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Discrete breathers in a mass-in-mass chain with Hertzian local resonators
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We report on the existence of discrete breathers in a one-dimensional, mass-in-mass chain with linear intersite
coupling and nonlinear, precompressed Hertzian local resonators, which is motivated by recent studies of the
dynamics of microspheres adhered to elastic substrates. After predicting theoretically the existence of discrete
breathers in the continuum and anticontinuum limits of intersite coupling, we use numerical continuation to
compute a family of breathers interpolating between the two regimes in a finite chain, where the displacement
profiles of the breathers are localized around one lattice site. We then analyze the frequency-amplitude dependence
of the breathers by performing numerical continuation on a linear eigenmode (vanishing amplitude) solution of
the system near the upper band gap edge. Finally, we use direct numerical integration of the equations of motion
to demonstrate the formation and evolution of the identified localized modes in energy-conserving and dissipative
scenarios, including within settings that may be relevant to future experimental studies.
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I. INTRODUCTION

Materials bearing local resonators are known to sup-
port unique dynamic phenomena, such as negative, highly
anisotropic, and extreme effective properties [1,2]. Systems
exhibiting these phenomena are commonly referred to as
locally resonant metamaterials and are often described using
linear dynamical models. One well-known model is a chain of
mass-in-mass unit cells, which consists of a lattice of intercon-
nected lumped masses, each with coupled local resonators [3].
By incorporating nonlinearity into locally resonant metama-
terials, their dynamics become more complex. For example,
metamaterials for both acoustic [2,4] and electromagnetic [4]
waves have demonstrated numerous nonlinear phenomena,
including tunability, harmonic generation, and the existence
of nonlinear localized modes.

A promising means to create nonlinear acoustic metamate-
rials is provided by granular media, which consist of closely
packed systems of particles that interact elastically. Granular
media have been shown to support a wide range of nonlinear
dynamic phenomena not encountered in conventional materi-
als [5–8]. In granular materials, the microstructural geometric
nonlinearity that stems from the shape of particles in contact
(commonly modeled using Hertzian contact mechanics [9])
results in an effective macroscopic nonlinear material re-
sponse. Previous works on granular media have demonstrated
numerous nonlinear effects, including solitary waves, shocks,
discrete breathers, tunable band gaps, frequency conversion,
and nonreciprocal wave propagation [5–8].

Recent theoretical and experimental works have combined
the concepts of locally resonant metamaterials with granular
media. Relevant contexts include, but are not limited to,
frequency shifting, harmonic generation, localized band-gap
modes [10], traveling waves, including ones with nonvanishing
tails [11,12], wave interaction [13], and other localized and
extended modes [14], as well as temporally periodic breathing
states [15,16] (to which we will return in what follows). In each
of these examples, the granular media provided a nonlinear
intersite coupling, while the local resonators were linear. Less

attention has been paid to cases in which granular particles
play the role of nonlinear local resonators.

In this work, we consider a one-dimensional mass-in-
mass system with linear intersite coupling and nonlinear
local resonators that follow the Hertzian contact model
with precompression. One motivation for considering this
model is its relevance in describing a granular metamaterial
consisting of a monolayer of microscale spheres adhered to
a substrate, wherein surface localized elastic waves, such as
Rayleigh surface acoustic waves (SAWs) and Lamb modes,
have been shown to hybridize with the contact resonances
of the microspheres in thick [17,18] and thin [19] substrates,
respectively. Within this context, we imagine the portion of the
substrate through which the localized elastic wave is traveling
as a linearly coupled chain that is locally coupled to an array
of nonlinear resonators representing the microspheres.

Systems similar to the one-dimensional, linearly coupled
chain with nonlinear local resonators considered here have
been previously explored. For example, amplitude-dependent
band gaps have been studied in a one-dimensional linear chain
with local resonators containing a cubic nonlinearity [20].
Other relevant works have also considered linear chains with
nonlinear coupling to a rigid foundation [21], or a nonlinear lo-
cal attachment [22], demonstrating heavily enriched dynamics
caused by small nonlinear perturbations.

The structure of interest in the present work is the discrete
breather (DB). Discrete breathers are solutions that are
periodically oscillating in time and exponentially localized
in space [23,24] that have been studied theoretically and
experimentally in many settings, involving a wide array of
physical mechanisms [25,26]. More recently, DBs have been
demonstrated in theoretical [27,28] and experimental [29–31]
studies of ordered granular chains without local resonators and
theoretically in the presence of linear local resonators [15,16],
as well as in nonlinear, locally resonant magnetic metamateri-
als [32–34] and systems of electromechanical resonators [35].

We use our model to describe a locally resonant granular
metamaterial for Rayleigh SAWs, consisting of a monolayer
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of microspheres adhered to a thick elastic substrate. The
two independent model parameters are fit to an experimental
system used in past work [17] so as to provide realistic
parameter values to the model wherever possible. Beginning
with the Hamiltonian version of our model, we predict the
existence of DBs in the extreme limits of vanishing and
strong intersite coupling, numerically compute a family of
DBs connecting the two regimes, and examine the frequency-
energy dependence of the DBs along the relevant branch
of solutions. We then study the formation and evolution of
the DBs via direct numerical simulations, considering both
energy-conserving and dissipative cases, including within
contexts that may be relevant to future experimental studies.
While these results are presented in the context of a specific
microscale system, we note that our model is given in
dimensionless form such that the results presented herein can
be applied and extended to related systems via a suitable
choice of parameters (for example, one could create a model
macroscale, locally resonant chain similar to the one studied
in Ref. [10], but instead use linear springs to connect the main
chain and Hertzian contacts in the internal resonators).

II. MODEL

A. Motivating physical scenario

Our chosen motivating physical scenario is shown in the
schematic of Fig. 1(a), which describes sagittally polarized,
plane SAWs traveling along the surface of a thick substrate.
Rayleigh SAWs are surface localized elastic waves that travel
along a solid surface (represented as an elastic half space in
theoretical descriptions) and have both in- and out-of-plane
(with respect to the sample surface plane) displacement com-
ponents [36]. Previous studies on monolayers of microspheres
adhered to thick substrates have shown that Rayleigh SAWs in
the substrate hybridize with, and excite, microsphere contact
resonances having translational out-of-plane [17] and coupled
in-plane translational and rotational motion [18,37]. The
hybridization with each of these resonances leads to classic
avoided crossing phenomena [38] characteristic of locally
resonant metamaterials and mass-in-mass chains. For the

(a)

(b)

Direction of Propagation

FIG. 1. (a) Granular metamaterial composed of a monolayer of
microspheres on an elastic half space. (b) Schematic of the 1D,
discrete granular metamaterial model.

analysis herein, we focus on the avoided crossing with the con-
tact resonance having solely out-of-plane motion [17,18,37].
Because a plane SAW is confined to the surface of the medium,
it can be considered as traveling in one dimension, and as
such, we represent the portion of the substrate through which
the SAW is traveling as an infinite lattice of lumped masses
m1 connected by springs with linear stiffness k1. Because
the contact-based modes of the microspheres [17,18,39,40]
have frequencies much lower than the intrinsic spheroidal
vibrational frequencies of the isolated spheres [41] (e.g. for
the microspheres studied in Ref. [17], the out-of-plane contact
resonance was measured to be 215 MHz, while the spheroidal
resonance was predicted to be 2.9 GHz), we model the
microspheres as point masses (of mass m2) connected to the
main chain by nonlinear springs modeling Hertzian contact
with a static adhesive load. The resulting discrete model of our
locally resonant granular metamaterial is shown in Fig. 1(b).
As can be seen in Fig. 1(b), the chain elements are both
drawn such that their motion is in the horizontal direction.
We note that this depiction simply represents the coupling
between a substrate (or chain) and a resonator, each having
a single degree of freedom with the same, albeit arbitrary,
direction of motion. Within the context of the previously
described physical scenario, this degree of freedom represents
out-of-plane motion of the substrate and the microsphere, as
the SAWs propagate along the sample surface indexed by j .

B. Hamiltonian 1D discrete model

In dimensionless form, the associated Hamiltonian equa-
tions of motion of the system shown in Fig. 1(b) read

Müj + K(−uj+1 + 2uj − uj−1) + 2
3 ([uj − vj + 1]3/2

+ − 1)

= 0 (1)

v̈j − 2
3 ([uj − vj + 1]3/2

+ − 1) = 0, (2)

where uj and vj are, respectively, the displacements from
equilibrium of the main chain and resonators, M = m1

m2
, K =

k1

(3/2)A
√

δ0
characterizes the relative strength of the elastic and

Hertzian terms, where the Hertzian coefficient A depends
on the geometry and material properties of the particles in
contact [9], and δ0 is the static overlap induced by the adhesive
force at equilibrium. The dimensionless time variable τ is
defined in terms of the physical time t by τ = ωhs

0 t , where

ωhs
0 =

√
(3/2)A

√
δ0/m2 is the resonant frequency of the local

oscillator on the elastic half space (measured as 215 MHz for
the system in Ref. [17]), and the displacements uj and vj are
normalized to δ0. Here [ ]+ indicates that the contact force
vanishes for resonators that lose contact with the main chain,
i.e., when the relative displacement vj − uj exceeds the static
overlap. The Hamiltonian (energy) corresponding to Eqs. (1)
and (2) is

H =
∑

j

[
M

u̇j
2

2
+ v̇j

2

2
+ K

2

(
u2

j+1 − 2uj+1uj + u2
j

)

+ 2

3

(
2

5
[uj − vj + 1]5/2

+ − (uj − vj )

)
− 4

15

]
. (3)
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FIG. 2. Blue solid and red dotted curves denote the dispersion
relations for the model with a continuous substrate from Ref. [17] and
our discrete granular metamaterial model, respectively. Black dash-
dotted lines have slopes equal to the transverse (cT ) and Rayleigh (cR)
wave sound speeds of the substrate. The black dashed line denotes the
linear natural frequency of the Hertzian local resonators. The discrete
model uses the fitted parameters M = 30 and K = 160.

Upon linearization, this system is identical to the one-
dimensional mass-in-mass chain discussed in [3]. Its disper-
sion relation is given by

M

(
ω

ωhs
0

)4

− {2K[1 − cos (kD)] + M + 1}
(

ω

ωhs
0

)2

+ 2K[1 − cos (kD)] = 0, (4)

where k is the Bloch wave number, ω is the angular frequency,
and D is the unit cell width, taken from the physical system as
the width of the granular particles.

C. Parameter fitting

The resulting model, as can be inferred from Eqs. (1)
and (2), possesses two effective lumped parameters, namely,
M and K . We now fit these discrete model parameters to
describe the microgranular metamaterial of Ref. [17], using the
material and geometric properties specified therein. We intend
for the discrete model to provide an adequate representation
of dynamical evolution for wavelengths significantly larger
than the sphere diameter, such that the dispersion relations for
our discrete model and the model with a continuous substrate
from Ref. [17] are in close agreement at long wavelengths, and
effects found at the Brillouin zone boundary [42] are avoided.
The dispersion relations for a continuous substrate [from
Eq. (2) of Ref. [17]] and the discrete model of Eqs. (1) and (2)
are superimposed in Fig. 2. First, we choose the ratio K/M

such that the long-wavelength sound speed of the discrete
lattice, given by D

√
K/M [42], matches the speed of Rayleigh

waves in the substrate for the model from Ref. [17]. This can
be seen graphically in Fig. 2, as the lower branches of the two
dispersion relations have equal slopes at the origin. Second,
making use of the analytical expression for the dispersion
relation of the continuous system in Ref. [17], we select K

such that the dispersion relations coincide at the intersection
with the line of slope cT , where cT is the transverse sound

speed of the substrate material. Using these two criteria, we
find the approximate fitted values M = 30 and K = 160.

The physical significance of these parameter values M

and K is as follows. For large mass ratios (M � 1), waves
in the main chain (corresponding to Rayleigh SAWs in the
substrate) are only perturbed at frequencies very close to the
local resonance; this is confirmed in Fig. 2, by the relatively
narrow band gap encompassing ω/ωhs

0 = 1. The large stiffness
ratio (K � 1) indicates strong coupling between lattice sites,
compared to the coupling between the main chain and the
resonators. Intuitively, parameters much greater than unity
are indeed expected for this system. This is because the
spheres are much smaller and less massive than the region
of the substrate beneath them that is influenced by Rayleigh
waves, whose displacements decay exponentially from the
surface with a characteristic decay length on the order of
one wavelength [36]. Similarly, the effective stiffness for
the region of bulk material of the substrate influenced by
the Rayleigh wave can be thought to have a significantly
greater effective stiffness than the relatively soft microsphere-
substrate Hertzian contact. While the fitted constants depend
on material and geometric properties, a simple estimate can be
used to show that M and K are generally larger than unity when
considering long waves in realistic materials, as described in
Appendices A and B.

Both of the dispersion relations shown in Fig. 2 are split, as
a result of the hybridization with the local resonance, into two
branches: the lower (acoustic) branch, in which the vertical
motions of the substrate surface and the spheres are in phase,
and the upper (optical) branch, in which the motions are out of
phase. The two branches of the discrete model are separated
by a band gap of width �ω, given by

�ω = ωhs
0

(√
1 + M

M

−
√

4K + M + 1 −
√

(4K + M + 1)2 − 16KM

2M

)
.

(5)

For the parameters values M and K used herein, this band
gap results in an upper cutoff frequency of the acoustic branch
0.08% below ωhs

0 and a lower cutoff frequency of the optical
branch 1.65% above ωhs

0 . In the continuous model, for phase
velocities greater than the sound speed of transverse bulk
waves (cT ) in the substrate, the optical branch terminates;
this is because the modes above that phase velocity are
so-called leaky modes. Such leaky modes have complex
frequency, which represents the radiation of energy into
the bulk [17,43,44], and are a major source of dissipation
in this system. Despite the presence of leaky modes, the
one-dimensional discrete model used in this work was chosen
over continuous and/or higher-dimensional models because
it captures many of the important features of the dispersion
relation (linear dispersion at long wavelengths and a band gap
created by a local resonance), facilitates theoretical prediction
and numerical computation of discrete breathers, and can
easily be adapted to account for dissipation in a chosen
experimental system (as will be demonstrated in Sec. V).
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III. THEORY

A. Anticontinuum limit

We start our analysis by considering the so-called anti-
continuum (AC) limit of vanishing coupling. This approach,
pioneered by MacKay and Aubry in [45], is based on the
limit K → 0, corresponding to uncoupled oscillators. While
this limit is of limited physical relevance for our considerations
herein, it is a particularly useful mathematical tool as a starting
point for considering different breather-type configurations.
This enables a natural starting point to seed continuation
algorithms, which are then continued in the parameter K in
order to identify solutions for different values of the relevant
parameter. In the AC limit, our system has the form

Müj = − 2
3 ([uj − vj + 1]3/2

+ − 1), (6)

v̈j = 2
3 ([uj − vj + 1]3/2

+ − 1). (7)

We obtain a single oscillator by defining z = uj − vj , where

z̈ = −2

3
ω̃2

0([z + 1]3/2
+ − 1), ω̃2

0 = 1 + M

M
. (8)

In addition to the trivial solution z = 0, there are nontrivial
solutions of Eq. (8) that are the level curves of the energy
E(z,ż) = 1

2 ż2 + 4(1+M)
15M

([1 + z]5/2
+ − 5

2z). To construct a solu-
tion along the infinite lattice, each node is given as z = 0 or
the periodic function (say, with frequency ω̃b) satisfying (8).
In this paper, we consider the simplest such configuration,
namely, the one consisting of zeros at every node with the
exception of one [see Fig. 3(a)]. Due to Ref. [45] we know that
this solution will persist for nonzero K as long as the so-called
nonresonance condition ω̃b �= nω̃∗

0, n ∈ Z, is satisfied, where
ω̃∗

0 ∈ {0,ω̃0} is the frequency of solutions of the linearized
equations at K = 0. While any such value of ω̃b will yield
a persistent breather solution, we choose 0 < ω̃b < ω̃0. Note
that the two branches of the dispersion curves given by Eq. (4)
bifurcate from 0 and ω̃0 as the coupling K becomes nonzero.
Thus, by choosing 0 < ω̃b < ω̃0 we are able to construct a
band-gap breather. The numerical continuation (see Sec. IV)
suggests that the solution constructed in the AC limit persists
to the opposite limit K → ∞. In this limit, other analytical
techniques are available for the analysis of the solutions, which
we explore next.
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FIG. 3. (a) Single-site solution in the AC limit (K = 0) with
ω̃b = 1.01. (b) Breather profiles of frequency ω̃b = 1.01 from the
NLS ansatz (black solid curve) and numerical solution (red circle
markers) with K = 160. Here we use M = 30.

B. Continuum limit and nonlinear Schrödinger approximation

For the purposes of the analysis, we consider small-
amplitude solutions (i.e., |uj − vj | 	 1). Thus, it is reasonable
to expand the nonlinearity in a Taylor series

[1 + x]3/2 = 1 + 3
2x + 3

8x2 − 3
48x3 + · · · ,

where the dots denote higher-order terms. In addition, if we
formally consider K = 1/D2, where D is the lattice spacing
and we let D → 0, then Eqs. (1) and (2) become

M∂ττu − ∂xxu + (u − v) + 1
4 (u − v)2 − 1

24 (u − v)3 = 0,

(9)

∂ττ v − (u − v) − 1
4 (u − v)2 + 1

24 (u − v)3 = 0. (10)

We approximate solutions of the above set of equations with
the ansatz

uan = εA(X,T )E(x,τ ) + c.c. + · · · ,

where X = ε(x − cτ ), T = ε2τ , A = A(X,T ), and E =
E(x,τ ) = ei(kx+ω̃τ ), where k is the Bloch wave number, ω̃ =
ω/ωhs

0 , and ε is some small positive parameter. Substitution
of the ansatz into Eqs. (9) and (10) and equating the various
orders of ε yields a hierarchy of solvability conditions. The
particular choice of ansatz is well known to yield a nonlinear
Schrödinger (NLS) equation for the envelope function A(X,T )
in the theory of nonlinear waves [46]. For our system, in order
to derive the NLS equation, we need several higher-order terms

uan = εAE + ε2a2A1E
2 + ε3a4A3E

3 + ε3a6A5

+ ε3a8A7E
2 + ε3a10A9E + c.c., (11)

van = εa1AE + ε2a3A2E
2 + ε3a5A4E

3 + ε2a7A6E

+ ε3a9A8E
2 + ε3a11A10E + c.c. + ε2a12AĀ, (12)

where each Ai = Ai(X,T ) and the ai are real or complex
coefficients. In particular, we will use

A1 = A2 = A2, A3 = A3 = A4, A5 = Ā∂XA,

A6 = ∂XA, A7 = A∂XA = A8, A9 = ∂T A, A10 = ∂2
XA.

These relations are obtained through the solvability conditions,
which can be found in Appendix C. We highlight here that at
O(εE) the solvability condition is the dispersion relation

Mω̃4 − [k2 + M + 1]ω̃2 + k2 = 0. (13)

The connection between this dispersion relation and the one
in Eq. (4) can be seen by Taylor expanding the cosine terms of
Eq. (4). The NLS equation appears at O(ε3E),

[(Mω̃2 − k2 − 1)a10 − 2iMω̃]∂T A

= (Mc2 − a11 − 1)∂2
XA

+
(

1 − a1

2
(a2 − a3 − a12) + (1 − a1)3

8

)
|A|2A. (14)

Closed-form analytical solutions of the NLS equation (14) can
be found via the inverse scattering transform [46]. One well
known solution is the so-called bright soliton and is given by

A(X,T ) = √
γα sech(

√
γ βX)e−iγ T , (15)
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where α and β are ε independent coefficients that depend on
the coefficients of the NLS equation (14) (see Appendix C) and
γ > 0 is an arbitrary parameter. Such solutions arise when the
coefficient of the dispersion term and that of the nonlinearity
have the same sign, which is the case for the parameter values
chosen here.

Thus, at first order, we have the approximation

u(x,τ ) ≈ ε
√

γα sech(β
√

γX)e−iγ T ei(kx+ω̃τ ) + c.c., (16)

which is a traveling plane wave that is modulated by a small-
amplitude, long-wavelength, and slowly varying localized
function. For k = 0, this approximation reduces to

u(x,τ ) ≈ ε
√

γα sech(βε
√

γ x)ei(ω̃0−γ ε2)τ + c.c., (17)

which represents a standing breather with frequency ω̃b =
ω̃0 − γ ε2 [see Fig. 3(b)]. Here ω̃2

0 = (M + 1)/M represents
the lower cutoff of the optical branch of the dispersion relation
[see Eq. (4) with k = 0]. Since ε is a small parameter, the
breather frequency ω̃b is near the lower cutoff of the optical
branch, but within the gap. Note that the amplitude and width
of the breather are both O(ε

√
γ ). Hence smaller-amplitude

and wider breathers are found closer to the optical branch
band edge. Recalling the results of the previous section on
the AC limit, we were able to construct a breather solution
with frequency ω̃b < ω̃0. If we define γ ε2 = ω̃0 − ω̃b, then
our NLS approximation (17) (which is valid for large K)
will have, to first order, the same frequency as the AC limit
breather (which is relevant for small K). In the next section
we will perform parametric continuation in K in order to
connect the approximations in the two opposing limits K = 0
and K → ∞.

IV. NUMERICAL INVESTIGATION OF BREATHERS

A. Continuation in intersite coupling stiffness K

The analysis above allows us to describe breather solutions
of Eqs. (1) and (2) in the limits K → 0 and K → ∞. In order
to connect these two pictures, we identify periodic orbits and
explore their parametric continuation [47]. Our seed solution
(initial guess) will be the AC limit solution with a single
excited site [see Fig. 3(a)]. For the example considered in
this section, we use the fitted value M = 30 from Sec. II C
and we choose the breather frequency ω̃b = 1.01. Note that
in this case ω̃0 = √

1 + 1/30 > 1.01. For a fixed breather
period Tb = 2π/ω̃b, we use the fact that uj (0) = uj (Tb) and
vj (0) = vj (Tb) to construct the Poincaré map

P ([u0,v0]; Tb) =
[

u(0; u0,v0)
v(0; u0,v0)

]
−

[
u(Tb; u0,v0)
v(Tb; u0,v0)

]
, (18)

where u(τ ; u0,v0) = {un(τ )}n∈[0,N] and v(τ ; u0,v0) =
{vn(τ )}n∈[0,N] is the solution to Eqs. (1) and (2) with initial
condition u(0) = u0 and v(0) = v0. Therefore, a periodic
solution with period Tb of Eqs. (1) and (2) will be a root
to (18). A Newton-Raphson algorithm is used to approximate
the roots of P [24]. The Jacobian is J = I − V (Tb), where
V (Tb) is the monodromy matrix. The eigenvalues of V (Tb) are
the Floquet multipliers of the periodic solution. The breather
is considered (spectrally) stable if all Floquet multipliers lie on
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FIG. 4. The top panel is the continuation diagram (Hamiltonian
energy versus coupling parameter K), where the breather frequency
and mass ratio are fixed as ω̃b = 1.01 and M = 30, respectively. The
dashed black line is the Hamiltonian of the NLS approximation of
Eq. (17), given by Eq. (3), with K = 160. The bottom left and right
panels are the main chain displacements uj and the local resonator
displacements vj , respectively, taken at particular values of parameter
K: for I, K = 5; for II, K = 20; and for III, K = 160.

the unit circle. Since the system is Hamiltonian, any Floquet
multiplier lying off the unit circle signals instability [24].

The solution for a frequency (ω̃b = 1.01) is found for K

close to 0 (here K = 0.01). Parameter continuation in K is
performed and is plotted against the Hamiltonian energy of
Eq. (3), as shown in Fig. 4. In this way, we are able to trace
out a branch of solutions that emanates from the AC limit
and approaches the continuum limit solution, which is well
described by the NLS approximation of Eq. (17) (see the black
dashed line of Fig. 4). Here we terminate the continuation
at K = 160, which corresponds to the stiffness parameter
extracted by fitting the discrete model to the locally resonant
half-space model from Ref. [17] (see Sec. II C).

The numerical computations were performed on a system
of 201 unit cells. This solution was spectrally stable for all
values of K considered.

B. Continuation in frequency ω̃

The continuation in K of the previous section was ter-
minated at the parameter value K = 160 (note that M = 30
and ω̃b = 1.01). We now set M = 30 and K = 160 and
vary the breather frequency ω̃b using a pseudo-arc-length
continuation procedure [48,49]. This allows us to visualize
the energy-frequency dependence of the breathers, as may be
studied in an experiment with varied excitation amplitude.

As a seed for the continuation, we use the eigenmode of the
linearized system nearest the lowest optical band edge, which
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FIG. 5. (a) Hamiltonian energy-frequency plot of the family of
breather solutions bifurcating from the lowest eigenmode of the
optical band. Black dashed lines indicate the edges of the linear
phonon band gap. The red star corresponds to the breather shown in
Fig. 3(b). (b)–(e) Breather displacement profiles corresponding to the
points labeled I–IV, respectively, in (a). The main chain displacements
uj are shown as black points and those of the local resonators vj are
shown in red.

is a time-periodic solution of the full nonlinear equations of
motion under conditions of vanishing amplitude. We have
included a check in our computations to detect a loss of
contact between the main chain and resonators and continue
the solution branch until this point.

As shown in Fig. 5, the continuation reveals a family of
DBs that extends from the linear eigenmode at vanishing
amplitude and traverses the band gap (and into the passband).
In Fig. 6(a), we show the maximum magnitudes of the Floquet
multipliers of the branch. This family of DBs exhibits behavior
similar to those found in previous studies of diatomic granular
chains [27], where the DBs are linearly stable for frequencies
very close to the lower cutoff frequency of the optical branch.
As the frequency decreases, the breather profiles become
progressively more localized in space, as can be seen in
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FIG. 6. (a) The blue solid curve shows the maximum magnitude
of the breather Floquet multipliers. Black dashed lines indicate the
edges of the linear phonon band gap and the inset shows a magnified
view of the data in this range. (b)–(e) Floquet multipliers (blue dots)
of the solutions labeled I–IV, respectively, in (a), corresponding to
the same points in Fig. 5. In (d) and (e), axis limits are chosen to
emphasize the deviation from the unit circle, which is shown as a
visual aid (red dashed lines).

Figs. 5(b)–5(d). The Floquet multipliers corresponding to the
modes shown in Figs. 5(b)–5(d) are shown in Figs. 6(b)–6(d),
where small deviations from the unit circle can be seen in the
latter figures. For breather frequencies below the band gap,
interactions with the acoustic band generate oscillating tails,
as shown in Fig. 5(e), and Floquet multipliers depart from
the unit circle along the real axis, as shown in Fig. 6(e). We
note that boundary effects are significant in the presence of
oscillating tails, so the finite-length DBs do not accurately
approximate the case of an infinite lattice. As an aside, we
also point out that contrary to what is the case in the work
of [27,29] for a granular crystal, here the dependence of the
energy (Hamiltonian) on the frequency is monotonic, hence,
in accordance with the recent criterion of [50], no instability
arises from changes of monotonicity in this dependence.
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FIG. 7. Spatiotemporal plots of the relative displacements
vj − uj of the simulated lattice for high- and low-amplitude ex-
citations, using eigenmode and DB profiles as initial shapes. Side
panels contain spatial profiles of vj − uj at the final time step,
normalized to the maximum value. (a) Eigenmode shape with low
amplitude (approximate periodic solution). (b) DB shape rescaled to
low amplitude. (c) Eigenmode shape rescaled to high amplitude. (d)
DB shape with high amplitude (exact periodic solution).

V. NUMERICAL SIMULATIONS

A. Hamiltonian case

To explore the dynamics of DBs in our model, we simulate
a lattice with 201 unit cells via direct numerical integration
of the equations of motion given by Eqs. (1) and (2). We
consider initial conditions in two shapes: the profile of the DB
with frequency ω̃b = 1.01 and maximum Floquet multiplier
magnitude max(|λi |) = 1.001 [as shown in Fig. 3(b) and
denoted by the star in Fig. 5(a)], as well as the profile of
the seeding eigenmode used in Sec. IV B.

For each of these shapes, we scale the amplitude in two
ways. In the case of the DB shape, we consider the exact
breather shape computed via continuation (high), and then
consider a rescaled DB shape, such that the initial displacement
v101 of the local resonator at the central lattice site is equal to
one-hundredth of that of the exact solution (low). Similarly,
we consider the shape of the seeding eigenmode, scaled
such that the initial displacement v101 of the local resonator
at the central lattice site is matched to the low-amplitude,
rescaled DB shape (low), and then finally consider a rescaled
eigenmode shape, such that the initial displacement v101 of the
local resonator at the central lattice site is equal to that of the
exact DB solution (high). Thus, there are four sets of initial
conditions: the DB shape with high amplitude [Fig. 7(d)],
which results in an exact periodic solution of Eqs. (1) and (2);

the eigenmode shape with low amplitude [Fig. 7(a)], which
closely approximates a periodic solution; the DB shape
rescaled to low amplitude [Fig. 7(b)], which is not a true
periodic solution; and the eigenmode shape rescaled to high
amplitude [Fig. 7(c)], which also is not a periodic solution.
The duration of all simulations is 200Tb, where Tb = 2π/ω̃b

is the period of the exact DB solution.
Spatiotemporal plots of the relative displacements vj − uj

of the simulated lattice, using the low- and high-amplitude
DB profiles as initial conditions (i.e., the rescaled DB and
exact solution), are shown in Figs. 7(b) and 7(d), respectively,
and the corresponding cases using the eigenmode shape (i.e.,
the approximate periodic solution and corresponding rescaled
profile) are shown in Figs. 7(a) and 7(c). As shown in
Figs. 7(b) and 7(d), the breather shape spreads out from
the central lattice sites at low amplitude, but remains highly
localized when initiated with the energy of the exact solution.
Conversely, as shown in Figs. 7(a) and 7(c), the eigenmode
shape shows no noticeable distortion at low amplitude, but
self-localizes and eventually breaks up at high amplitude. In
this breakup, many smaller DBs are formed, a process arguably
reminiscent of multiple filamentation in nonlinear optics [51],
which also move in space. Thus, in future experiments on
this system (e.g., using photoacoustic techniques, as in [17]),
DBs could be detected by impulsively exciting a large spot on
the substrate surface and observing the formation of smaller,
highly localized wave packets.

B. Effects of energy leakage

While we have considered a Hamiltonian model in this
work as a foundation, energy losses may play an important
role in the dynamics. The effects of losses have previously
been examined in macroscopic granular systems [8,30,52–
54] and also in the study of the attenuation of Rayleigh
waves by randomly distributed surface resonators [44,55].
In this section, we conduct a preliminary study of energy
losses on the DB dynamics, focusing on losses caused by
radiation of energy into the bulk of the material, which
is incurred by the long-wavelength leaky modes satisfying
ω > kcT considered in previous sections. We first estimate
the strength of dissipation by considering the rate of energy
leakage into the substrate in the system studied in Ref. [17],
in the long-wavelength limit. For a plane wave with real
wave number k and complex frequency ω + iη, the amplitude
decays in time proportionally to e−ηt ; thus, the rate of decay
is found by solving the dispersion relation for this complex
frequency, with wave number k = 0. The dispersion relation
(reproduced from Ref. [17] and substituting our own variable
symbols) is given by

(
ω2(

ωhs
0

)2 − 1

)[(
2 − ω2

k2c2
T

)2

− 4

(
1 − ω2

k2c2
L

)1/2(
1 − ω2

k2c2
T

)1/2
]

= m2

Acρ1

ω4
(
1 − ω2

k2c2
L

)1/2

k3c4
T

, (19)

where m2 and ωhs
0 are the mass and undamped natural

frequency of the local resonator, respectively; Ac = √
3/2D2

is the area of a unit cell containing a single microsphere of
diameter D; ρ1 is the density of the substrate; and cL and
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FIG. 8. Schematic of a single unit cell of the damped mass-in-
mass lattice, with dimensionless parameters.

cT are the longitudinal and transverse bulk sound speeds of
the substrate, respectively. We find a decay rate at k = 0 of
η0 = m2(ωhs

0 )2/2Acρ1cL.
To facilitate comparison of the decay rate with other

systems, we define the normalized decay rate η̃ = 2πη/ω,
where 1/η̃ can be interpreted as the number of oscillation
cycles needed to reduce the amplitude by a factor of e (at some
characteristic frequency ω). For the material and geometric
properties considered in this work, we estimate the normalized
decay rate to be η̃0 = 2πη0/ω

hs
0 ≈ 0.4.

Effects related to disorder, which have been discussed [17]
and studied [44,55] in prior works on interactions between
Rayleigh waves and surface oscillators, are also a potential
major source of loss; however, in this study, we consider the
possibility of highly ordered systems. In addition to radiative
and disorder-related sources of loss, other types of dissipation
will be present, but we expect them to be relatively small.
For example, acoustic absorption in glass is about 0.5 dB/cm
at frequencies near 200 MHz and room temperature [56];
assuming a Rayleigh wave with frequency ωhs

0 and velocity
of 3409 m/s [17], this results in η̃ = 9 × 10−5. Aerodynamic
drag in air (modeled by Stokes’ Law, assuming 1 μm
diameter spheres [57]) results in η̃ = 3 × 10−4. Finally, plastic
deformation due to contact forces, if present, will not cause
significant hysteresis during the elastic loading-unloading
cycles.

To account for energy losses, in a way that is consistent with
radiation into the bulk in the continuous granular metamaterial
model, we modify our conservative system of equations (1)
and (2) by placing a linear damper in each local resonator (as
shown in Fig. 8) with a damping coefficient defined as � =
η̃/π such that the exponential decay in time is proportional
to e−η̃/(2π)τ and �0 = η̃0/π . With the damping included, the
equations of motion become

Müj + K(−uj+1 + 2uj − uj−1)

+ 2
3 ([uj − vj + 1]3/2

+ − 1) + �(u̇j − v̇j ) = 0, (20)

v̈j − 2
3 ([uj − vj + 1]3/2

+ − 1) − �(u̇j − v̇j ) = 0. (21)

Using Eqs. (20) and (21), we repeat simulations of the 201-cell
mass-in-mass chain, using the high-amplitude eigenmode and
exact DB shapes [as in Figs. 7(c) and 7(d)] as initial conditions.
The case � = �0 is shown in Figs. 9(a) and 9(b), where it can
be seen that the oscillations die out after only a few oscillation
cycles; this estimate indicates that the leakage of energy
into the substrate may prohibit the observation of a standing
localized mode in experiments on the particular system of

FIG. 9. Spatiotemporal plots of the relative displacements
vj − uj of the simulated lattice for several damping coefficients:
(a) and (b) � = �0, (c) and (d) � = �0/4, (e) and (f) � = �0/16,
and (g) and (h) � = �0/100. Left and right panels correspond to the
eigenmode (rescaled to high amplitude) and DB excitations used in
Figs. 7(c) and 7(d).

Ref. [17], without adding further energy into the system to
support the DB structure. However, this does not necessarily
prohibit localized structures stemming from nonleaky modes.
In this system, this corresponds to wave-number–frequency
pairs below the line with slope cT in Fig. 2. Such solutions
would be traveling breathers and can be easily obtained from
our analysis of Sec. III B by choosing a nonzero wave number
in Eq. (16). A detailed investigation of such solutions would
be a topic for future study.

In addition, while the attenuation due to energy leakage is
significant for the monolayer of Ref. [17], it is straightforward
to modify the system to reduce these losses by orders of
magnitude; for example, if the spheres were instead placed
with a spacing of 10D, the unit cell area Ac would increase
by a factor of 100, causing a proportional reduction in the
damping coefficient �. As shown in Figs. 9(g) and 9(h),
for the case � = �0/100, the dynamics of the Hamiltonian
model are retained for roughly half the simulation time (on
the order of 100 oscillations) and localization around the
central lattice site persists. Two intermediate cases are shown
in Fig. 9(c) and 9(d) and Figs. 9(e) and 9(f), corresponding
to damping coefficients � = �0/4 (sphere spacing 2D) and
� = �0/16 (sphere spacing 4D), respectively. Very light
damping could also be achieved in systems with different
geometries, such as a thin substrate (e.g., the locally resonant
membrane of Ref. [19]) without altering the unit cell spacing,
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because energy would not be able to radiate. Additionally,
we note that light damping (specifically, attenuation rates one
order of magnitude smaller than Ref. [17]) has already been
achieved experimentally in macroscale granular crystals. For
example, both Refs. [52] and [30] characterized dissipation in
experiments and found time constants on the order of a few
milliseconds, at frequencies near 5 kHz, resulting in η̃ ≈ 0.08
and η̃ ≈ 0.04, respectively, which suggests possible future
realizations of our model at the macroscale.

VI. CONCLUSION

In this work, we have demonstrated the existence of discrete
breathers in a mass-in-mass chain that models a locally reso-
nant, granular metamaterial composed of spheres adhered to a
substrate. This model consists of a linearly coupled main chain
(representing the substrate) with nonlinear local resonators that
follow the Hertzian contact law (representing the spheres).
After fitting the two independent model parameters to a
microscale system studied in previous works, we analyzed
the resulting energy trapping in the Hamiltonian version of
our model, in the form of discrete breathers, theoretically, in
the anticontinuum and continuum limits of intersite coupling,
as well as numerically, by using the intersite coupling stiffness
and oscillation frequency as continuation parameters. Finally,
we simulated the formation and filamentation, in the form
of discrete breathers, of single-humped wave packets using
direct numerical integration of the equations of motion. The
simulations suggest that discrete breathers may be observed
in experiments on granular metamaterials by generating a
long-wavelength excitation at high amplitude and detecting
its breakup into many small discrete breathers. Simulations
including energy losses suggest that the dynamics of the
Hamiltonian model are mostly preserved in cases with light
damping. However, in cases where the substrate is very
thick, energy losses due to radiation into the bulk may
inhibit the experimental observation of discrete breathers,
though the leakage may be mitigated significantly by choosing
suitable system parameters (e.g., the unit cell spacing, in the
specific system discussed above). We expect this work to aid
in future studies of nonlinear granular systems as well as the
more general class of media composed of a linear material with
local nonlinear resonant attachments. Indeed, the dynamics
and interactions of discrete breathers (as well as their potential
filamentation and dispersion) in one- to three-dimensional
analogs of such systems may yield numerous topics that could
be both theoretically intriguing and experimentally accessible
for further study. Also, it should be borne in mind that here
we only explored the focusing variants of the relevant models
and their bright solitons. Yet, in line with recent explorations
in granular crystals [30] and in systems with resonators [15],
the self-defocusing case may also be interesting and equally
accessible in different parametric regimes.
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APPENDIX A: ESTIMATION OF THE MASS RATIO M

The local resonator mass is taken to be the mass of a single
microsphere, given by m2 = 4/3π (D/2)3ρ2, where ρ2 is the
density of the microsphere material. We estimate the main
chain mass as that of a rectangular region of the substrate
beneath a single microsphere. Since Rayleigh SAWs have a
characteristic decay length on the order of the wavelength
λ [36], this region has mass m1 = λD2ρ1, where ρ1 is the
density of the substrate material.

The mass ratio is then given by

M = m1/m2 =
(

6

π

ρ1

ρ2

)
λ

D
, (A1)

where the quantity in parentheses is expected to be of order
∼1 for most material combinations and the quantity λ/D is
at least of order ∼101, since we consider long wavelengths.
Therefore, we estimate M ∼ 101.

APPENDIX B: ESTIMATION OF THE
STIFFNESS RATIO K

The local resonator stiffness is taken from Hertzian contact
theory [9], linearized about the static overlap distance δ0 due
to adhesion, using the same model as Ref. [17]. This stiffness
is given by k2 = (3/2)A

√
δ0. Here A = (4/3)E∗√D/2, with

E∗ = [(1 − ν2
1 )/E1 + (1 − ν2

2 )/E2]−1, where E1,2 and ν1,2 are
Young’s modulus and Poisson’s ratio, respectively, with sub-
scripts corresponding to the substrate and sphere materials [9].
The static overlap is δ0 = (FDMT/A)2/3, where FDMT = πwD

is the force due to adhesion as per the Derjaguin-Muller-
Toporov adhesive elastic contact model [58] and w is the work
of adhesion between the sphere and substrate materials. The
main chain stiffness is estimated in a similar manner to the
mass m1, using an element of the substrate with length D in
the direction of SAW propagation and cross-sectional area λD.
The estimated stiffness is then k1 = E1λ.

After algebraic manipulation, the stiffness ratio can be
written as

K = k1/k2 ≈
(

8
(
1 − ν2

1

)2

3π

)1/3(
E1D

2w

)1/3
λ

D
. (B1)

For simplicity, we have chosen to use identical sphere
and substrate materials (so that E2 = E1 and ν2 = ν1); this
approximation does not affect the generality of this rough
estimate. The first term in parentheses is of order ∼10−1 for
realistic values of Poisson’s ratio, i.e., 0 � ν1 � 0.5, and the
second term in parentheses is of order ∼102, for realistic
values E1 ∼ 1010 and w ∼ 10−2, with D ∼ 10−6, using SI
units. Since the quantity λ/D ∼ 101, we estimate K ∼ 102.
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APPENDIX C: DETAILS OF THE NLS DERIVATION

We define the residuals as

res(u) = −M∂ττu + ∂xxu − (u − v) − 1
4 (u − v)2 + 1

24 (u − v)3, (C1)

res(v) = −∂ττ v + (u − v) + 1
4 (u − v)2 − 1

24 (u − v)3. (C2)

Substituting uan and van of Eqs. (11) and (12), we obtain the following residuals organized by orders of ε:

res(uan) = ε{[ω̃2M − k2 − (1 − a1)]AE} + ε2
{[

(4ω̃2M − 4k2 − 1)a2 + a3 − 1
4 (1 − a1)2

]
A2E2 + (2icω̃M + 2ik + a7)∂XAE

+ [
a12 − 1

2 (1 − a1)2
]
AĀ

} + ε3
{
(1 − Mc2 + a11)∂2

XA E + [(ω̃2M − k2 − 1)a10 − 2iω̃M]∂T AE + [
1
8 (1 − a1)3

− 1
2 (1 − a1)(a2 − a3 − a12)

]|A|2A E + [
8icω̃a2M + 8ika2 + (4ω̃2M − 4k2 − 1)a8 + a9 + 1

2 (1 − a1)a7
]
A∂XA E2

+ [
(9ω̃2M − 9k2 − 1)a4 + a5 − 1

2 (1 − a1)(a2 − a3) + 1
24 (1 − a1)3

]
A3E3 + [

1
2 (1 − a1)a7 − a6

]
Ā∂XA

]} + c.c. + · · · ,

(C3)

res(van) = ε{[ω̃2a1 + (1 − a1)]AE} + ε2{[4ω̃2a3 + (a2 − a3) + 1
4 (1 − a1)2]A2E2 + (2icω̃a1 + ω̃2a7 − a7)∂XA E

+ [
1
2 (1 − a1)2 − a12

]
AĀ

} + ε3
{
(2icω̃a7 − c2a1 + ω̃2a11 − a11)∂2

XAE + (a10 − 2iω̃a1)∂T AE

+ [
1
2 (1−a1)(a2 − a3 − a12)− 1

8 (1 − a1)3
]|A|2A E+[

9ω̃2a5 + (a4 − a5) + 1
2 (1 − a1)(a2 − a3) − 1

24 (1 − a1)3
]
A3E3

+ [
8icω̃a3 + 4ω̃2a9 + (a8 − a9) − 1

2 (1 − a1)a7
]
A∂XA E2 + [

a6 − 1
2 (1 − a1)a7

]
Ā∂XA

} + c.c. + · · · . (C4)

If we set each order of ε to 0, we can define the coefficients ai

and parameters ω̃ and c such that res(u),res(v) = O(ε4), which
should yield an accurate approximate solution to our original
equations of motion. We now list the hierarchy of solvability
conditions: O(εAE), the dispersion relation

Mω̃4 − [1 + k2 + M]ω̃2 + k2 = 0, a1 = 1 + k2 − Mω̃2;

O(ε2A2E2),

a2 = − ω̃2(1 − a1)2

1 + (1 − 4ω̃2)(4ω̃2M − 4k2 − 1)
,

a3 = (a1 − 1)2 + 4a2

4 − 16ω̃2
;

O(ε2∂XAE),

a7 = −2ika1

M(1 − ω̃2) + a1
, c = ia7(ω̃2 − 1)

2ω̃a1
;

O(ε2AĀ),

a12 = 1
2 (1 − a1)2;

O(ε3A3E3),

a4 = [12(1 − a1)(a2 − a3) − (1 − a1)3]ω̃2

24[k2 − (1 + 9k2 + M)ω̃2 + 9Mω̃4]
,

a5 = 24a4 + 12(1 − a1)(a2 − a3) − (1 − a1)3

24(1 − 9ω̃2)
;

O(ε3A∂xA E2),

a8 = 8ia2(k + cω̃M)(4ω̃2 − 1) + 2a7(1 − a1)ω̃2 − 8icω̃a3

1 + (4ω̃2M − 4k2 − 1)(1 − 4ω̃2)
,

a9 = 16icω̃a3 + 2a8 − (1 − a1)a7

2 − 8ω̃2
;

and O(ε3Ā∂xA),

a6 = 1
2a7(1 − a1).

Finally, with these coefficients, we are left with two NLS
equations at O(ε3E) of both res(u) and res(v). In res(u), we
have

[−2iω̃M + (ω̃2M − k2 − 1)a10]∂T A

= −(1 − Mc2 + a11)∂2
XA

+
(

1 − a1

2
(a2 − a3 − a12) − (1 − a1)3

8

)
|A|2A (C5)

and in res(v) we have

−(−2iω̃a1 + a10)∂T A

= (2icω̃a7 + ω̃2a11 − a11 − c2a1)∂2
XA

+
(

(1 − a1)3

8
− 1 − a1

2
(a2 − a3 − a12)

)
|A|2A. (C6)

In order for both NLS equations to be satisfied, the coefficients
in each must match. Thus, we require that

a10 = 2iω̃(M + a1)

ω̃2M − k2
, a11 = c2(M + a1) − 1 − 2icω̃a7

ω̃2

so that we obtain a single NLS equation. This equation has the
solution

A(X,T ) = √
γα sech(

√
γ βX)e−iγ T ,

with

β2 = 2ω̃M + (ω̃2M − k2 − 1)a10i

1 − Mc2 + a11
, (C7)

α2 = 4ω̃M + 2(ω̃2M − k2 − 1)a10i
1
8 (1 − a1)3 − 1

2 (1 − a1)(a2 − a3 − a12)
, (C8)

and γ a free parameter.
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