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Thin fluid membranes embedded in a bulk fluid of different viscosity are of fundamental interest as experimental
realizations of quasi-two-dimensional fluids and as models of biological membranes. We have probed the
hydrodynamics of thin fluid membranes by active microrheology using small tracer particles to observe the
highly anisotropic flow fields generated around a rigid oscillating post inserted into a freely suspended smectic
liquid crystal film that is surrounded by air. In general, at distances more than a few Saffman lengths from the
meniscus around the post, the measured velocities are larger than the flow computed by modeling a moving
disklike inclusion of finite extent by superposing Levine-MacKintosh response functions for pointlike inclusions
in a viscous membrane. The observed discrepancy is attributed to additional coupling of the film with the air
below the film that is displaced directly by the shaft of the moving post.
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I. INTRODUCTION

Experiments involving the in-plane motion of inclusions
confined to a two-dimensional (2D) viscous liquid surrounded
above and below by a three-dimensional (3D) fluid with lower
viscosity (referred to hereafter as the embedding fluid [1])
are useful for understanding the diffusion, aggregation, and
transport of proteins in biological systems such as plasma and
lipid membranes [2–4]. Stimulated by experiments in biomem-
branes [5,6], Saffman and Delbrück [7] and Saffman [8] de-
veloped a general theory describing the diffusion of inclusions
with radii much smaller than the membrane’s Saffman length
�S = hη/(2η′) (where h is the thickness of the membrane, η

is the viscosity of the membrane, and η′ is the viscosity of
the embedding fluid), a characteristic hydrodynamic distance
over which the membrane around the inclusion does not
exchange momentum with the embedding fluid [9]. By solving
the Navier-Stokes equations numerically, Heringa et al. [10]
and Wiegel and van Beckum [11] computed the mobility
of inclusions of arbitrary size in embedded membranes,
obtaining results that subsequently were confirmed by a more
general analytical model developed by Hughes, Pailthorpe, and
White (HPW) [12]. The HPW description has been verified
extensively in passive microrheology experiments on several
membrane/embedding fluid systems [13–15].

By virtue of their lamellar nature, freely suspended films
of smectic liquid crystal (LC) are quantized in thickness to
a certain number of layers [16], stabilizing hydrodynamic
parameters of the film, such as density and viscosity, to
an extent comparable to that of 3D fluids. Many previous
studies of membrane/embedding fluid systems have focused
on understanding the behavior of inclusions undergoing Brow-
nian diffusion, but there have been few direct experimental
investigations of the hydrodynamic properties of 2D fluid
membranes using active microrheology. Eremin et al. [17]
observed the flow field generated by an inclusion (a small
bead) moving down an inclined smectic A film under the
force of gravity using tracer particles. These experiments

were carried out using very thick films where the effect of
the embedding fluid is negligible and the hydrodynamics are
those of a (bounded) 2D fluid. A detailed analysis of the flow
fields generated by actively driven inclusions in smectic films
(including comparison to theory) was not performed.

Thermal diffusion of inclusions, such as smectic islands and
liquid droplets, is associated with local positional fluctuations
that are stochastic in nature and do not result in movements
large enough to generate long-range flow fields. Manipulation
of such inclusions using optical tweezers [18,19], although
able to cause large amplitude motion, tends to heat up the
film locally and change the thermodynamic properties of the
LC material. Here we describe experiments in which a thin
cylindrical metal post inserted into nanometer-thick smectic A

films is actively driven in order to generate large-scale flow in
the membrane in the low-Reynolds-number regime.

II. EXPERIMENT

We measured the 2D flow field generated by the moving
post by analyzing the motion of small tracer particles in the
film. The flow fields were extracted from digital video using
velocimetric software and compared with the generalized
Levine-MacKintosh (LM) theory summarized in the following
section.

The post was a gold-coated tungsten wire 6 μm in radius
and approximately 1-cm long. The lower end of the wire was
attached to a thicker steel rod connected to a leaf spring that
was made to oscillate parallel to the film.

We explored two different methods of exciting the post
mechanically. When the post assembly was driven directly
using a piezoelectric actuator, the high driving voltages
required would sometimes cause the tracer particles in the film
to be repelled from the vicinity of the post. A better technique
in which the field generated by an electromagnet couples to
a small permanent magnet attached to the base of the post
(see Fig. 1) eliminated this problem and avoided flow artifacts
associated with electroconvection in the film.
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FIG. 1. Oscillating post assembly for generating flow in smectic
films. A thin metal post mounted on top of a small permanent magnet
is carefully raised until it penetrates the liquid crystal film above it.
The magnet is attached to a leaf spring that allows it to move from side
to side. By varying the current in the coil of a nearby electromagnet,
the post can be displaced laterally at a controlled rate. The resulting
flow induced in the film is monitored using reflected light video
microscopy.

Films were drawn by spreading the liquid crystal material
[4′-n-octyl-4′-cyanobiphenyl (8CB), Sigma-Aldrich] across
an aperture in a glass coverslip. The flow with the post far
from any boundaries was measured in circular films 1 cm in
diameter, whereas boundary effects were studied near the long
edge of a 20 × 4 mm2 rectangular film. The 8CB is in the
smectic A liquid crystal phase (a layered 2D fluid) at room
temperature and has a viscosity of η = 0.052 Pa s [20]. The
films were typically two to six molecular layers thick, each
layer having a thickness of 3.17 nm [21]. The film thickness
was determined by comparing the reflectivities of the film and
a piece of black glass [22]. The films are bounded above and
below by air with a viscosity of η′ = 1.827 × 10−5 Pa s [23].
The Saffman lengths �S in our experiments were 13.534 μm
for N = 3 layers and 22.556 μm for N = 5 layers.

Once a film was drawn, it was placed in a chamber that was
filled with smoke. Ash particles that settled onto the film served
as tracer particles that allowed the flow field to be visualized
in subsequent experiments. The ash particles are small, and
their effect on the hydrodynamic behavior of the film can be
neglected. The tip of the post was wetted with a small amount
of the LC so that it would not rupture the film on contact after
which it was raised just enough to pierce the membrane. Within
a few minutes, a meniscus formed an annulus around the post,
resulting in an inclusion with an effective radius many times
larger than the post itself. The meniscus radius depended on
the amount of LC material deposited on the tip of the post.
Here we present data from experiments where the inclusion
radii were between 33.5 and 110 μm, in all cases larger than
the corresponding Saffman length.

The post then was displaced laterally through approxi-
mately 50 μm using a 2 Hz triangle wave, the post velocity be-
ing constant during each half cycle. This generated flow in the
film in the low-Reynolds-number regime (Re ≈ 10−5), which
was observed using reflected light microscopy and captured us-

ing a Phantom v12.1 video camera with a 1080 × 720 pixel res-
olution at 60 frames/s. The video clips then were decomposed
into images for further analysis. The velocimetric method used
to determine the flow fields is described in Appendix A.

III. THEORY

In 2002, LM [24] found the response function for a
viscoelastic membrane embedded in a bulk fluid, describing
the velocity at a point x induced by a point force f applied at
location x′ in the membrane by

vα(x) = Gαβ(x − x′)fβ(x′). (1)

If x̂ is the unit vector pointing from x′ to x, then the response
function may be decomposed into parallel and perpendicular
components as

Gαβ(x) = G‖(|x|)x̂αx̂β + G⊥(|x|)[δαβ − x̂αx̂β], (2)

where

G‖(z) = 1

4πηh

[
π

z
H1(z) − 2

z2
− π

2
[Y0(z) + Y2(z)]

]
, (3)

and

G⊥(z) = 1

4πηh

[
πH0(z) − π

z
H1(z)

+ 2

z2
− π

2
[Y0(z) − Y2(z)]

]
. (4)

Here z = |x|/�S is the nondimensionalized distance between
the location of the point force and the point of observation of
the velocity field, Hν are Struve functions, and Yν are Bessel
functions of the second kind.

We have applied the LM results to the special case of
finding the flow field around inclusions in a purely viscous
membrane of thickness h and viscosity η embedded in a
bulk fluid of viscosity η′. Theoretical flow fields around an
inclusion are calculated by modeling the inclusion by a ring
of point forces and exploiting the linearity of Stokes flow to
represent the resulting flow as a superposition of LM response
functions [25,26]. This approach also allows us to consider
the effects of proximity to a stationary linear boundary. For a
circular inclusion near a linear boundary the flow is

vα(x) =
∫

dφ fβ(φ)Gαβ(x − x′(φ))

+
∫

dy gβ(y)Gαβ(x − x′(y)), (5)

where fβ(φ) is the force per unit angle at point x′(φ) on
the boundary of the inclusion and gβ(y) is the force per unit
length at point x′(y) on the linear boundary of the membrane.
These forces can be determined by assuming no-slip boundary
conditions vkα = Vkα and vkα = 0 on the circular and linear
boundaries, respectively, and then solving Eq. (5) numerically.

Prasad et al. [27] studied experimentally the motion of
beads much smaller than the Saffman length embedded
in a fluid membrane and verified the validity of the LM
approach. By observing the mutual diffusion of pairs of
circular inclusions of arbitrary size in freely suspended films
of smectic A liquid crystals, which are fluidlike on the plane
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of the membrane, Qi et al. [25] found that the radial mutual
mobilities of identical inclusions are independent of their size
but that the angular coupling becomes strongly size dependent
when their radius exceeds the Saffman length. It was shown
further that these observations are described well for arbitrary
inclusion separations by the extended Levine-MacKintosh
theory described above.

IV. RESULTS AND DISCUSSION

The flow induced in the LC film near the moving inclusion
was measured under a variety of experimental conditions.
In particular, we examined the effects on the flow fields of
inclusion size and of proximity to a straight boundary.

We consider first an inclusion with effective radius 110 μm
[8.1 times the Saffman length of an (N = 3)-layer smectic A

8CB film] located near the middle of a circular film, far from
any boundaries, driven back and forth in order to generate
in-plane flow. A sample microscope image of the film in
reflected light is shown in Fig. 2(a). The instantaneous velocity
of the post (shown in yellow here and in every figure) is
along +ŷ. The bright spots are tiny ash particles, each of
which is surrounded by a narrow meniscus of liquid crystal
material. The slightly irregular appearance of the inclusion is
an illumination artifact caused by the uneven tip of the wire.
Since the meniscus around the post (outlined in green) is much
thicker than the smectic film, the interior of the inclusion is
effectively hydrodynamically isolated from the surrounding
film and may be considered essentially rigid [28]. An example
of the measured flow velocity field is given in Fig. 2(b),
the green ring showing the outline of the moving inclusion.
The general appearance of the 2D flow field predicted by
LM theory for a disk-shaped inclusion of the same diameter
as the meniscus surrounding the post, shown in Fig. 2(c),
suggests overall qualitative agreement with the experimental
observation. We will see below, however, that there are
important differences in the detailed behavior revealed by
the measured one-dimensional flow velocity profiles that we
propose arise from the motion of the air around the shaft of
the post immediately below the film, which couples to the
membrane and gives an important additional contribution to
the flow field in the film.

The flow field is anisotropic as expected with the flow
falling off more quickly beside the inclusion (along x) than
fore and aft (along y) as is evident from the flow velocity
profiles along these directions shown in Figs. 3(a) and 3(b).
The velocity in this case where the inclusion is far from any
boundaries falls off monotonically with distance in all direc-
tions and has the same sign everywhere, indicating that there is
no recirculation of the flow field within the field of view near
the inclusion. The measured velocity profiles are plotted as
red symbols with error bars. The black curve shows the spatial
variation of velocity predicted by LM theory for a disklike
inclusion moving in the film. The blue curve shows the esti-
mated velocity profile of the air around the post some distance
below the film. Here and in all figures, we plot the magnitude
of the velocity v scaled by v0, the speed of the post. The dashed
curve is a combination of the LM results with a fraction of the
air flow chosen to give rough qualitative agreement with the
experimental observations far from the inclusion.

FIG. 2. Flow generated by a big inclusion around a moving post
located far from any boundaries in an (N = 3)-layer 8CB film. The
location of the post is shown in yellow, and the inclusion is shown
in green. (a) Reflected microscope image of the inclusion (radius
of a = 110 μm), which is moving along y. The white dots are ash
particles embedded in the film. (b) Experimental flow field obtained
by analyzing trajectories of tracer particles. The instantaneous
velocity of the post, also measured by velocimetry, is v0 = 143 μm/s.
(c) Corresponding model 2D flow field predicted by generalized LM
theory. Although similar in overall appearance, the model agrees only
qualitatively with experiment.

In general, the experimentally observed velocities when
the post is near the middle of the film are higher and decay more
slowly with distance than predicted for an idealized disklike
inclusion. We ascribe this to additional coupling between the
shaft of the post and the layer of air directly beneath the film.
Since the shaft of the post is on the order of a centimeter in
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FIG. 3. Normalized flow velocity profiles measured (a) along
and (b) perpendicular to the direction of post motion for the big
inclusion in the (N = 3)-layer 8CB film shown in Fig. 2. The post
(radius of b = 6 μm) is shown in yellow, and the smectic film and
the inclusion (radius of a = 110 μm or 8.1�S) embedded in it in
green. The black curves are LM model predictions for a disklike
inclusion, whereas the blue curves show the flow velocity profiles of
air generated by an infinitely long moving post with no-slip boundary
conditions. Away from the inclusion boundary, the experimental data
lie above the LM curves, suggesting that flow in the film is boosted
by air flow generated by the shaft of the post. The dashed curve
shows the flow profile obtained by adding 26% of this air flow to
the LM prediction. The velocities are scaled by the instantaneous
post velocity v0 and distances both by the inclusion radius a and
the Saffman length �S . The velocity measurements were averaged
over ten different oscillation cycles with the error bars showing the
standard deviation of the mean.

FIG. 4. Computed flow around a moving post inserted into a fluid
liquid crystal film. The post (yellow) moves along the y direction with
velocity v0. The nominal flow field in the film around the inclusion
(green) is estimated by integrating LM point response functions for
a disklike inclusion, whereas the quasi-2D flow in the air is found by
solving the 2D Stokes equations around an infinite cylinder, assuming
no-slip conditions at the boundaries defined by the film holder. The
air couples to the flow in the membrane to give a slower decay of the
film velocity than predicted by LM theory alone.

length, it has a large length/diameter ratio so that, beginning
a short distance below the film, the airflow near the post
approximates that around an infinite cylinder moving laterally
in a bounded region defined by the film holder (see Appendix B
for details of this calculation). The 2D air flow around such an
idealized post is depicted in Fig. 4. Since the viscosity of air
is much smaller than that of a LC, this velocity field decays
much more slowly than flow in the membrane. We postulate
that the moving layer of air near the film couples to the LC,
effectively boosting the flow in the film and leading to a more
gradual decay of the flow velocity with distance than predicted
for a moving disklike inclusion alone.

A complete three-dimensional hydrodynamic treatment of
this experimental geometry is theoretically challenging and
beyond the scope of this paper. Since the Stokes equations are
linear, however, we have as a first approximation explored a
model in which a constant fraction of the estimated air flow
around the post is added to the LM prediction at that radius.
This is not proposed as a rigorous model (it does not satisfy
the boundary conditions near the inclusion meniscus after
all). Nevertheless, the combined velocity profiles obtained
by fitting the experimental data at distances more than 5�S

from the edge of the inclusion, shown as dashed curves in
Figs. 3 and 5, do approximate the measured velocities more
closely than LM theory alone, supporting the notion that the
observed deviations from the LM model for an ideal disklike
inclusion in a quasi-2D membrane result from coupling to
airflow generated by the post beneath the film. We note that
the discrepancy between the experimental measurements and
the LM theory is consistently larger for inclusions with smaller
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FIG. 5. Flow field generated by a small inclusion (radius of
a = 33.5 μm or 2.58�S) formed around a thin moving post inserted
near the middle of an (N = 3)-layer 8CB film. (a) Measured flow field
superimposed on the corresponding microscopic image, showing the
locations of the post (yellow) and inclusion (green). Flow velocity
profiles were extracted along the directions (b) parallel and (c)
transverse to the inclusion motion. The deviation of experimental
data from LM theory (black curve) is larger here than for the bigger
inclusion shown in Fig. 3. The velocity profile in air around an infinite
cylindrical post is shown in blue. The dashed curve shows the flow
profile obtained by adding 45% of this air flow to the LM prediction.

FIG. 6. Flow field generated by an inclusion of intermediate size
(radius of a = 80.5 μm or 3.58�S) moving parallel to a straight film
boundary. (a) Observed flow field superimposed on the reflected
microscopic image of an (N = 5)-layer film. The center of the post is
located 232 μm from the edge of the film and is moving along y. (b)
Model flow field associated with a disklike inclusion moving under
the same conditions as in (a). LM theory predicts that recirculation
of the flow field should be observed on both sides of the inclusion but
in the experiment this is only clearly visible on the side further from
the boundary. The meniscus at the edge of the film is shown as gray,
and the glass film holder is shown as blue.

radii. This is principally a reflection of the behavior of the LM
model, which predicts membrane velocity fields that decay
more rapidly with decreasing inclusion size. In addition, the
magnitude of the computed air flow from the post, which falls
off relatively slowly, is larger at the outer radius of a smaller
inclusion than at the outer edge of a bigger inclusion (about
16% higher along the y direction and 50% along x in the
examples shown in Figs. 5 and 3). These effects combine to
make the contribution of the air more important the smaller
the inclusion.

In order to explore the effects on the flow of the proximity
of the inclusion to the film boundary, we measured the flow
field in the film when the post was located near the long edge
of a rectangular film. The flow field when the inclusion is
moving parallel to the boundary is shown in Fig. 6(a). The
corresponding LM flow field calculated for a disklike inclusion
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FIG. 7. Normalized film flow velocity profiles near the inclusion
moving parallel to the film boundary shown in Fig. 6, measured (a)
along y and (b) along x. The black curves are LM model predictions
for a disklike inclusion. Negative velocities indicate flow with a
component opposite the post motion, i.e., flow reversal.

(assuming no-slip boundary conditions at both the disk and
the meniscus at the film edge), shown in Fig. 6(b), is similar
to the experiment. However, in the transverse direction,
although the LM model predicts that there should be recircula-
tion of the flow field on both sides of the inclusion, experimen-
tally this is only clearly observed on the side of the inclusion
further from the boundary. The measured flow velocity profiles
parallel and perpendicular to the inclusion motion plotted in
Fig. 7 show that the velocity attains a minimum value between
the inclusion and the meniscus at the edge of the film but does
not become negative, increasing instead to a small but finite
value at the film edge. This suggests that the no-slip boundary
condition assumed in the model may not perfectly reflect
conditions at the edge of the film. We note that symmetric
circulatory flow has been observed previously in smectic A

FIG. 8. Flow field generated by an inclusion of intermediate
size (radius of a = 75.5 μm or 5.59�S) moving perpendicular to
a straight film boundary. (a) Observed flow field superimposed on
the reflected microscopic image of an (N = 3)-layer film. The center
of the inclusion is located 258 μm from the film boundary, and it
is moving along y. (b) Model flow field associated with a disklike
inclusion moving under the same conditions as in (a). The proximity
to a no-slip boundary causes significant vorticity on both sides of the
post. The meniscus at the film edge is shown as gray, and the glass
film holder is shown as blue.

films around a bead moving under gravity down the middle of
a tilted thick rectangular film with dimensions comparable to
or smaller than the Saffman length as described above [17].

Finally, the flow field measured around an inclusion of
intermediate size moving normal to a straight film boundary
nearby is shown in Fig. 8(a). In this case, there is significant
recirculation with vortexlike flow observed on both sides of
the post, in agreement with the model predictions shown in
Fig. 8(b). The velocity decays rapidly to zero on approaching
the boundary and falls off more slowly in the opposite
direction. The measured velocity profiles along and perpen-
dicular to the direction of post motion are shown in Figs. 9(a)
and 9(b) along with the LM model predictions.
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FIG. 9. Normalized film flow velocity profiles near the inclusion
moving perpendicular to the film boundary shown in Fig. 8, measured
(a) along y and (b) along x. The black curves are LM model
predictions for a disklike inclusion. Negative velocities indicate flow
with a component opposite the post motion.

In general, LM theory alone appears to predict the flow
fields induced in the film much better when the moving post
is near the boundary than when it is in the center of the film
with the LM model profiles in Figs. 7(a) and 9(a) closely
approximating the experimental data. This result indicates that
near the film boundaries, the air flow induced by the post
is greatly reduced and does not boost the flow in the film
significantly.

V. CONCLUSION

We have described active microrheology experiments on a
two-dimensional embedded viscous fluid in which the flow
field around a rigid moving post inserted into a thin film
of smectic liquid crystal surrounded by air is measured by

analyzing the motion of small tracer particles in the film.
The observed flow fields around the meniscus surrounding
the post are compared with predictions based on generalized
Levine-MacKintosh theory for the flow around a disklike
inclusion in a 2D fluid membrane. When the moving inclusion
is far from the film boundaries, the measured velocity field
decays more slowly in all directions than predicted by the
model, an effect ascribed to additional coupling of the film to
air around the shaft of the post. When the inclusion is near the
film boundary, LM theory alone reproduces the observed flow
fields quite well, suggesting that near the boundaries any air
flow contributed directly by the post is negligible.
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APPENDIX A: VELOCIMETRIC METHOD

Estimating a velocity field from an image sequence is
a very general problem in computer vision that is directly
applicable to many fields of research. The general concept of
the technique applied here [29] is to use a block-matching
algorithm to find the displacement vector that minimizes
the difference between the same subsections of consecutive
images for a specified error functional. In this manner, a
two-dimensional velocity field may be obtained for each image
in the sequence.

For a given image sequence I (x,y,t), the algorithm begins
by segmenting the first image into k subsections (tiles)
positioned at (Xk,Yk). Then, for each tile in the image a
two-dimensional search is performed that seeks to minimize
the function,

Ferr = FID + λFS, (A1)

where FID is the absolute intensity difference between im-
age subdivisions, FS represents a velocity field smoothness
constraint, and λ is a free parameter that sets the relative
weighting between the two functions. The intensity difference
contribution for the kth tile is

FID =
∫

tile
|I (Xk,Yk,t) − I (Xk + �x,Yk

+�y,t + �t)|dx dy, (A2)

where �x and �y are the components of the displacement
vector d, �t is the time between frames and the integral is
over the tile area. The smoothness contribution is

FS = 1 − exp(−τc2
s ), (A3)

where

cs =
√(

dvx

dx

)2

+
(

dvx

dy

)2

+
(

dvy

dx

)2

+
(

dvy

dy

)2

,
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and the velocity derivatives are calculated at (Xk,Yk). The
velocity derivative tolerance is set by the free parameter τ .
Typically, the values of λ and τ are chosen such that FS

is comparable to twice the standard deviation of I (x,y,t)
multiplied by the tile area when c2

s exceeds the tolerance 1/τ .
The displacement vector d that minimizes the combined error
yields a velocity estimate for tile k of v(Xk,Yk,t) = d/�t . This
minimization process is repeated for each tile and each image
to yield a velocity field v(x,y,t).

The choice of error functional described above carries
with it a number of consequences. First, the use of the
absolute intensity difference effectively assumes that, to a
good approximation, brightness is conserved between frames.
Second, by imposing a smoothness constraint on the velocity
field, it is assumed that the actual flow field does not have
velocity gradients that exceed ∼1/

√
τ . In practice it is

found that imposing a soft penalty on the smoothness of
the velocity field allows for some abrupt variation, but the
occurrence of unphysical or spurious vectors is reduced.
Finally, the smoothness constraint requires knowledge of the
local velocity field in the neighborhood of the kth tile. An initial
guess for the velocity field may be provided in any number
of ways, but fundamentally, accurate velocity information
is not known prior to the error minimization process. To
resolve this issue, an iterative multiresolution technique is
employed to estimate the velocity field where the first iteration
carries out the minimization process using only the intensity
difference component. Full details of the method and tests of
its performance may be found in Ref. [30].

In this way, a two-dimensional velocity field is obtained for
each frame in the image sequence at a specified final resolution
that is some fraction of the original image resolution.

APPENDIX B: CALCULATION OF VELOCITY
PROFILES IN AIR

To model the air flow induced by a long thin oscillating
post moving in the transverse direction, we consider a coaxial
system comprising a solid cylinder of radius b (representing
the post) embedded in a cylindrical chamber of radius R

(representing the film holder). A general solution of the flow
field in this geometry may be derived following Happel and
Brenner [31]. Assuming that the post is moving at speed v0,
the flow velocities in the radial and tangential directions are
given by

vr = 1

r

∂�

∂θ
, vθ = −∂�

∂r
, (B1)

where � is the stream function,

� = sin θ

[
1

8
Cr3 + 1

2
Dr

(
ln r − 1

2

)
+ Er + F

r

]
, (B2)

and

C = − 8v0

2b2R2
[(

1
b2 − 1

R2

) + ln
(

b
R

)(
1
b2 + 1

R2

)] ,

D = 2v0
(

1
b2 + 1

R2

)
(

1
b2 − 1

R2

) + ln
(

b
R

)(
1
b2 + 1

R2

) ,

E = v0
[

1
b2 − ln R

(
1
b2 + 1

R2

)]
(

1
b2 − 1

R2

) + ln
(

b
R

)(
1
b2 + 1

R2

) ,

F = v0

2
[(

1
b2 − 1

R2

) + ln
(

b
R

)(
1
b2 + 1

R2

)] .
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