At this point, we reduce the domain of solution of the closure
problem to a periodic unit cell instead of the entire macroscopic
domain. Actually, this simplification is more a convenience
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than a necessity and by no means constrains the use of the
resulting average model to periodic systems, which are rarely
encountered in practice. In this way, at the entrances and exits
of the unit cell we can impose the following periodic boundary
condition:

ψ̃β(r) = ψ̃β(r + li); ψβ = pβ,vβ, (24d)

where li denotes the lattice vectors of the unit cell. Finally, it is
worth recalling that the pressure deviations fields are bounded
by the integral constraint

〈p̃β〉β |x = 0. (24e)

Indeed, the velocity deviations satisfy a similar constraint, but
such a constraint is unnecessary to have a well-posed problem
in which the only remaining source term can be taken to be
constant within the unit cell domain.

The formal solution of this problem can once again
be obtained using integral equations formulations based on
Green’s functions, and for the sake of simplicity in notation,
we express the solution as

ṽβ = Bβ · 〈vβ〉β |x, (25a)

p̃β = μbβ · 〈vβ〉β |x. (25b)

Notice that this solution is a simplified version of the formal
solution given in Eqs. (16); however, since now there are
no volumetric sources and the boundary conditions at the
entrances and exits are homogeneous, the only remaining
source is the one located at the interface. In this way, the
so-called closure variables Bβ and bβ can be conceived as
integrals of the corresponding Green’s functions associated to
the velocity and pressure, respectively. These closure variables
solve the following boundary-value problem:

∇ · Bβ = 0 (26a)
ρ

μ
vβ · ∇ Bβ = −∇bβ + ∇2 Bβ,

− 1

Vβ

∫
y∈Aβσ (x)

n · (− Ibβ + ∇ Bβ

)
dA, (26b)

Bβ = − I, at Aβσ , (26c)

ψβ(r) = ψβ(r + li); ψβ = Bβ,bβ, (26d)

〈bβ〉β |x = 0. (26e)

Note that these equations correspond to Eqs. (2.22) in
Ref. [19].

It is now opportune to return to the average momentum
equation by first noticing that, under the assumptions adopted
so far, fβ can now be reduced to

fβ(x) = − ρ∇ · (ε〈ṽβ ṽβ〉β |x)

+ 1

V

∫
y∈Aβσ (x)

n · [− Ip̃β + μ∇ṽβ]dA. (27)

Substitution of the formal closure problem solution as given
by Eqs. (25) into the above expression and subsequently into

the momentum transport equation [Eq. (18)] yields

ρ

ε
∇ · (ε〈vβ〉β |x · Jβ · 〈vβ〉β |x)

= −∇〈pβ〉β |x + ρg + μ

ε
∇2〈vβ〉|x

− μ∇ ln ε · ∇(ε−1〈vβ〉|x) − H−1
β · 〈vβ〉|x. (28)

In this result, we introduced the fourth-order tensor Jβ and
the second-order tensor Hβ , which are defined in terms of the
closure variables as follows:

Jβ = I I + 〈
BT

β Bβ

〉β ∣∣
x, (29a)

ε H−1
β = − 1

Vβ

∫
y∈Aβσ (x)

n · (− Ibβ + ∇ Bβ)dA. (29b)

From a physical viewpoint, the fourth-order tensor Jβ helps
grouping all the macroscopic inertial contributions in a single
term. Furthermore, the term 〈 BT

β Bβ〉β |
x

is an inertial filter
(in the sense of Whitaker [10]) that corrects the traditional
inertial term by taking into account the contributions from the
pore scale. In addition, the second-order tensor Hβ , which is a
stress filter, may be regarded as an apparent permeability tensor
that corresponds to a position-dependent Darcy-Forchheimer
tensor. The introduction of these effective-medium coefficients
is quite convenient because it allows us to separate the
macroscopic inertial and viscous contributions in Eq. (28).

Before moving on, it should be noted that the closure
problem given by Eqs. (26) is quite complicated because
it involves an integrodifferential equation. With the aim of
deriving a purely differential closure problem, we make the
following changes of variables as suggested by Whitaker [19]:

Eβ = ε−1(Bβ + I) · Hβ, (30a)

eβ = ε−1bβ · Hβ. (30b)

These variables solve the following differential closure
problem:

∇ · Eβ = 0, (31a)
ρ

μ
vβ · ∇Eβ = −∇eβ + ∇2Eβ + I, (31b)

Eβ = 0, at Aβσ , (31c)

ψβ(r) = ψβ(r + li); ψβ = Eβ,eβ, (31d)

〈eβ〉β |x = 0. (31e)

From the above, it may appear that the closure problem
requires the solution of the pore-scale problem in order to
obtain the pointwise velocity that is present in the inertial term
of Eq. (31b), making this boundary-value problem unclosed.
However, it has been recently shown [20] that this is not the
case, because one may use Eqs. (6) and (25a) in order to obtain
a closed form of this problem.

In addition, from the constraint that the intrinsic average of
the velocity deviations is zero, it follows that

〈Eβ〉|x = Hβ. (31f)
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This final form of the closure problem was recently solved by
Lasseux et al. [21] for several flow angles and Reynolds num-
ber values on some model structures. Furthermore, following
the derivations shown in Appendix from the study of gas-slip
flow in porous media by Lasseux et al. [22], it is not hard to
deduce that the Hβ tensor can be split into a symmetric and a
skew-symmetric part, when restricted to the porous medium
bulk (i.e., at x = xω), as follows:

HT
β = 〈(∇Eβ)T 3 : ∇Eβ〉|xω︸ ︷︷ ︸

symmetric contribution from viscous dissipation

+ ρ

μ

〈
ET

β · [∇ · (vβEβ)]
〉∣∣

xω︸ ︷︷ ︸
skew-symmetric contribution from inertial effects

. (32)

In the first term on the right-hand side of the above equation
the superscript T 3 permutes the first and third indices of a
third-order tensor, i.e., AT 3

ijk = Akji .

E. Scaling postulates 2 and closed upscaled model

With the simplifications to the closure problem adopted
above, we have reached the reduced solution given by Eqs. (25)
and, consequently, the effective-medium coefficients Jβ and
Hβ can now be readily computed from the knowledge of
closure variables fields. Despite the progress gained so far,
the one-domain approach, as given in Eq. (28), still involves
position-dependent macroscopic coefficients. Nevertheless,
the scaling postulates introduced in the previous section have
led to a considerable loss of information from the pore
scale. Therefore, from the scheme in Fig. 2, we shall refer
to this simplified version of the one-domain approach as a
closed upscaled model with position-dependent coefficients.
Actually, this simplified version of the one-domain approach
has been used in the past for the derivation of jump conditions
between a porous medium and a fluid under noninertial
conditions [23]. However, in practice, it is more common
to use effective-medium equations involving constant coef-
ficients and to account for this simplification by introducing
appropriate jump conditions. This motivates the introduction
of additional scaling postulates that are directed to further
simplify the closed upscaled model and, as indicated in Fig. 2,
we will refer to the resulting model as a simplified upscaled
model.

With the above goal in mind, we first note that Eq. (28)
involves three effective-medium coefficients, namely the
volumetric fraction of the fluid-phase within the averaging
volume, ε(x), the apparent permeability tensor Hβ(x), and,
finally, the tensor Jβ(x) that modifies the dyadic product of the
average velocities in the inertial term. Outside the transition
region that is located near the porous medium boundaries, i.e.,
in the porous medium bulk, these coefficients are constants
and we denote the last position where this assumption is valid
as xω. In the transition region, we thus propose the following
Taylor-series expansion of the coefficients about xω:

ϕ(x) = ϕ(xω) + (x − xω) · ∇ϕ(xω)

+ 1
2 (x − xω)(x − xω) : ∇∇ϕ(xω) + · · · , (33)

where ϕ = ε,Hβ,Jβ . From this expansion, we note that if we
truncate it at the first term, all the effective-medium coefficients
in Eq. (28) can be replaced by their corresponding values
at the porous medium bulk, which are position independent.
Consequently, this equation reduces to the DBF equation with
the inclusion of the inertial term:

ρ∇ · (〈vβ〉β |x · Jβ(xω) · 〈vβ〉β |x)

= −∇〈pβ〉β |x + ρg + μ∇2〈vβ〉β |x − μH−1
β (xω) · 〈vβ〉|x.

(34)

Despite the drastic simplifications that we have imposed
in order to obtain this equation, it may still be used near the
porous medium boundaries as long as the errors induced by
these approximations are compensated. One way to achieve
this compensation is by taking more terms in the expansion
given in Eq. (33) and another way is by the introduction
of appropriate jump boundary conditions, which is the most
common approach.

Finally, in the porous medium bulk, the velocity is position
invariant and Eq. (34) is reduced to the form of the Darcy-
Forchheimer equation deduced by Whitaker [see Eqs. (2.50)
and (4.8) in Ref. 19]:

〈vβ〉|xω
= −Hβ(xω)

μ
· (∇〈pβ〉β |xω

− ρg). (35)

The main difference between the simplified upscaled models
given in Eqs. (34) and (35) is that the first one may be used near
the porous medium boundaries while the latter is constrained
to the porous medium bulk. Before moving on, it is pertinent
to point out that, even though the macroscopic viscous and
inertial terms have been dropped, the pore-scale inertial and
viscous forces contributions are still present in the above
equation through the Darcy-Forchheimer term Hβ as it can
be deduced from the analysis of Eqs. (31).

Now that we have completed our analysis of the macro-
scopic momentum transport equation, we are in position to
derive the average and upscaled versions of the mechanical
energy equation, which is one of the main results of this article.
This is the objective of the following section.

V. UPSCALING THE MECHANICAL ENERGY EQUATION

As mentioned in the Introduction, one of the objectives of
this work is to derive a form of the macroscopic mechanical
energy equation that is applicable both in the porous medium
bulk and near its boundaries. This analysis raises interesting
questions such as is the resulting expression equal to the inner
product of the one-domain approach for momentum transport
and the Darcy velocity? Is the result reported by Zhu et al. [9]
in the bulk applicable? To this end, we will follow a similar
structure of developments as the one used in the previous sec-
tion with the difference that we will not derive the one-domain
approach version of the mechanical energy equation. Instead,
we will first derive the closed upscaled version of this equation
that is applicable at the porous medium boundaries and contrast
it with the result of taking the inner product of the seepage
velocity with Eq. (34). Finally, we will verify that when the
simplified upscaled model for the mechanical energy equation
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is used in the bulk, the result is the one reported by Zhu
et al. [9].

Let us commence our derivations by applying the superficial
averaging operator to Eq. (2) to obtain

ρ

2

〈∇ · (
v2

βvβ

)〉∣∣
x

= −〈∇ · (pβvβ)〉|x + ρg · 〈vβ〉|x

+ 1

2
μ

〈∇2v2
β

〉∣∣
x
− μ

〈∇vT
β : ∇vβ

〉∣∣
x
. (36)

Using the spatial averaging theorem and taking into account
the nonslip boundary condition, we can interchange spatial
integration and differentiation in order to express the above
result as follows:

ρ

2
∇ · 〈

v2
βvβ

〉∣∣
x

= −∇ · 〈pβvβ〉|x + ρg · 〈vβ〉|x

+ 1

2
μ∇2

〈
v2

β

〉∣∣
x
− μ

〈∇vT
β : ∇vβ

〉∣∣
x
, (37)

or, after using the Dupuit-Forchheimer relation [Eq. (4)],

ρ

2
∇ · (

ε
〈
v2

βvβ

〉β ∣∣
x

) = −∇ · (
ε
〈
pβvβ

〉β ∣∣
x

)

+ ρg · ε〈vβ〉β |x + 1

2
μ∇2

(
ε
〈
v2

β

〉β ∣∣
x

)
− με

〈∇vT
β : ∇vβ

〉β ∣∣
x. (38)

To make further progress, let us adopt the scaling postulates 1,
so the formal closure problem solution given by Eqs. (25)
is applicable. Therefore, taking into account the spatial
decomposition in Eq. (6) and the changes of variables indicated
in Eqs. (30), we can express the pore-scale velocity and
pressure as follows:

vβ = Dβ · 〈vβ〉β |x, (39a)

pβ = μdβ · 〈vβ〉β |x + 〈pβ〉β |x, (39b)

where, for the sake of simplicity, we have introduced the
following closure variables:

Dβ = εEβ · H−1
β , (40a)

dβ = εeβ · H−1
β . (40b)

Using the definitions given in Eqs. (39), it can be easily deduced that〈
v2

β

〉β ∣∣∣
x

= 〈vβ〉β |x〈vβ〉β |x :
〈
DT

β · Dβ

〉β ∣∣∣
x
, (41a)

〈
v2

βvβ

〉β ∣∣∣
x

= 〈vβ〉β |x〈vβ〉β |x :
〈(

DT
β · Dβ

)
Dβ

〉β ∣∣∣
x
· 〈vβ〉β |x, (41b)

〈pβvβ〉β ∣∣
x = 〈pβ〉β ∣∣

x〈vβ〉β |x + μ〈vβ〉β |x · 〈dβDβ〉β ∣∣
x · 〈vβ〉β |x, (41c)

〈∇vT
β : ∇vβ

〉β ∣∣∣
x

= 〈vβ〉β |x〈vβ〉β |x :
〈
(∇Dβ)T 3 : ∇Dβ

〉β ∣∣∣
x
. (41d)

In the last equation, we have taken into account the separation of length scales that allows us to assume that ∇〈vβ〉β |x · DT
β �

∇Dβ · 〈vβ〉β |x.
Substitution of these results into Eq. (38) yields

ρ

2
∇ · (ε〈vβ〉β |x〈vβ〉β |x :

〈(
DT

β · Dβ

)
Dβ

〉β ∣∣
x · 〈vβ〉β |x)︸ ︷︷ ︸

rate of transport of kinetic energy by convection

= −∇ · (ε〈pβ〉β |x〈vβ〉β |x)︸ ︷︷ ︸
rate of pressure work

+ ρg · ε〈vβ〉β |x︸ ︷︷ ︸
rate of volume-force work

−μ∇ · (ε〈vβ〉β |x · 〈dβDβ〉β |x · 〈vβ〉β |x)︸ ︷︷ ︸
rate of work due to normal stress

+ 1

2
μ∇2

(
ε〈vβ〉β |x〈vβ〉β |x :

〈
DT

β · Dβ

〉β ∣∣
x

)
︸ ︷︷ ︸

rate of work due to shear stress

−με〈vβ〉β |x〈vβ〉β |x : 〈(∇Dβ)T 3 : ∇Dβ〉β |x︸ ︷︷ ︸
rate of kinetic energy loss due to viscous dissipation

, (42)

where the physical meaning of each term has been clearly identified. As it was done with momentum transport, let us now
adopt the second set of scaling postulates, that are focused to the upscaled model. From the previous section, we recall that
the truncation of the expansion defined in Eq. (33), at the first term, allows us to approximate all the terms involving integrals
of closure variables to their corresponding values in the bulk, i.e., at xω. Under these conditions, we may consider the volume
fraction as a constant and divide both sides of the above equation by ε in order to obtain

ρ

2
∇ · (〈vβ〉β |x〈vβ〉β |x :

〈(
DT

β · Dβ

)
Dβ

〉β ∣∣
xω

· 〈vβ〉β |x
)

= −∇ · (〈pβ〉β |x〈vβ〉β |x) + ρg · 〈vβ〉β |x − μ∇ · (〈vβ〉β |x · 〈dβDβ〉β |xω
· 〈vβ〉β |x)

+ 1

2
μ∇2

(〈vβ〉β |x〈vβ〉β |x :
〈
DT

β · Dβ

〉β ∣∣
xω

) − μ〈vβ〉β |x〈vβ〉β |x : 〈(∇Dβ)T 3 : ∇Dβ〉β |xω
. (43)
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This equation is clearly not equal to the result of taking the
inner product of Eq. (34) with the seepage velocity. Certainly,
the above equation is the analog, in terms of mechanical
energy, to the DBF equation, i.e., this equation can be used
near the porous medium boundaries as along as there is an
appropriate boundary condition that compensates the errors
induced by the approximations involved in its derivation.

As a final point of analysis, it is necessary to verify if
the upscaled model for the mechanical energy equation, when
constrained to the porous medium bulk, does agree with Zhu
et al.’s [9] result stating that the macroscopic mechanical
energy balance is obtained from the dot product of the
macroscopic momentum equation with the seepage velocity.
With this in mind, let us fix the centroid of the averaging
volume to values that lie in the porous medium bulk, i.e.,
x = xω, so the velocity can be assumed to be a constant, thus:

0 = − ∇〈pβ〉β |xω
· 〈vβ〉β |xω

+ ρg · 〈vβ〉β |xω

− μ〈vβ〉β |xω
〈vβ〉β |xω

: 〈(∇Dβ)T 3 : ∇Dβ〉β |xω
, (44)

or, after a little rearrangement,

0 = (−∇〈pβ〉β |xω
+ ρg

−μ〈vβ〉β |xω
· 〈(∇Dβ)T 3 : ∇Dβ〉β |xω

) · 〈vβ〉β |xω
. (45)

Directing the attention to the last integral term of the above
equation and substituting the definitions given in Eqs. (40),
one obtains:

〈(∇Dβ)T 3 : ∇Dβ〉β |xω

= ε
(
H−1

β

)T · 〈(∇Eβ)T 3 : ∇Eβ〉|xω
· H−1

β , (46)

or, using Eq. (32),

〈(∇Dβ)T 3 : ∇Dβ〉β |xω

= εH−1
β − ε

(
H−1

β

)T · ρ

μ

〈
ET

β · [∇ · (vβEβ)]
〉∣∣

xω
· H−1

β .

(47)

Substitution of Eq. (47) into Eq. (45) leads to

0 = (−∇〈pβ〉β |xω
+ ρg − με〈vβ〉β |xω

· H−1
β

) · 〈vβ〉β |xω

+ ρε
(
sβsβ :

〈
ET

β · [∇ · (vβEβ)]
〉∣∣

xω

)
, (48)

where, for the sake of brevity in notation, we introduced:

sβ = H−1
β · 〈vβ〉β |xω

. (49)

As indicated in Eq. (32), the second-rank tensor
〈ET

β · [∇ · (vβEβ)]〉|
xω

is skew-symmetric and, since the dyad
sβsβ is a symmetric second-order tensor, we can readily
conclude that the last term on the right-hand side of Eq. (48)
is zero. After multiplication by the porous medium porosity,
this equation is simplified to

0 = (−∇〈pβ〉β |xω
+ ρg − μ〈vβ〉|xω

· H−1
β

) · 〈vβ〉|xω
, (50)

which clearly is the inner product of Darcy’s law with the
seepage velocity, thus verifying the result from Zhu et al. [9]
in the porous medium bulk.

VI. DISCUSSIONS AND CONCLUSIONS

In this work, we addressed the question about the
correspondence between the upscaled version of the mechan-
ical energy equation and the inner product of the macroscopic
momentum balance equation with the seepage velocity. The
following points of discussion and conclusions are hence in
order:

(i) Using the method of volume averaging, without the
imposition of any length-scale constraints or assumptions, we
derived an average model for momentum transport [Eq. (18)].
This one-domain approach, which is valid everywhere in the
system (i.e., near the porous medium bulk and its boundaries),
was the cornerstone for the derivation of upscaled models
for momentum transport. By imposing a first set of scaling
postulates, the one-domain approach gave rise to an upscaled
model in which the effective-medium coefficients can be
readily computed from the solution of ancillary closure
problems in representative unit cells. Then a second set of
more severe scaling postulates was imposed that lead to a
version of the DBF equation that includes inertial contributions
[Eq. (34)]. Finally, in the porous medium bulk, this last model
reduces to the Darcy-Forchheimer model [Eq. (35)]. The
approach for the derivation of these last two upscaled models
differs from the classical applications of the volume averaging
method reported by Whitaker [19].

(ii) Traditionally, Brinkman’s correction to Darcy’s law is
regarded as an ad hoc addition to Darcy’s law that allows
the velocity to change with position near the porous medium
boundaries, while keeping the effective medium coefficients
constant. Actually, this is a contradiction, because, in general,
the velocity and the effective-medium coefficients are both
functions of position near the porous medium boundaries. This
controversy can be solved by the inclusion of the second set of
scaling postulates that give rise to the DBF model. Notice that,
contrary to Whitaker [19], we have not imposed additional
constraints dealing with the Reynolds number, so Eq. (34)
maintains the macroscopic inertial contribution term.

(iii) The upscaled model for the mechanical energy equa-
tion resulting from applying the volume averaging method [Eq.
(43)] was found not to be the result of taking the inner product
of the DBF equation with the seepage velocity. However this
expression of the macroscopic mechanical energy equation
shares the same limitations (in terms of upscaling) as the
DBF transport model. To the best of our knowledge, this
complete form of the mechanical energy equation has not been
previously reported in the literature. If this equation is to be
used to compute the power required to reach a certain fluid
flow near porous media boundaries through which momentum
transport can occur, then it is necessary to acknowledge
that the errors that are involved in its derivation should be
compensated. There are at least two routes for achieving this
goal: one way is to relax the scaling postulates involved in
its derivation. For example, one may take more terms in the
expansion of effective-medium properties defined in Eq. (33).
An alternative is to derive the corresponding jump boundary
conditions that incorporate coefficients that account for the
information that was lost in the upscaled transport model.

(iv) Finally, in the porous medium bulk, it is not necessary
to average the mechanical energy equation at the pore scale,
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because the upscaled model is simply the result of taking the
inner product between the Darcy equation with the seepage
velocity as shown in Eq. (50). This result may have not
been achieved without knowledge of the symmetric and
skew-symmetric parts of the apparent permeability tensor Hβ ,
as indicated in Eq. (32). Our analysis complements and verifies
the result from Zhu et al. [9].

As mentioned in the Introduction, the derivation in this
work can surely be extended to other more complicated
situations such as multiphase flow, compressible flow, and
even to nonisothermal flow in porous media. As a final
note, it is worth mentioning that the framework used in the
present analysis, consisting of the derivation of a one-domain
approach, which may be further simplified by the imposition
of scaling postulates, is indeed extensible to other practical
applications beyond porous media systems. Actually, the main
message from this work is that the analysis in terms of
energy balance near the boundaries of multiscale systems
is incomplete if it deals only with the study of mass and
momentum transport, because it is necessary to also consider
the upscaled mechanical energy equation.
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APPENDIX: SIMPLIFICATIONS OF THE CLOSURE
PROBLEM

Our goal in this section is to detail the simplifications that
are applicable to the closure problem associated to the one-
domain approach. On the basis of the separation of scales
given in (19) and the corollaries presented in Sec. IV, the
following simplifications are applicable to Eq. (15b):

(a) The last term on the left-hand side is reduced to

∇ · 〈〈vβ〉β |z〈vβ〉β |z + 〈vβ〉β |zṽβ + ṽβ〈vβ〉β |z + ṽβ ṽβ〉|r
≈ ∇ · (ε〈vβ〉β |x〈vβ〉β |x) + ∇ · 〈ṽβ ṽβ〉|x.

(b) The last term on the right-hand side of this equation
vanishes.

In this way, Eq. (15b) reduces to

ρ∇ · [〈vβ〉β |xṽβ + ṽβ〈vβ〉β |x + ṽβ ṽβ]

− ρ∇ ln ε · 〈vβ〉β |x〈vβ〉β |x − ε−1ρ∇ · 〈ṽβ ṽβ〉|x
= −∇p̃β + μ∇2ṽβ − μ

ε
∇2ε〈vβ〉β |x − μ∇ ln ε · ∇〈vβ〉β |x

− 1

Vβ

∫
y∈Aβσ (x)

n · (−Ip̃β + μ∇ṽβ)dA. (A1)

To further simplify this equation, we use orders-of-magnitude
estimates of the several terms that it contains. In performing
this analysis, we take into account the interfacial boundary

condition given by Eq. (15c), which indicates that the order
of magnitude of the velocity deviations can be taken to be the
same as the one for the intrinsic average velocity. Under these
conditions, we have the following estimates:

∇ · (ṽβ ṽβ) = ∇ ln ε · 〈vβ〉β |xṽβ︸ ︷︷ ︸
O

⎡
⎣ (〈vβ〉β)2

r0

⎤
⎦

+ ṽβ · ∇ṽβ︸ ︷︷ ︸
O

⎡
⎣ (〈vβ〉β)2

	

⎤
⎦

, (A2)

where we have taken r0 to be a reasonable estimate of the
characteristic length scale of the spatial variations of the
porosity. Since we have accepted the separation of length
scales 	 � r0, the above expression can be reduced to

∇ · (ṽβ ṽβ) = O

[
(〈vβ〉β)2

	

]
. (A3a)

In a similar way, we have the following order-of-magnitude
estimates:

∇ ln ε · 〈vβ〉β |x〈vβ〉β |x = O

[
(〈vβ〉β)2

r0

]
, (A3b)

ε−1∇ · 〈ṽβ ṽβ〉|x = O

[
(〈vβ〉β)2

δωη

]
, (A3c)

∇2ṽβ = O

( 〈vβ〉β
	2

)
, (A3d)

1

ε
∇2ε〈vβ〉β |x = O

( 〈vβ〉β
r2

0

)
, (A3e)

∇ ln ε · ∇〈vβ〉β |x = O

( 〈vβ〉β
r0δωη

)
. (A3f)

In this way, on the basis of the length-scale constraints,

	 � r0; 	 � δωη, (A4)

it is reasonable to assume that

∇ ln ε · 〈vβ〉β |x〈vβ〉β |x � ∇ · (ṽβ ṽβ), (A5a)

ε−1∇ · 〈ṽβ ṽβ〉|x � ∇ · (ṽβ ṽβ), (A5b)

1

ε
∇2ε〈vβ〉β |x � ∇2ṽβ, (A5c)

∇ ln ε · ∇〈vβ〉β |x � ∇2ṽβ. (A5d)

Under these conditions, we can reduce Eq. (A1) to

ρ∇ · [〈vβ〉β |xṽβ + ṽβ〈vβ〉β |x + ṽβ ṽβ]

= −∇p̃β + μ∇2ṽβ − 1

Vβ

∫
y∈Aβσ (x)

n · (−Ip̃β + μ∇ṽβ

)
dA.

(A6)

Directing the attention to the left-hand side term of the above
equation, we have

∇ · [〈vβ〉β |xṽβ + ṽβ〈vβ〉β |x + ṽβ ṽβ]

= ∇ ln ε · 〈vβ〉β |x〈vβ〉β |x + ṽβ · ∇〈vβ〉β |x + vβ · ∇ṽβ.

(A7)
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Once again, with the intention of simplifying this result, we
make use of the following orders-of-magnitude estimates:

∇ ln ε · 〈vβ〉β |x〈vβ〉β |x = O

[
(〈vβ〉β)2

r0

]
, (A8a)

ṽβ · ∇〈vβ〉β |x = O

[
(〈vβ〉β)2

δωη

]
, (A8b)

vβ · ∇ṽβ = O

[
(〈vβ〉β)2

	

]
. (A8c)

Therefore, on the basis of the length-scale constraints given
in (A4), we may assume that

∇ ln ε · 〈vβ〉β |x〈vβ〉β |x � vβ · ∇ṽβ, (A9a)

ṽβ · ∇〈vβ〉β |x � vβ · ∇ṽβ. (A9b)

Under these conditions, Eq. (A6) reduces to its final form:

ρvβ · ∇ṽβ = −∇p̃β + μ∇2ṽβ

− 1

Vβ

∫
y∈Aβσ (x)

n · (−Ip̃β + μ∇ṽβ

)
dA. (A10)

It is worth noting that this equation no longer contains
volumetric sources. In fact, the only volumetric source that
remains in the closure problem is given in the right-hand side
of Eq. (15a). The order of magnitude of this source is

1

V

∫
y∈Vβ (x)

∇ ln ε · 〈vβ〉β |xdV = O

( 〈vβ〉β
r0

)
. (A11a)

This estimate can be contrasted with the order of magnitude
of the interfacial source, which is

1

V

∫
y∈Aβσ (x)

〈vβ〉β |xdA = O

( 〈vβ〉β
	

)
. (A11b)

From these estimates, we may assume that, due to the length-
scale constraint 	 � r0, the interfacial source is much larger
than the volumetric source. Under these conditions, the closure
problem can be expressed as stated in Eqs. (24) in the main
text.
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