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Atomic-scale origin of dynamic viscoelastic response and creep in disordered solids
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Viscoelasticity has been described since the time of Maxwell as an interpolation of purely viscous and purely
elastic response, but its microscopic atomic-level mechanism in solids has remained elusive. We studied three
model disordered solids: a random lattice, the bond-depleted fcc lattice, and the fcc lattice with vacancies. Within
the harmonic approximation for central-force lattices, we applied sum rules for viscoelastic response derived on
the basis of nonaffine atomic motions. The latter motions are a direct result of local structural disorder, and in
particular, of the lack of inversion symmetry in disordered lattices. By defining a suitable quantitative and general
atomic-level measure of nonaffinity and inversion symmetry, we show that the viscoelastic responses of all three
systems collapse onto a master curve upon normalizing by the overall strength of inversion-symmetry breaking
in each system. Close to the isostatic point for central-force lattices, power-law creep G(¢) ~ t~'/> emerges as
a consequence of the interplay between soft vibrational modes and nonaffine dynamics, and various analytical

scalings, supported by numerical calculations, are predicted by the theory.
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I. INTRODUCTION

The viscoelasticity of solids has been the object of in-
tense debate at least since the time of Maxwell. Continuum
mechanics and relaxation models have flourished throughout
the last century, with many extensions proposed to capture
different behaviors observed in metallurgy [1,2]. For crystals
with line defects, Andrade creep [whereby the relaxation shear
modulus presents the power-law scaling G(¢) ~ t~'/*] has
been convincingly explained by Nabarro, Mott, and others
in terms of dislocation dynamics [3,4]. Internal friction, which
represents the imaginary part of the viscoelastic response also
known as the loss modulus G”, has been interpreted in earlier
models, in terms of the diffusive motion of atoms associated
with defect mobility.

In glasses the situation is more complicated, because
dislocations are difficult to identify, and the origin of internal
friction and complex relaxation behavior observed typically
(power law or stretched exponential) has remained unex-
plained. A recent work [5] has applied elegant field-theoretic
methods within the coherent-potential approximation, starting
from the assumption of a spatially heterogeneous static shear
modulus, to successfully recover the a-wing asymmetry in
the resonance peak of G” in oscillatory rheology observed in
experiments. However, the theory is on the continuum level,
and does not clarify which microscopic (atomic-level) features
ultimately control the viscoelastic response.

Recent simulation work [6] motivated by this problem, in
the context of metallic glasses, has shown that internal friction
in glasses may have its origin in quasilocalized correlated
motions that have an avalanchelike character. Furthermore,
these excitations were found to be suppressed in regions of
high icosahedral symmetry. Power-law creep G ~ t~'/2 was
recovered in previous work using mean field theory [7] and
average stress fluctuations [8]. The same result was found in a
related field of athermal jammed solids, where simulations and
scaling arguments [9,10] based on Kelvin-Voigt viscoelasticity
have been combined with the asymptotics of the vibrational
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density of states (DOS) near the jamming transition (at which
a jammed solid loses rigidity) with average contact number
Z = 6, although the strongly nonaffine motion of the particles,
which is crucial for disordered and jammed solids [11,12], was
not explicitly taken into account in the scaling analysis [9]. We
improve on these methods by explicitly taking into account
the exact microstructure of the system as well as the nonaffine
motions of all particles, and we provide a direct link between
the structure, the vibrational dynamics and the frequency- and
time-dependent shear modulus.

II. MODEL SYSTEMS

Here, we reexamine this problem by considering three
very different model systems of amorphous solids in three
dimensions (3D), of which two-dimensional (2D) slices are
given in Fig. 1. We will work with a specific model of
disordered harmonic spring networks formed from the low-
T equilibration of dense Lennard-Jones fluids. This is a
good model for atomic disordered solids (defective crystals,
metallic glasses) but different from other types of disordered
networks where the preparation protocol may change the
critical exponents and the critical coordination numbers for
the onset of rigidity [13-16].

The first lattice is a random network of harmonic springs
generated according to the protocol in Ref. [17]: A Lennard-
Jones glass is formed and equilibrated in a metastable
minimum, after which all nearest-neighbor interactions are
replaced by harmonic springs, all with the same spring
constant ¥ and with a relatively narrow distribution of spring
length Ry. Upon randomly cutting the harmonic bonds in
the sample, lattices with variable coordination number Z
can be formed. In the present work this depletion process is
performed in such a way that we get a very narrow distribution
of coordination numbers to avoid effects stemming from
fluctuating connectivity in the system.

The two fcc lattices [the bond-depleted, Fig. 1(b), and
with vacancies, Fig. 1(c)] are instead generated starting
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FIG. 1. Two-dimensional schematic of our 3D model systems. (a) The random network, (b) the fcc lattice with randomly cut bonds, and

(c) the fcc lattice with randomly removed atoms.

from a perfect fcc lattice with Z = 12 and the same spring
constant « and lattice constant R, as the random lattice. The
microstructure, and, in particular, the local symmetry, of the
three lattices is, however, very different. For example, in Ref.
[17] it was shown that the standard bond-orientational order
parameter Fg, which measures the spread in the orientations
of bonds on the lattice [18], is practically equal to 1 for the
bond-depleted fcc (for any Z value), whereas it is much lower
(=~0.3) for the random lattice.

For these models we develop an analytical theory of
viscoelastic response based on the nonaffine deformation
formalism, which is a fully microscopic approach. Our
analysis shows that, surprisingly, the oscillatory moduli of
these systems fall onto a master curve after normalizing
by an order parameter which describes the average degree
of local inversion symmetry on any atom. The same order
parameter controls the nonaffine particle rearrangements that
have a cooperative quasilocalized character, which explains
the findings of simulations [6]. Further, the power-law creep
G ~ t7'/2 found near the isostatic transition of all the three
lattices is shown to be the consequence of both the excess of
soft modes in the DOS, and, crucially, also of the underlying
nonaffine dynamics.

III. FORMALISM

The starting point of our analysis is the microscopic
equation of motion for a particle in a disordered lattice, which
was derived by Lemaitre and Maloney for the case of a
phenomenological damping motion with constant damping
coefficient v, in Ref. [19], and was shown, also in Ref.
[19], to reduce to a simple harmonic-oscillator type equation
for the deviation variable x;, which measures the particle
displacement from the original position:

(D

We used the Hessian of the system gij = —BZU/BLiBLj =
_aL/agj and the nonaffine force &, ,, = Bii/an,(x. Here,
n«y denotes the Cauchy strain tensor for a generic deformation
field. For a shear deformation, « x = xy. The nonaffine force
&, ., represents the net force that acts on a particle that is
en route towards its affine position. If the particle’s original
position in the undeformed lattice is R, the affine position

is defined as r; , = nR; . In a perfectly centrosymmetric

lattice, the particle en route towards this affine position receives
forces from its nearest neighbors which cancel each other
out by symmetry, leaving the particle at equilibrium in the
affine position. In a disordered lattice, due to local breaking
of inversion symmetry on the given particle, these forces do
not cancel, and their vector sum is a net force that brings the
particle to a final (nonaffine) position which differs from r; 4.
For a generic harmonic lattice with no prestress, the nonaffine
force vector is defined as §; .5 = —Rok ) _; ﬁ;’;ﬁfjﬁlj, with Rg
and « being the rest distance and force constant between the
particles. The sum is performed over the nearest neighbors and
includes the unit bond vector 7;; pointing from atom i to j.
Normal-mode decomposition of the terms in Eq. (1) onto
the eigenvectors v » (where p = 1...N) of the Hessian, and
taking the Fourier transform of the equation of motion as in
Ref. [19], lead to the complex viscoelastic shear modulus for
oscillatory shear deformation (with imposed frequency €2):

D(0)['(w)
mw? —m2 +ivQ

(@)

wp
G*(Q)=G* — 3,0/
0

Here, we introduced tlAle freguency correlator of the n(znafﬁne
forces, I'yyry(@) = (Ep xy EPva)pe{w,aH—Sw}’ where 8, =
&g,, v, Also, p = N/V is the atomic density, or number of
atoms (or nodes) on the lattice per unit volume. G* is the affine
shear modulus (also known as the Born-Huang modulus),
which is independent of the applied frequency €2, and coincides
with the elastic response in the limit 2 — oco. Here, w
denotes the eigenmode frequency of internal vibrations of the
lattice, and wp denotes the Debye frequency, i.e., the highest
frequency of the vibrational spectrum. The latter spectrum,
i.e., the normalized distribution of vibrational eigenmodes is
represented by the DOS, denoted here as D(w). The mass of
the particles m is set to 1 for the reminder of the paper, since
it is of no concern in the present work.

The above sum rule allows the calculation of the complex
shear modulus for any harmonic lattice for which both the
DOS and the correlator function I'(w) can be easily evaluated
numerically. For the DOS we follow the same procedure as
in Ref. [17], whereas for I'(w) we follow the procedure of
Ref. [19]. This is a straightforward exercise for the three model
lattices shown in Fig. 1.
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IV. RESULTS

We have calculated G*(£2) for the three lattices with two
different average coordination numbers, Z = 7.0, where all
lattices are mechanically well stable, Z = 6 (for the fcc with
vacancies) and Z = 6.1 (for the two bond-depleted systems),
i.e., at or close to the point of marginal stability. First, we
calculated the vibrational density of states D(w) and the
correlator function I'(w), which are shown in Fig. 2. Since
these quantities appear as the D(w)I"(w) product in Eq. (2), it
is convenient to study this product as a single function of w.

Remarkably, we notice from Fig. 2 that, although D(w) and
I'(w) behave differently for each of the three systems and have
a rather complicated form, their product, when normalized by
the quantity (|E|%)/p, shows a strikingly universal behavior
over the full frequency range, and can be fitted by a simple
cubic function of w, of the form

PHYSICAL REVIEW E 95, 023001 (2017)

Here, the quantity (|E|?) is evaluated by taking the square of
the absolute value of each vector |E;|, constructed for each
atom 7, and averaging over all atoms in the system. This same
quantity has been used to form a suitably normalized order
parameter in Ref. [17].

Since D(w) approaches a low-w plateau in the limit of
marginal stability (Z — 6), as is known from many studies in
the past [20,21]), the low-frequency behavior of D(w)I'(w) is
dominated by the correlator function I'(w) ~ w?, a result that
was derived in Ref. [22]. It is interesting to note Dirac-delta
spikes in I'(w), which happen at frequencies that correspond
to strongly localized modes: At Z = 6 a spike is visible near
the top of the spectrum, where modes tend to be Anderson
localized. At Z = 7, instead, a spike is visible at a frequency
close to the Ioffe-Regel crossover [23] (and to the boson peak
frequency) where modes are also strongly localized [17].

Let us now consider the viscoelastic response of the

D(0)I'(w) ) three model systems. We use the convention of splitting
1EPY/p wX(wp — ). () the complex shear modulus into its real and imaginary part
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FIG. 2. (a), (b) Density of states D(w) and (c), (d) correlator function I'(w) for the three different model systems and two different
coordination numbers (Z = 6.1 and Z = 7, respectively). They are normalized by (| E|*)/p, proportional to the average absolute square of the
nonaffine force field to obtain a master curve. (e) and (f) show the product D(w)I"(w) which appears in the formula for G*(£2). Remarkably,
the product of the two functions can be conveniently fitted by a simple cubic function w?(wp — ), represented as a solid line.
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G(Q) = G'(2)+iG"(2). Both moduli can be calculated
according to

oy _ A “r D)l ()(@® — Q%)
G/ = G* — 3p /0 e @
P > D()'(w)rQ2
G-y [ I ©)

and are plotted in Fig. 3. In the numerical calculation
we implemented the convenient cubic form of the product
D(w)T'(w) that was shown above to be an excellent fitting to
the numerical evaluation of these functions. Various scalings
have been reported in the plots, which can be extracted
from the asymptotic analysis of Egs. (4) and (5), most
notable of which are the low-frequency scalings of G”(2),
which agree very well with the Effective Medium Theory
(EMT) results from Ref. [7] (G ~ Q!/? for Z ~ 6 and
G" ~ Q for Z = 7). Deviations from their numerical results
(G” ~ Q%41 might be caused by finite temperature effects
in their simulations (whereas our calculation is carried out
at T = 0). In our work we have used different values of the
damping coefficient v to study its influence on the results. We
found that it has no influence on the qualitative behavior of
G’ and G”, besides when it approaches very small values,
where we get divergent results. Aside from that, v only
shifts the values to smaller €2 and expands the range of the
~Q~! scaling in G”. We therefore chose a quite large value
v = 10’000 to demonstrate this behavior clearly and to focus
on the physically important case of overdamped dynamics
typical of amorphous solids (metallic glasses, organic glasses,
foams, etc.).
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Next, we consider the time-dependent shear modulus G (7),
which can be calculated by taking the inverse Fourier transform
of G*(R2),

dwd 2

3
GH)=G— —
) 7P

/Oo * D(w)T(w) exp(i2t)
b1

—00 J0 a)2—§22+iv§2

=G —3pte” ! /00 D(w)F(w)sinc(%\/4a)2—v2t)da).
0
(6)

Here, G is the infinite-time static shear modulus (which has
a strong nonaffine character), and sinc(x) = sin(x)/x denotes
the cardinal sine function. Numerical evaluations of Eq. (6)
for the three lattices at the two representative values of Z
are reported in Fig. 4. Again, we took advantage of the
simple cubic fitting Eq. (3) for the product D(w)I"(w), which
allows one to avoid the problem of a numerical gap between
zero frequency and the first eigenfrequency (this gap is not
negligible for systems with N < 10° and our simulated lattices
have N = 5 x 10*). For small times we observe a plateau that
corresponds to the high-frequency affine response, after which
a power-law decay is observed with an exponent comprised in
the range between —1/2 and —3/4. This power law can be
understood mechanistically as follows.

We focus on the limit of overdamped systems, which
is both important and turns out to be amenable to analytic
simplifications. For large v and large times we can simplify
the expression in Eq. (6). First, we take /v — 4w? ~ v — 2‘”72,
where we use w < v. We insert this into Eq. (6) and use the
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FIG. 3. (a), (b) G’ and (c), (d) G” of our three model systems for Z = 6 (left) and Z = 7 (right), respectively. In (c) and (d) in order to
collapse the loss modulus of the three systems onto a single master curve, we have normalized by the factor (| E|%)/p.
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FIG. 4. G(¢) of our three model systems for Z = 6 (left) and Z = 7 (right). We have indicated the different scaling ranges. One can see
that the power-law scaling, which is present on three to four orders of magnitude in time for Z = 6, breaks down for Z = 7. This is due to the

Debye ~ ? regime in the DOS being broader for Z = 7 (see text).

definition of sinh(x) to get

% D(@)[(w)sinh (41 — Z1)

G(t)~ 6 e*%’/ dw
P 0 w2 (v —2%2)
2 2
) r =2t vttt
_ 3,0/ () (a))(e 2e )da)
0 (v —2%)
1 [*° D()T o
Y 3p_/ Me—T’dw. 7
V Jo w

In the last step we have used v > 2w? /v and vt — w?t /v > 1.
This corresponds to a system of Maxwell elements with
relaxation times T = v/w?. We now recall the standard
relationship between the DOS and the eigenvalue spectrum
p(1) of the Hessian matrix, D(w)dw = p(A)dA, with > = A.
At the isostatic point of disordered solids, Z = 6, the DOS
develops a plateau of soft modes, which is visible in our
Fig. 2(a). This limit corresponds to the scaling p(A) ~ A~/?in
the eigenvalue distribution, which arises from the dominance
of random-matrix behavior in the spectrum, and this scaling
can be derived, e.g., from the famous Marcenko-Pastur
distribution of random-matrix theory, as discussed recently
in Ref. [24]. In our DOS, a scaling p(A) ~ a + 27172 where a
is a constant, is more appropriate since we are in fact slightly
above Z = 6, and this will explain the power-law exponents
in G(¢) being larger than 1/2 in our calculations. However,
we will stick to the simple p(A) ~ A~!/2 for the asymptotic
analysis. Recall now that T'(w) ~ @?, from the analytical
theory of nonaffine deformations [22], which implies T"(1) ~
A. Inserting these results in the last line of Eq. (7), we
obtain the following Laplace transform which can be easily

evaluated
® o1
G(1) ,\,/ Me—lfdk
0 A

00 3 —1/2y
~/ - e Mdy ~ 1712, (8)
0

This scaling for the power-law creep modulus was shown
in simulations of creep in athermal jammed systems in the

important work of Ref. [9], using a system of Kelvin-Voigt
elements (whereas we use a standard-linear solid or Zener
material). The theoretical argument that was proposed to
explain the scaling 1~!/? was not fully microscopic, because
the correlator between eigenmodes and shear field was taken
to be independent of the eigenfrequency, hence constant on
average for a given frequency interval. This is not a physically
justified approximation, because the correlator I'(w) in our
data (and also in Ref. [19]) displays a strong (and nonrandom)
dependence on the eigenfrequency, as one can see in Figs. 3(c)
and 3(d). Our model improves substantially on this aspect,
by including the eigenfrequency dependence of the nonaffine
correlator into the theoretical analysis of the scaling. In
this way, our framework provides a direct link between
the microscopic nonaffine dynamics and the viscoelastic
moduli.

V. CONCLUSION

Using the nonaffine response formalism, we studied three
model harmonic lattices with disorder, which have very
different microstructures (as reflected in, e.g., different values
of bond-orientational order parameter as shown in previous
work [17]). Yet, the three different lattices have qualitatively
the same (universal) viscoelastic response, i.e., G’ and G”
collapse onto master curves as a function of frequency, once
the moduli are normalized by a factor (|E|?)/p, where p is
the atomic density. Here, (|E|?) is crucially related to the
symmetry that controls this universality, i.e., the local degree
of inversion symmetry. This is evident from the definition
of the nonaffine force vector for harmonic lattices, g, ,, =
—Rox - ; A} i, The norm of this vector is clearly identi-
cally zero for all atoms in a perfectly centrosymmetric lattice
with no defects, whereas its value is larger for lattices where the
inversion symmetry is lowered. Hence, the parameter (E%)
crucially is proportional to the overall (spatially averaged)
degree to which local inversion symmetry is broken in a
disordered lattice.

These results thus identify the atomic-scale origin of inter-
nal friction and viscoelastic response in amorphous solids (e.g.,
glasses) with the local inversion-symmetry breaking, which
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is the same effect that causes a softer elastic response [17]
and is associated with quasilocalized avalanchelike nonaffine
motions [25]. Our framework provides a clear theoretical
explanation of recent simulation results [6] where internal
friction was shown to correlate with cooperative nonaffine

PHYSICAL REVIEW E 95, 023001 (2017)

motions and regions of lower local centrosymmetry. This
framework will play an important role in the rational design
of new materials with tailored viscoelastic response and
energy absorption properties in many materials science and
engineering applications.
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