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Phase diagram of a binary mixture in a closed cavity
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Normally, the phase diagram is reported as a property of the binary mixture. We show that the phase diagram
(that is, the zones of thermodynamic stability of the states of the binary mixture) is also affected by the size
of the container. We investigate the thermodynamic stability of the binary mixture in a closed cavity, and
identify the zone in parameters where the binary mixture is heterogeneous in equilibrium (the zone of spinodal
decomposition), the zone where the mixture is always homogeneous in equilibrium, and the zone where the
transition between these two states is possible (the metastable nucleation zone). In addition, we investigate the
properties of the smallest single droplet that may be in equilibrium in the closed cavity (for the given average
concentration, all smaller droplets would always dissolve). We show that the size of such droplets depends on
the cavity’s size, as ∼L1/2.
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I. INTRODUCTION

Currently, there is an interest in understanding the physical
processes taking place in microenclosures (with typical sizes
of micrometers), e.g., mixing or demixing in microreactors
used for new bioengineering applications [1], or, e.g., cryop-
reservation when formation or melting of icicles in tissue cells
occurs [2,3]. Small dimensions of the enclosures may affect
both the stability of the phase states of the mixture and the rate
of growth or decay of nuclei.

Sizes of the nuclei are presumed to be negligibly small in
comparison with the container’s dimensions, so, in particular,
the changes in concentration of a surrounding medium upon
nucleation are usually disregarded. This assumption was first
made by Gibbs [4] and also accepted by other researchers [5].
For the microenclosures this condition may, however, become
invalid. In addition, it is also known that the size of a critical
nucleus depends on thermodynamic conditions, in particular
on temperature, and, e.g., the size of a nucleus formed in a
near critical medium may be considerably larger, comparable
to the size of the cavity.

In the classical theory, a nucleus of the new phase is
thermodynamically unstable, which can be invalid in the
limit of very small nuclei. The surface tension coefficient
of sufficiently small droplets should depend on the droplet’s
volume, at least in order to exclude the unbounded growth of
the inner droplet’s pressure. The necessity for such dependence
was first suggested by Gibbs [4], and later Tolman [6] proposed
the following simple formula:

σ = σ∞
1 + 2δT /R0

, (1)

where δT is a phenomenological parameter called Tolman’s
length, of which value was estimated by Tolman as 10−6 m.
Numerous other formulas were proposed later [7–11]. The
phase-field description of the multiphase medium incorporates
the dependence of the surface tension on the droplet’s size. In
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Ref. [12], on the basis of the phase-field approach, it was
shown that sufficiently small droplets may actually be stable.

Additionally, the classical conclusion on the instability of
nuclei may also change for a binary mixture in a closed
container. A smaller nucleus formed in a closed container
would be unstable as it does not feel the influence of the
walls. Its growth, however, is accompanied by depletion of the
solute from the solvent-filled phase and its final (equilibrium)
size would be bounded by the total amount of the solute
available in the container. This has been studied in Ref. [13] on
the basis of the Laplace approach and with the use of the van der
Waals equation of state. It was found that the thermodynamic
and hydrodynamic stability of the droplet is defined by two
parameters: average density and surface tension. If the average
density is low, then the system is homogeneous in equilibrium.
At some critical average density there appear two solutions:
one solution corresponds to a smaller unstable droplet, while
a bigger droplet may be stable. Upon further growth of the
average density only one (bigger droplet) solution remains.

In the current work, the thermodynamic stability of the
binary mixture enclosed in a finite-size container is studied.
We also investigate the properties of an equilibrium nucleus.
The problem is examined on the basis of the phase-field
approach that is used to represent the different states of the
binary mixture. Such an approach is universal, frequently used
for modeling the systems with phase transitions of different
nature, and hence is capable of producing the results applicable
for description of, e.g., the evolution of liquid nuclei in vapor
or the formation or melting of icicles, etc.

We should also mention that there are a large number of
papers that examine the problem of nucleation in confined
space (e.g., [14–18]). The different alternative approaches have
been used for these studies: the molecular dynamics and Monte
Carlo simulations [14], the density functional theory [15], the
solution of kinetic equations [17], and the generalized Gibbs’
approach [16,18]. The primary focus of all these papers,
though, is on the work needed for formation of the critical
cluster and on the nucleation rates, i.e., primarily on the shape
and development of the precursor clusters that lead the phase
separation. The focus of our work is different. We primarily
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aim to identify the conditions when the nucleation is at all
possible.

II. PROBLEM STATEMENT

Within the phase-field approach a phase boundary is
represented as a transitional layer across which physical
properties change sharply but still continuously. To derive
equations for such a medium the internal energy is assumed
to be a function of concentration, and also of concentration
gradient. This was first done by van der Waals [19],

f (C,∇C) = f0(C) + ε

2
(∇C)2, (2)

where f is the specific free energy function of the mixture with
f0 being its classical part, and ε is the capillary coefficient.

The full governing equations that define the thermo- and
hydrodynamic evolution of an isothermal binary mixture were
first derived by Lowengrub and Truskinovskiy [20]. These
are the so-called Cahn-Hilliard-Navier-Stokes equations. The
equations include the balances of mass, linear momentum,
and species. Owing to the dependence of the mixture density
on concentration, the full continuity equation is required to
describe the evolution of a binary mixture of two incom-
pressible liquids, and gradients of chemical potential can
induce a nonsolenoidal velocity field. By filtering out these
quasiacoustic effects, the full equations can be simplified
for consideration of slower diffusive and convective mass
transports [21].

Our current analysis is restricted to the thermodynamic
evolution of an isothermal binary mixture defined by the single
diffusion equation,

∂C

∂t
= �μ. (3)

Here μ is the chemical potential that is defined as

μ = μ0 − ε�C, μ0 ≡ df0

dC
. (4)

The gravity effects, which include the barodiffusion flux [21],
are disregarded in the current work.

For the classical part of the free energy function, a “double
well potential” that permits modeling two-phase states is used,

f0 = a(C − Cc)2 + b(C − Cc)4. (5)

This approximation was introduced for description of a near-
critical system [22]. Here a and b are the two phenomenologi-
cal parameters. It can be shown that for a near-critical system,
a ∼ (T − Tc), i.e., this parameter can be either positive or
negative depending on whether the system’s temperature is
above or below the critical temperature, while b is always
positive. We, however, use this free energy function as a model
for a binary mixture that may experience a phase transition
(being either heterogeneous or homogeneous), and we do not
obligatorily assume that a mixture temperature is close to the
critical point.

For further analysis it is convenient to change the definition
of concentration by shifting, C → (C − Cc). The equations
are also nondimensionalized by using the size of a container,
L, as a length unit and the diffusive time scale, L2/μ∗, as a
time unit, where μ∗ = b is a unit of the chemical potential.

Finally, the governing equation to be solved reads as
follows:

∂C

∂t
= �μ, (6)

μ = μ0 − Ca�C = 2AC + 4C3 − Ca�C, (7)

where μ0 ≡ df0/dC. Here we also introduce two nondimen-
sional parameters. A ≡ a/b defines the thermodynamic model
for a binary mixture. It can be shown that for a flat interface
separating two semi-infinite liquid domains, the minima of
the free energy functions are defined by ±(−A

2 )1/2. In the
current work, we assume that A = − 1

2 , which gives ± 1
2

for the minima of the free energy function, and these two
values of concentration would be associated with the two
pure components of the mixture. The second nondimensional
parameter is the capillary parameter, Ca = ε/(L2b), that
defines the role of capillary effects.

Equation (6) is supplemented with the following boundary
conditions:

∂μ

∂n
= 0,

∂C

∂n
= 0, (8)

the first of which signifies no diffusive flux through the con-
tainer’s walls, while the second condition defines the wetting
conditions on the wall, namely, it states that the molecules
of the wall are neutral to the molecules of mixture compo-
nents [21]. Here �n is the unit vector orthogonal to the wall, and
∂/∂n is the normal derivative.

III. RESULTS

A. Linear stability theory

The mathematical problem stated above has both homo-
geneous and nonhomogeneous solutions. The homogeneous
solutions are trivial, with uniform concentration field, C = q,
where q is the average concentration of the mixture, q ≡
1
V

∫
V

CdV (V is the total volume of the container).
Let us first investigate the linear stability of the ho-

mogeneous solution. For simplicity, we restrict the linear
stability analysis to a one-dimensional problem, assuming that
a mixture fills a spherical container, and the evolution of a
spherical nucleus of the new phase positioned in the center
of the container is studied. For such a geometry, the linear
stability problem is defined by the equation

∂C ′

∂t
= 1

r2

∂

∂r

{
r2 ∂

∂r

[
D0C

′ − Ca
1

r2

∂

∂r

(
r2 ∂C ′

∂r

)]}
. (9)

Here, C ′ stands for the small perturbation of a uniform
state, C → q + C ′, and D0 ≡ 2A + 12q2 is the diffusion
coefficient.

The boundary conditions are the boundedness of the
solution at the center (r = 0) and the conditions (8) at the
container’s wall, namely, ∂μ

∂r
= 0 and ∂C

∂r
= 0 at r = 1.

The linear stability with respect to the perturbations of the
form

C ′ ∼ sin(pr)

r
exp(λt) (10)
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FIG. 1. (a) The phase diagram for a binary mixture in a closed cavity. The dashed line depicts the boundary of the zone of spinodal
instability (a homogeneous state is unstable to infinitely small perturbations); the solid line defines the zone of nucleation (a homogeneous state
is stable to infinitely small perturbations but unstable to finite-size perturbations). The homogeneous state is absolutely stable above the solid
line. The dotted line is 0.5 − Ca3/8. (b) The time dependencies of the radii of different dropletlike perturbations. The thick line corresponds to
the evolution of the droplet of the critical size (r0 = rc = 0.057). The thin solid curve corresponds to the droplet with radius slightly bigger than
the critical radius (r0 = 0.06), and the thin dashed and dash-dotted lines correspond to the droplets with radii slightly smaller than the critical
one (r0 = 0.056 and r0 = 0.055). These curves are obtained for q = 0.4676 and Ca = 10−4. (c)–(e) The size, interface thickness, and surface
tension of the critical droplet for the parameters on the nucleation line (which is the smallest single droplet that can remain in equilibrium in
a closed container). The dotted lines in (c) depict the curve 0.6 Ca1/4, in (d) 0.8 Ca1/2, and in (e) 0.2 Ca1/2. (f) The average concentrations in
the droplet phase (dashed line) and outside (solid line) the droplet. The result is obtained for the critical droplets for the parameters on the
nucleation line. The dotted lines depict the curves, −0.5 + 1.2 Ca1/4 and 0.5 − 0.8 Ca3/8.

is examined. Such perturbations satisfy the boundary condi-
tions if

p cos(p) = sin(p). (11)

The smallest nontrivial solution of Eq. (11) is p0 = 4.49,
which represents a perturbation in the form of a single droplet
positioned in the center of the container.

The homogeneous solution becomes unstable (i.e., the
growth rate λ is positive) with respect to the perturbations (10)
when

|q| <

√
1
12

(−2A − Cap2
0

)
. (12)

Obviously, a nonhomogeneous solution can be realized
if Ca � (−2A)/p2

0; if, however, Ca � (−2A)/p2
1, with p1 =

7.73, then three-layer structures (e.g., solute-solvent-solute)
can also be realized. For containers of bigger dimensions,
even more complex structures are possible. Although, all these

multilayered structures are obviously metastable, and would
correspond to higher values of the total free energy [23].

For a plane geometry, i.e., a plane interface separating two
liquids enclosed in a plane layer, the stability diagram would
be the same equation (12) with p0 = π .

Formula (12) defines the boundary of the spinodal de-
composition when the homogeneous state is unstable to
any infinitely small perturbation. This boundary is shown in
Fig. 1(a) with a dashed line.

B. Numerical results

The full nonlinear stability of the homogeneous state was
studied for the binary mixture that fills a two-dimensional
square cavity. Equation (6) was solved numerically using the
finite-difference approach and a uniform grid. The runs with
different resolutions were fulfilled to verify the grid inde-
pendence of the obtained results. The equilibrium interface
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thickness is proportional to
√−Ca/A. All further results are

obtained for A = −1/2, and the grid resolution was adjusted
to the values of the capillary number.

We investigate the stability of the homogeneous solution
with respect to a dropletlike perturbation. Namely, all numer-
ical runs were initiated by the following concentration field:

C0(x,y) = β tanh

(
r − r0

δ0

)
, (13)

which represents a spherical droplet of an initial radius r0

positioned in the center of the cavity. Here, x and y are
the two Cartesian coordinates, r is the distance from the
cavity’s center, and δ0 is the initial interface thickness (that
was approximately set equal to

√−Ca/A, which corresponds
to the thickness of a thermodynamically equilibrium flat
interface). The amplitude of perturbation, defined by β, is
adjusted so as to provide the needed average concentration of
the mixture in the container, q = 1

V

∫
V

C0dV .
During the evolution, the droplet set by expression (13)

either disappears, which means that the equilibrium state is
stable with respect to such a perturbation, or droplet (13)
evolves to a new equilibrium droplet. It should also be noted
that profile (13) is only an approximation to the solution of the
governing equation (6), which explains a slight initial jump
that is observed in the values of the droplet radius and interface
thickness [see, e.g., Fig. 1(b)]. Although for lower capillary
numbers, the concentration profile (13) was found to be a
rather good approximation to the exact solution of Eq. (6),
so the adjustment to the exact solution of problem (6) occurs
faster and the changes from the initially set droplet radius and
interface thickness are insignificant.

To characterize the evolution of the multiphase mixture, a
number of parameters are used: these are the droplet’s radius
rd , the surface tension σ , and the interface thickness δ [24]:

rd ≡
∫
V

r(∇C)2dV∫
V

(∇C)2dV
, (14)

σ ≡ Ca

2πrd

∫
V

(∇C)2dV , (15)

δ2 ≡
∫
V

(r − rd )2(∇C)2dV∫
V

(∇C)2dV
. (16)

The phase diagram can be set by two parameters: the
average concentration of the mixture enclosed by the cavity
and the capillary number.

Firstly, through the set of numerical runs we found that
if the average concentration is closer to zero (solute and
solvent are introduced into the container in approximately
equal amounts), then the homogeneous state is unconditionally
unstable (for the accepted value of the parameter A), and
the mixture separates into two phases following the spinodal
decomposition. In the case of the spinodal instability, multiple
smaller nuclei are initially formed within the cavity; the
later growth of some of these nuclei leads to an equilibrium
two-phase state of the mixture. This process of spontaneous
decomposition has already been studied on the basis of the
phase-field approach (see, e.g., [25]), and we report no further
details on the dynamics of this process. What is important
for us is that the binary mixture is always heterogeneous in

equilibrium if its parameters correspond to the zone of the
spinodal decomposition [26].

Secondly, we found that the zone of instability of the
homogeneous state is in fact much wider, if the stability
with respect to finite-size perturbations is examined. The
solid line in Fig. 1(a) depicts the nucleation curve (that is
also traditionally called the binodal line) that separates the
zone of instability of the homogeneous state with respect to
dropletlike nuclei of finite size. The size of the minimum
perturbation capable of turning the homogeneous state into a
heterogeneous one depends on the average concentration and
capillary number, growing if the average concentration, q, is
increased. The maximum value of the minimum perturbation
is on the nucleation curve.

For the range of parameters within the nucleation zone, the
free energy function of the binary system, if plotted as the
function of the droplet radius, exhibits two points of extrema
(see Fig. 1 in Ref. [14]): the maximum (at lower value of
the radius) that corresponds to the critical droplet and the
minimum (at greater value of the radius) that corresponds to the
equilibrium droplet. If the average concentration is increased,
then the difference between the levels of the minimum and
maximum are decreased and the difference in the radii of the
critical and equilibrium droplets is also reduced. On the nucle-
ation (binodal) line there is only one extremum (that becomes
the point of inflection) for which the sizes of the critical and
equilibrium droplets coincide. This can be understood from
Fig. 1(b), where one sees that the smaller droplets dissolve
with the dissolution rates dependent on the droplet size, so
droplets with the sizes closer the critical one dissolve slower;
the droplet of the critical size does not evolve at all as its size
corresponds to the size of the thermodynamically equilibrium
droplet; and all droplets with sizes bigger than the critical one
decrease in size, slowly attaining the equilibrium value.

Figures 1(c)–1(e) depict the characteristics of the critical
droplets (for the droplets with the parameters on the nucleation
curve). The dependence of the size of such droplets on the
capillary number is shown in Fig. 1(c). For larger capillary
numbers the critical radius is quite large, and for very large
capillary numbers the walls of the container would even
affect the droplet’s shape. If, however, the capillary number
is smaller, the size of the droplet decreases. We found
that the critical size (for the parameters on the nucleation
curve) depends on the capillary number as rc ≈ 0.6 Ca1/4.
As estimated in Ref. [27], the typical value of the capillary
number for a miscible system should be of the order of
Ca ∼ 10−5, which indicates that the smallest droplet that
may remain in equilibrium for a typical system is below 0.03
(in the units of the container’s size). Dependencies of the
surface tension and thickness of the phase boundary against
the capillary number are shown in Figs. 1(d) and 1(e). For
smaller capillary numbers, the interface becomes thinner, and
the interfacial tension decreases, following the dependencies,
δc ∼ 0.8

√
Ca and σc ∼ 0.2

√
Ca. The decrease of the surface

tension at very large capillary numbers should likely be
explained by the influence of the walls on the droplet shape.

Finally, we also show the average concentrations in the
equilibrium droplets (for the parameters on the nucleation
line) inside the droplet, C1, and in the medium outside the
droplet, C2. Since the droplets are generally small, the average
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concentration in the ambient medium is closer to 1/2 (which
is the value of the pure component). Inside the droplet though,
the value of the average concentration is different from the
value that would correspond to a pure component, −1/2. The
obtained curves could be asymptotically represented by the de-
pendencies C1 = −0.5 + 1.2 Ca1/4 and C2 = 0.5 − 0.8 Ca3/8.
The differences in the concentrations C1 and C2 from the
values ±1/2 should be explained by the capillary effects.

IV. CONCLUSIONS

On the basis of the phase-field approach we have examined
the phase stability of the liquid-liquid binary mixture that fills
a closed cavity. The mixture can be either homogeneous (the
liquids fully mix) or heterogeneous (there exists an interface
separating the liquids). The stability of these two states of
the mixture is defined by the average concentration q and
by the capillary number Ca. The resultant phase diagram
is depicted in Fig. 1(a), which includes the boundaries of
the spinodal decomposition (when the homogeneous state is
absolutely unstable) and the nucleation (binodal) line (when
the homogeneous state is unstable with respect to finite-size
dropletlike perturbations). If the average concentration of the
mixture is in the range of the nucleation zone, then the binary
mixture is metastable, i.e., it can be either homogeneous
or heterogeneous in equilibrium: an initially homogeneous
mixture can become heterogeneous if the cavity is shaken, and
the opposite transition is also possible.

Within the zone of the spinodal decomposition the system
becomes heterogeneous due to the development of an infinitely
small disturbance. Stepping outside of this zone, increasing the
value of the average concentration, the size of the minimum
disturbance capable of converting the system into the hetero-
geneous state (“the critical cluster” for the nucleation theory)
grows. This minimum disturbance is of the maximum size
for the values of the average concentration on the nucleation
line. The size of such an disturbance is equal to the size
of the smallest droplet that could remain in the container
in equilibrium. The radius of this droplet, rc, is defined by
Fig. 1(c). A single droplet with the size smaller than rc may
not remain in equilibrium in a closed container.

The obtained result is particularly important for the smaller
enclosures, when dissolution of the solute additive may not
occur as expected, or may occur at a different, much slower,
rate. Moreover, an experiment conducted with the use of the
containers of different sizes would in general produce different
phase diagrams for the same binary mixture. Normally, the
phase diagram is reported as a property of the mixture. Our
results show that the diagram can also be affected by the
dimensions of the container.

It is interesting to relate the results obtained for the closed
cavity to the states of the mixture in an unbounded domain. The
size of the cavity, L, was used for the nondimensionalization
of the governing equations, and it is then convenient to use
the dimensional relations for the analysis of the asymptotic
dependencies on L. For the analysis we use the asymptotic
relations obtained for the smaller capillary numbers, which
correspond to the case of larger cavities (Ca → L−2).

First, the binodal line that defines the stability of the
homogeneous state with respect to finite-size perturbations

is

q = 0.5 −
(

ε

L2μ∗

)3/8

→ 0.5. (17)

Similar asymptotic relations exist for the average concentra-
tions in and outside of the droplet:

C1 = −0.5 + 1.2

(
ε

L2μ∗

)1/4

→ −0.5, (18)

C2 = 0.5 + 0.8

(
ε

L2μ∗

)3/8

→ 0.5. (19)

The thickness of the interface and the surface tension coeffi-
cients do not depend on the size of the container:

δ∗ = 0.8

(
ε

μ∗

)1/2

, σ∗ = 0.2ρ∗(μ∗ε)1/2. (20)

Here δ∗ and σ∗ are the dimensional values of the interface
thickness and surface tension coefficients, and ρ∗ is the typical
density (e.g., density of solvent).

The most interesting observation is obtained for the size of
the critical droplet for a point on the nucleation (binodal) line,

rc∗ = 0.6L1/2

(
ε

μ∗

)1/4

= 0.75(Lδ∗)1/2. (21)

Here rc∗ is the dimensional size of the smallest droplet that
may remain in equilibrium in a closed cavity.

As shown, if the container is very large, then the boundary
of the nucleation zone shifts to the value 1/2. At the same
time, the size of the critical droplet becomes very large, which
means that the binary system may not be in an equilibrium
heterogeneous state if the average concentration is near 1/2,
which is obvious. For the lower values of q the nucleation
would be possible. The minimum disturbance needed to
convert the state of the system would depend on the average
concentration, growing from zero at q = 1/

√
12 to the limiting

size (21) at q ≈ 1/2.
The phenomenological parameters of the phase-field ap-

proach, ε and μ∗, cannot be directly measured. The estima-
tions [27] show that ε ∼ 10−13 m4 s−2 and μ∗ ∼ 0.1 J kg−1,
which gives us rc ∼ 10−3L1/2. For a container with the
size L ∼ 1 cm, the radius of the critical nucleus is rc ∼
10−4 m. The values of the interface thickness and the surface
tension coefficients can be estimated as δ∗ ∼ 10−6 m and
σ∗ ∼ 10−5 J m−2.
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