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Brownian motion of a circle swimmer in a harmonic trap
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We study the dynamics of a Brownian circle swimmer with a time-dependent self-propulsion velocity in
an external temporally varying harmonic potential. For several situations, the noise-free swimming paths, the
noise-averaged mean trajectories, and the mean-square displacements are calculated analytically or by computer
simulation. Based on our results, we discuss optimal swimming strategies in order to explore a maximum spatial
range around the trap center. In particular, we find a resonance situation for the maximum escape distance as a
function of the various frequencies in the system. Moreover, the influence of the Brownian noise is analyzed by
comparing noise-free trajectories at zero temperature with the corresponding noise-averaged trajectories at finite
temperature. The latter reveal various complex self-similar spiral or rosette-like patterns. Our predictions can be
tested in experiments on artificial and biological microswimmers under dynamical external confinement.
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I. INTRODUCTION

Trapping of classical particles in a dynamically changing
environment occurs in many situations ranging from colloids
in optical tweezers [1,2] to the motion of tracers in a fluctuating
host matrix [3]. It is also of fundamental importance for
understanding Brownian motion in a time-dependent external
potential [4]. The simplest nontrivial setup is a Brownian
particle in a harmonic external trapping potential with a
time-dependent prefactor. This model has been extensively
studied as the Brownian parametric oscillator [5,6] and as
a basic model for multiplicative noise [7–11], for stochastic
resonance [12,13], and for fluctuation squeezing [14]. More
recently, it has become popular to use this model to discuss
the efficiency of nonequilibrium work production [15,16] and
stochastic heat engines [17,18]. In the limit of completely
overdamped Brownian motion, the stochastic equations of mo-
tion can be solved analytically, resulting in a time-dependent
Gaussian process for the particle displacements. For special
forms of the time dependence, the analytical solution was
further analyzed, and a giant breathing effect [19] was put
forward for a potential that periodically flips between a stable
and an unstable situation. Moreover, an unusual scaling in
the mean-square displacement of the particle was obtained
when the harmonic confinement fades away algebraically in
time [20].

In the past few years, microswimmers have increasingly
been in the focus of research [21–24]. Inspired by biological
systems [25,26], several different propulsion strategies have
been introduced to realize artificial microswimmers [27–34].
These particles self-propel and dissipate energy while they
move and are therefore genuinely in nonequilibrium [35–39].

One of the simplest basic models is to describe mi-
croswimmers as active Brownian particles with an internal
effective self-propulsion force [40] leading to a velocity
v0 that is attached to the body-frame of the particle. The
direction of propulsion fluctuates according to orientational
Brownian motion as characterized by a short-time rotational
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diffusion constant Dr . In the two-dimensional bulk, it has
been shown [28] that for long times the dynamics of these
active Brownian particles is a persistent random walk where
the persistence length is v0/Dr such that the long-time
diffusion coefficient is enhanced by the term v2

0/(2Dr ). Higher
displacement moments and the non-Gaussian behavior of the
dynamical process at finite time have also been calculated
subsequently [41]. The basic model of an active Brownian
particle can readily be generalized to situations where the
self-propulsion velocity v0(t) is time-dependent [42] as it is
the case for the run-and-tumble motion of many bacteria, for
example.

Several recent analytical and numerical studies [41,43–
47] consider the motion of a self-propelled particle in an
external harmonic trap. As a result, it was found that self-
propulsion induces an increased delocalization in the trap,
which, however, cannot uniquely be described by an effective
equilibrium temperature [45,48,49]. In all of these previous
works on linear swimmers, a static harmonic confinement and
a time-independent self-propulsion velocity were assumed.
In this paper, we generalize the situation to circle swimmers
[50–57], which perform an active rotational motion in addition
to their translational self-propulsion, and consider both a time-
dependent harmonic trap and a time-dependent self-propulsion
velocity. Our motivation to do so is threefold: First, we
expect new physics due to a constructive competition between
internal swimming and external switching degrees of freedom,
which needs to be explored and analyzed. Second, we obtain
analytical results and any analytical solution in nonequilibrium
physics is interesting in itself since it provides an ideal building
block for a minimalist model for more complex systems. Third,
self-propelled particles in a time-dependent external potential
are relevant in various experimental situations. Examples
discussed in this manuscript include self-diffusiophoretic mi-
croswimmers [31,53,58], self-propelled particles in acoustic
potentials [59], and in a somewhat wider context also active
granular hoppers [60,61]. Moreover, real bacteria with a
characteristic run-and-tumble motion [25] can be exposed to
geometric and other confinements [62–64]. Thus, our model
can be realized in experiments on artificial microswimmers or
swimming microorganisms.
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In our study, we consider both the limit of zero noise
and the situation with full Brownian motion. In the first
case, subsequent to an initial regime which stems from the
external potential, periodic trajectories are found. Their period
is determined by an interplay between the frequencies of
the circle swimming, the time-dependent self-propulsion, and
the oscillating external potential. If thermal fluctuations are
included, the mean trajectories are shown to be self-similar
curves collapsing into the trap center. With regard to the
mean-square displacement, we provide a general analytical
result which is explicitly solved for an active Brownian
particle with temporally varying self-propulsion in a constant
external potential. Furthermore, we discuss optimal swimming
strategies for the particle in order to explore the largest spatial
range inside the harmonic trap. In this context, a resonance
situation is found for the maximum reachable distance from
the trap center.

This paper is organized as follows: In Sec. II, the basic
model for a Brownian circle swimmer in a harmonic external
potential is introduced. Subsequently, the influence of two
types of time dependencies in the system is investigated. While
the focus is on a time-dependent self-propulsion velocity
in Sec. III, Sec. IV is devoted to a temporally varying
potential strength. In all cases, we first present results for
vanishing noise before considering the general situation with
Brownian motion. Section V contains a discussion of various
experimental realization possibilities for our model. Finally,
conclusions and an outlook are given in Sec. VI.

II. THE BASIC MODEL

To investigate the Brownian motion of a single circle
swimmer in a harmonic trap in two spatial dimensions, we use
corresponding overdamped Langevin equations. The external
potential, which is assumed to be symmetric and centered on
the origin, is given by

U (x,y) = λ0

2
(x2 + y2), (1)

with the potential strength λ0. The self-propulsion is mod-
eled by an effective force F = F0û [40] along the particle
orientation û and an effective constant torque M. In our
model, we assume that both the translational and the rotational
motion are restricted to two dimensions. In experiments, such
a situation is often caused by hydrodynamic effects between
the self-propelled particles and the substrate [65,66]. These
effects lead to a configuration where the particle orientations
are always almost parallel to the substrate. Hence, only a single
angle ϕ is needed in the theoretical description, and the particle
orientation can be written as û = (cos ϕ, sin ϕ). Furthermore,
the torque M acts always along the perpendicular z direction;
i.e., M = M êz (see Fig. 1).

In the overdamped limit, the translational motion of a
particle confined to the two-dimensional xy plane is described
by the Langevin equations

d

dt
x(t) = βD{F0 cos[ϕ(t)] − λ0x(t)} +

√
2D ξx(t) (2)

FIG. 1. Schematic view of a spherical circle swimmer in a
symmetric harmonic spatial trap U (x,y). The self-propulsion is
characterized by the effective force F = (Fx,Fy) and the effective
torque M = M êz. As the rotational motion is restricted to the xy

plane, the particle orientation is fully determined by the angle ϕ.

and

d

dt
y(t) = βD{F0 sin[ϕ(t)] − λ0y(t)} +

√
2D ξy(t) (3)

for the center-of-mass position r(t) = (x(t),y(t)) of the par-
ticle. ξx(t) and ξy(t) are independent Gaussian white noise
random terms, D denotes the translational short-time diffusion
constant, and β = 1/(kBT ) is the inverse effective thermal
energy. The terms −λ0x(t) and −λ0y(t) take the effect of the
external potential [see Eq. (1)] into account. The rotational
motion of the particle is governed by a single Langevin
equation for the angle ϕ(t),

d

dt
ϕ(t) =

√
2Dr ξϕ(t) + ω, (4)

in which ξϕ(t) represents a zero-mean Gaussian white noise
random torque and Dr is the rotational short-time diffusion
constant. For spherical particles with radius R, D and Dr fulfill
D/Dr = 4R2/3 [67]. The angular frequency ω = MβDr ,
which is determined by the effective torque M and leads to the
chiral motion, may originate from particle imperfections [68]
or from external fields [69,70], for example. Furthermore,
circle swimming can be due to spontaneous symmetry
breaking as has recently been observed for self-propelling
nematic liquid crystal droplets [71]. When proceeding from
spherical particles as considered here to more complex particle
shapes, an active rotational motion usually follows directly
from the shape asymmetry in combination with the detailed
self-propulsion mechanism [53,72]. Then, the hydrodynamic
coupling between the translational and the rotational self-
propelled motion plays an important role. This is manifested
by the nonzero off-diagonal elements in the corresponding
grand resistance matrix [73,74]. In our theoretical model in the
present manuscript, we do not focus explicitly on the specific
origin of the active rotational motion but just include a constant
angular velocity ω, which is referred to as circling frequency
in the following.
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The effect of random kicks of the solvent molecules is
taken into account by means of the Gaussian white noise terms
ξx(t), ξy(t), and ξϕ(t) in Eqs. (2)–(4). These terms are char-
acterized by 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (t

′
)〉 = δij δ(t − t

′
) with

i,j ∈ {x,y,ϕ}. To study the statistical behavior of the system,
noise-averaged quantities, such as the mean trajectories and the
mean-square displacement, are calculated from the Langevin
equations.

According to Eq. (4), the angular coordinate ϕ(t) is a
linear combination of Gaussian variables ξϕ(t). Thus, the
corresponding probability distribution function P (ϕ,t) is
Gaussian as well and is obtained by just evaluating the mean
〈ϕ(t)〉 = ϕ0 + ωt , where ϕ0 is the initial angle at t = 0, and the
variance 〈(ϕ(t) − 〈ϕ(t)〉)2〉 = 2Drt from Eq. (4). The result,

P (ϕ,t) = 1√
4πDrt

exp

[
− (ϕ − ϕ0 − ωt)2

4Drt

]
, (5)

allows for an analytical calculation of the noise average of
any angular terms occurring in the Langevin equations for a
self-propelled particle on a substrate [75].

Most of the results in this manuscript are provided in a
dimensionless form. Therefore, we define the dimensionless
quantities λ′

0 = βλ0D/Dr = 4βλ0R
2/3 for the strength of

the external potential, ω′ = ω/Dr for the circling frequency,
and F ′

0 = β(D/Dr )(F0/R) = 4βF0R/3 for the effective self-
propulsion force of a spherical particle. For reasons of

presentation, we omit the prime symbols in the following.
When exceptionally an equation is given in a nondimensionless
form, this is explicitly mentioned.

A. Results for vanishing noise

We start by considering the situation of vanishing thermal
noise, i.e., ξx(t) = ξy(t) = ξϕ(t) = 0. In this case, the equa-
tions of motion, Eqs. (2)–(4), can be solved analytically and
yield

x(t)

R
= e−λ0Dr t [cx + f (Drt,ω,ϕ0,λ0)] (6)

and

y(t)

R
= e−λ0Dr t

[
cy + f

(
Drt,ω,ϕ0 − π

2
,λ0

)]
, (7)

where cx = x0/R and cy = y0/R refer to the initial center-of-
mass position r0 = (x0,y0) of the particle. The function f is
specified by

f (t,ω,ϕ,λ) = F0

λ2 + ω2
[λeλt cos(ωt + ϕ) + ωeλt sin(ωt + ϕ)

− λ cos(ϕ) − ω sin(ϕ)]. (8)

Remarkably, after an initial regime, the microswimmer ap-
proaches a circular swimming path, which is independent of
the initial conditions [see Figs. 2(a) and 2(b)]. The analytical

FIG. 2. (a), (b) Noise-free and (c)–(h) noise-averaged trajectories of a circle swimmer with constant self-propulsion in a constant spatial
trap. In all plots, the self-propulsion force is F0 = 100 and the initial angle is ϕ0 = 0. The other parameters of the noise-free trajectories are in
(a) λ0 = 10, ω = 5, and cx = cy = 0 and in (b) λ0 = 3, ω = 30, cx = −20, and cy = 20. For the noise-averaged trajectories, three different
patterns regarding the asymptotic behavior are found based on the value of λ0. The case of λ0 > 1 is shown in (c) for λ0 = 10, ω = 7, and
cx = cy = 0. Example mean trajectories for λ0 < 1 are presented in (d) with λ0 = 0.7, ω = 10, and cx = cy = 0 and in (e) with λ0 = 0.3,
ω = 30, and cx = cy = 10. Finally, the case of λ0 = 1 is visualized in (f) with ω = 20 and cx = cy = 10, in (g) with ω = 15, cx = 3, and
cy = −3, and in (h) with ω = 9 and cx = cy = 0.
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expression describing this limit cycle is obtained from Eqs. (6)
and (7) by neglecting all exponentially decaying terms and
reads

1

R

(
x(t)
y(t)

)
= F0

λ2
0 + ω2

[
λ0

(
cos(ωDrt + ϕ0)
sin(ωDrt + ϕ0)

)

+ ω

(
sin(ωDrt + ϕ0)

− cos(ωDrt + ϕ0)

)]
. (9)

The radius rc of this limit cycle is

rc

R
= F0√

λ2
0 + ω2

, (10)

and the particle moves along it with frequency ω. The existence
of the initial regime can be attributed to the effect of the spatial
trap. While for relatively small ratios ω/λ0 the particle steadily
approaches its final circular trajectory [see Fig. 2(a)], for higher
ratios of circling frequency and trap strength, it takes some
revolutions of the circle swimmer until the regular periodic
motion is reached [see Fig. 2(b)]. The maximum distance the
swimmer can escape from the trap center occurs at ω = 0 and
is given by dmax = F0/λ0. In that case, the particle orientation
is fixed, and the particle moves away from the trap center on a
straight line until its self-propulsion force is fully compensated
by the external potential. On the other hand, for ω �= 0, the
particle orientation changes continuously so that the maximum
distance, which corresponds to a static situation of total force
balance, cannot be reached.

B. Effect of Brownian noise

In the presence of thermal fluctuations, by averaging over
the noise terms the mean positions along x and y direction at
prescribed initial conditions r0, ϕ0 are obtained as

〈x(t)〉
R

= e−λ0Dr t [cx + f (Drt,ω,ϕ0,λ0 − 1)] (11)

and

〈y(t)〉
R

= e−λ0Dr t

[
cy + f

(
Drt,ω,ϕ0 − π

2
,λ0 − 1

)]
, (12)

respectively. As shown in Figs. 2(c)–2(h), the corresponding
noise-averaged trajectories are spiraling curves that collapse
into the trap center. The reason for this collapsing behavior is
the factor exp(−Drt) in Eqs. (11) and (12), which stems from
the influence of the rotational Brownian motion. While the
deterministic torque M causes a continuous rotation around
the trap center, the random term ξϕ(t) is responsible for the
reduction of the radius of successive revolutions of the noise-
averaged curve. The overall effect of both torques, therefore,
leads to spiraling mean trajectories collapsing into the trap
center [76].

Depending on the trap strength λ0, three different cases
can be distinguished. For λ0 > 1, after relaxation of the
initial conditions, a spira mirabilis is obtained [see Fig. 2(c)],
similar to the case without external potential [50,53]. The
corresponding asymptotic mean swimming path of the circle

swimmer is given by

1

R

(〈x(t)〉
〈y(t)〉

)
= e−Dr tF0√

(λ0 − 1)2 + ω2

(
cos (ωDrt + α)
sin (ωDrt + α)

)
, (13)

with α = ϕ0 − arctan( ω
λ0−1 ).

If the trap strength λ0 is less than 1, the mean trajectory
evolves into a straight line approaching the trap center as shown
in Figs. 2(d) and 2(e). The corresponding asymptotic equations
are

1

R

(〈x(t)〉
〈y(t)〉

)
= e−λ0Dr tF0

(λ0 − 1)2 + ω2

[
(1 − λ0)

(
cos ϕ0

sin ϕ0

)

+ω

(− sin ϕ0

cos ϕ0

)]
+ e−λ0Dr t

(
cx

cy

)
. (14)

The slope of the straight line is dictated not only by the
circling frequency and the trap strength but also by the initial
conditions.

Finally, in the boundary case λ0 = 1, the mean trajectory
asymptotically becomes

1

R

(〈x(t)〉
〈y(t)〉

)
= e−Dr t

F0

ω

[(
sin (ωDrt + ϕ0)

− cos (ωDrt + ϕ0)

)

+
(− sin ϕ0

cos ϕ0

)]
+ e−Dr t

(
cx

cy

)
. (15)

This result is visualized in Figs. 2(f)–2(h) and can be referred
to as “stretched” spira mirabilis. The curves are obtained as
a superposition of a normal spira mirabilis and a straight line
toward the trap center. If the particle starts its motion from
the trap center, the corresponding mean trajectory crosses this
point of minimum potential in each revolution [see Fig. 2(h)].

III. TIME-DEPENDENT SELF-PROPULSION

Next, the dynamics of a trapped circle swimmer with time-
dependent self-propulsion is investigated. The self-propulsion
force is modeled by

F(t) = F0[1 + cos (νt + θ )]û, (16)

with the so-called propulsion frequency ν and the initial phase
θ . This approach is similar to a theoretical model that has
previously been applied to untrapped microswimmers [42].
In our study, the self-propulsion is implemented such that
the prefactor of û in Eq. (16) remains always positive. This
guarantees that the direction of propulsion is fixed in the
particle’s frame of reference and that the chirality of the motion
does not change in time. Consequently, the Langevin equation
for the translational motion is—in a nondimensionless form—
given by

d

dt

(
x(t)
y(t)

)
= βD

[
F0[1 + cos (νt + θ )]

(
cos [ϕ(t)]
sin [ϕ(t)]

)

− λ0

(
x(t)
y(t)

)]
+

√
2D

(
ξx(t)
ξy(t)

)
, (17)

while the rotational motion is governed by Eq. (4) as
before. Similar to the circling frequency ω, we also define
a dimensionless propulsion frequency ν ′ = ν/Dr but omit the
prime in the following.
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A. Results for vanishing noise

Without Brownian noise, the trajectory of a circle swimmer
described by the Langevin equations (17) and (4) is obtained
as

x(t)

R
= e−λ0Dr t

[
cx + f (Drt,ω,ϕ0,λ0)

+ 1

2
f (Drt,ω + ν,ϕ0 + θ,λ0)

+ 1

2
f (Drt,ω − ν,ϕ0 − θ,λ0)

]
, (18)

y(t)

R
= e−λ0Dr t

[
cy + f

(
Drt,ω,ϕ0 − π

2
,λ0

)

+ 1

2
f

(
Drt,ω + ν,ϕ0 + θ − π

2
,λ0

)

+ 1

2
f

(
Drt,ω − ν,ϕ0 − θ − π

2
,λ0

)]
, (19)

with the function f (t,ω,ϕ,λ) as defined in Eq. (8). An example
trajectory based on Eqs. (18) and (19) is shown in Fig. 3(a).
There and in all following figures, for simplicity we set cx =
cy = 0, i.e., the initial position of the particle is always in the
center of the trap. When all exponentially decaying terms in
Eqs. (18) and (19) are neglected, the expression reduces to

1

R

(
x(t)
y(t)

)
= F0

λ2
0 + ω2

×
[
λ0

(
cos (ωDrt + ϕ0)
sin (ωDrt + ϕ0)

)
+ ω

(
sin (ωDrt + ϕ0)

− cos (ωDrt + ϕ0)

)

+ λ0

2

(
cos[(ω + ν)Drt + ϕ0 + θ ]
sin[(ω + ν)Drt + ϕ0 + θ ]

)

+ (ω + ν)

2

(
sin[(ω + ν)Drt + ϕ0 + θ ]

− cos[(ω + ν)Drt + ϕ0 + θ ]

)

+ λ0

2

(
cos[(ω − ν)Drt + ϕ0 − θ ]
sin[(ω − ν)Drt + ϕ0 − θ ]

)

+ (ω − ν)

2

(
sin[(ω − ν)Drt + ϕ0 − θ ]

− cos[(ω − ν)Drt + ϕ0 − θ ]

)]
. (20)

Corresponding trajectories without initial regimes are pre-
sented in Figs. 3(b)–3(d).

If the ratio of the frequencies ν and ω is rational, the
swimming paths according to Eq. (20) are closed rosette-
like curves. For ν �= ω, their period is determined by Tp =
2π
Dr

LCM( 1
ω
, 1
ω+ν

, 1
|ω−ν| ), where LCM denotes the lowest com-

mon multiple. In the special case ν = ω, the period is Tp =
2π

Drω
. If the ratio ν/ω is irrational, the trajectory will never

close and eventually fill a circular area around the trap center.
Therefore, we only consider situations where ν/ω is rational
in the following.

The evidence of the presence of the trap is manifested in
the initial motion of the particle before it reaches its periodic
trajectory. In particular, the spatial trap dictates the position of
the swimming path. For instance, in the trajectory of Fig. 3(a),
the particle starts its motion from the origin, but its initial
motion—the dashed (red-colored) path—deviates from its

FIG. 3. Noise-free trajectories of a circle swimmer with tempo-
rally varying self-propulsion force in a constant spatial trap. While
the parameters F0 = 1, λ0 = 2, and θ = ϕ0 = 0 are the same in all
plots, the values of the circling frequency ω and the propulsion
frequency ν are varied as follows: (a) ω = 0.1 and ν = 0.5, (b)
ω = ν = 0.7, (c) ω = 0.75 and ν = 0.7, and (d) ω = 1.2 and ν = 0.4.
The behavior for short times, which depends on the initial conditions,
is only shown in (a), where it is visualized by the dashed (red) curve.
Furthermore, in (a) and (b) the particle orientation at various points
of the trajectory is illustrated by the sketched Janus particles whose
direction of propulsion is represented by arrows. The orange bullet
symbol marks the point where the self-propulsion is maximal, and
the square symbol refers to the position with minimal self-propulsion.
The radius of the dotted circle in (a) and the dotted line in (b) indicate
the maximum distance from the trap center which the particle can
reach. This distance is analyzed in detail in Fig. 4. The swimming
path in (d) is a single-petal curve with two inner petals. Different line
styles (and colors) are used to illustrate the individual inner petals.
The magenta cross in (b) and (d) indicates the trap center.

following periodic rosette-like path. Each “petal” is formed
by the interplay of the time-dependent self-propulsion force,
the external potential, and the torque. Precisely, in Fig. 3(a) the
circle swimmer starts in the center of the spatial trap with the
maximum value of the self-propulsion force due to the initial
conditions. Subsequently, it escapes from the trap center while
the self-propulsion decreases. Simultaneously, the swimmer
rotates as determined by the circling frequency. Meanwhile,
the trap force acting on the particle increases since it is
proportional to the distance from the center. At the outermost
point of the initial petal [dashed red curve in Fig. 3(a)], the
trap force becomes so strong that it is able to pull the particle
back toward the center. Returning to the trap center continues
roughly until the propulsion force adopts its minimum value.
Shortly after that, with increasing self-propulsion, the particle
once more starts to run away from the center before the latter is
actually reached. Since, meanwhile, the torque is also rotating
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the circle swimmer, the next petal begins to form. For all
petals that are not influenced by the initial regime anymore,
the maximum distance from the trap center is reached slightly
after the self-propulsion force adopts its maximum value. [This
point in time is indicated by the orange bullet in Fig. 3(a).]
Apart from that, the process corresponds to that described in
detail for the initial petal.

Although most of the occurring trajectories have an m-fold
rotational symmetry around the trap center with m � 2—
similar to the example trajectories in Figs. 3(a) and 3(c)—
under certain conditions a circle swimmer with temporally
varying self-propulsion in a symmetric two-dimensional spa-
tial trap can also undergo swimming paths that are not
symmetric around the center of the trap, even after relaxation
of the initial conditions. For instance, for ω = ν the particle
always moves on a single-petal heart-shaped path as shown
in Fig. 3(b). The reason is the synchronous oscillation of the
self-propulsion force and the particle orientation, which leads
to the formation of the second petal exactly on top of the first
one. Generally, trajectories that are asymmetric with respect to
the trap center occur only for ω = nν with n = 1,2,3, . . . since
in these cases, during one period of the self-propulsion force,
the circle swimmer completes n full revolutions. This leads to
a single-petal trajectory with n − 1 inner petals [cf. Fig. 3(d)].
It should be mentioned that the inner petals are qualitatively
different from the petals of a symmetric rosette-like trajectory
as in Fig. 3(a) since they are in general not created one after
the other by the swimmer.

An interesting quantity to study is the maximum distance
dmax = max(

√
x2 + y2/R) from the center of the trap, which

a particle can reach on its periodic trajectory. For instance,
the maximum distance in Fig. 3(a) is the radius of the dotted
circle, and in Fig. 3(b) dmax is indicated by the dotted line. A
detailed analysis of this maximum distance from the trap center
is provided in Fig. 4. Interestingly, a pronounced resonance
situation is observed, which is determined by the propulsion

FIG. 4. Maximum distance dmax from the trap center of a noise-
free circle swimmer with temporally varying self-propulsion in a
constant harmonic trap as a function of ν for F0 = 1 and θ = 0. Any
effect from the initial behavior of the particle has been neglected. The
maximum value of dmax occurs at ν = 2.7 for the dotted blue curve,
at ν = 4.8 for the dashed green curve, and at ν = 19.9 for the solid
purple curve. The maximum of the other three curves is at ν = 0. In
the inset, the asymptotic behavior for large values of ν is visualized.

frequency ν, the circling frequency ω, and also the trap strength
λ0. By varying ω and λ0 and plotting dmax as a function of
ν, it is concluded that the maximum escape distance of the
particle roughly occurs for ν2 = ω2 − λ2

0/2 if the right-hand
side of this equation is positive (see Fig. 4). Thus, to achieve
an optimal swimming strategy in order to explore a maximum
spatial range around the trap center, the particle has to adapt
its propulsion frequency to a given circling frequency and
trap strength accordingly. For ω2 − λ2

0/2 < 0, the maximum
value of dmax is always at ν = 0. The strength of the self-
propulsion force has no effect on the resonance situation, apart
from changing the value of dmax.

By neglecting the initial regime and setting θ = 0, the
asymptotic behavior of dmax in the limits of ν → 0 and ν → ∞
is obtained as

lim
ν→0

dmax = 2F0√
λ2

0 + ω2
(21)

and

lim
ν→∞dmax = F0√

λ2
0 + ω2

, (22)

respectively. Obviously, the limit for large values of ν is exactly
half of the limit ν → 0. If the self-propulsion force F0 is kept
at a constant value, exchanging the values of the trap strength
λ0 and the circling frequency ω does not alter the limit values
although the swimming paths are different. This is illustrated
by the curves in the inset of Fig. 4.

B. Effect of Brownian noise

If the Brownian noise terms in Eqs. (17) and (4) are taken
into account, the mean positions of the circle swimmer along
x and y direction are obtained as〈

x(t)

R

〉
= e−λ0Dr t

[
cx + f (Drt,ω,ϕ0,λ0 − 1)

+ 1

2
f (Drt,ω + ν,ϕ0 + θ,λ0 − 1)

+ 1

2
f (Drt,ω − ν,ϕ0 − θ,λ0 − 1)

]
(23)

and〈
y(t)

R

〉
= e−λ0Dr t

[
cy + f

(
Drt,ω,ϕ0 − π

2
,λ0 − 1

)

+ 1

2
f

(
Drt,ω + ν,ϕ0 + θ − π

2
,λ0 − 1

)

+ 1

2
f

(
Drt,ω − ν,ϕ0 − θ − π

2
,λ0 − 1

)]
, (24)

respectively, based on the function f (t,ω,ϕ,λ) defined in
Eq. (8). After times long enough for the particle to abandon its
initial regime, the mean trajectory does not change in time
except for a factor exp(−Drt), which originates from the
random torque. Thus, self-similar curves collapsing toward
the trap center are obtained if the initial behavior is excluded.
A shrunk version of the mean trajectory is repeated after the
period Tp = 2π

Dr
LCM( 1

ω
, 1
ω+ν

, 1
|ω−ν| ). An example of such a
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FIG. 5. Noise-averaged trajectory of a circle swimmer with
temporally oscillating self-propulsion force in a constant harmonic
trap. The parameters are F0 = 50, λ0 = 50, ω = 14, ν = 7, θ =
3π/2, and ϕ0 = 0. In (a) the complete trajectory including the initial
regime is shown while the close-up view in (b) clearly illustrates the
self-similarity of the curve. The mean swimming path during one
period is indicated by the dashed purple line.

noise-averaged trajectory is shown in Fig. 5. The number of
petals is the same as in the corresponding noise-free trajectory
and also their shape is similar. However, due to the rotational
Brownian noise, subsequent petals become smaller and lie
inside the petals formed during the preceding periods.

In the following, we focus on the mean-square displace-
ment, which is the standard quantity to characterize Brownian
dynamics. As we restrict our investigation to situations where
the particle starts in the origin, which coincides with the
center of the trap, the mean-square displacement is identical
to the second moment (〈x2(t)〉 + 〈y2(t)〉)/R2. After the initial
regime, the mean-square displacement is given by

lim
t→∞

〈x2〉 + 〈y2〉
R2

= (2Cλ0 − Bν)

4λ2
0 + ν2

cos(νDrt + θ )

+ (2Bλ0 + Cν)

4λ2
0 + ν2

sin(νDrt + θ )

+ (Aλ0 − Bν)

4λ2
0 + 4ν2

cos(2νDrt + 2θ )

+ (Bλ0 + Aν)

4λ2
0 + 4ν2

sin(2νDrt + 2θ )

+ F 2
0

λ0

λ0 + 1

(λ0 + 1)2 + ω2
+ A

4λ0
+ 8

3λ0
,

(25)

where the constants A, B, and C are defined as

A = F 2
0 (λ0 + 1)

(λ0 + 1)2 + (ω − ν)2
+ F 2

0 (λ0 + 1)

(λ0 + 1)2 + (ω + ν)2
, (26)

B = F 2
0 (ν − ω)

(λ0 + 1)2 + (ω − ν)2
+ F 2

0 (ω + ν)

(λ0 + 1)2 + (ω + ν)2
, (27)

and

C = 2F 2
0 (λ0 + 1)

(λ0 + 1)2 + ω2
+ A, (28)

respectively.
While in Eq. (25) all terms decaying exponentially in time

have been neglected, an additional time average—indicated by

FIG. 6. (a) Time-averaged mean-square displacement of a
Brownian circle swimmer with temporally varying self-propulsion
in a constant harmonic trap as a function of the trap strength λ0. The
parameters are F0 = 4, ω = 3, ν = 2, and θ = 0. The inset shows
the same quantity as a function of the frequencies ω and ν. All
curves are based on the analytical result in Eq. (29). (b) Full time
dependence of the mean-square displacement according to Eq. (A10)
in the Appendix for λ0 = 8 and the other parameters being the same
as in (a). The dashed orange line represents the time-averaged value
for the chosen parameters.

the notation 〈. . .〉T in the following—leads to the expression
〈 〈x2〉 + 〈y2〉

R2

〉
T

= F 2
0

λ0

λ0 + 1

(λ0 + 1)2 + ω2
+ A

4λ0
+ 8

3λ0
. (29)

This result is visualized in Fig. 6(a), where the dependence
on the potential strength λ0 is shown. In the inset, the time-
averaged mean-square displacement is plotted as a function of
the frequencies ω and ν, respectively. Increasing the values of
λ0, ω, or ν always leads to a decrease of the time-averaged
mean-square displacement. The explicit time dependence of
the mean-square displacement is shown in Fig. 6(b). The solid
blue curve is based on the full analytical solution, which is
provided in Eq. (A10) in the Appendix. As a function of time,
the curve oscillates with the frequency ν around the mean
value determined by Eq. (29).

On top of the general behavior of the mean-square
displacement, special focus is directed at the maximum
value �max = max((〈x2〉 + 〈y2〉)/R2). Similar to the maxi-
mum escape distance dmax in the case of vanishing noise, a
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FIG. 7. Maximum mean-square displacement �max of a
Brownian circle swimmer with temporally varying self-propulsion
in a constant harmonic trap as a function of the propulsion frequency
ν. The parameters that are not specified in the figure are λ0 = 2 and
ϕ0 = θ = 0. Any influence of the initial regime has been neglected.
The maximum of �max occurs at ν = 0 for the dot-dashed blue curve,
at ν = 4.3 for the dotted orange curve, and at ν = 19.9 for both
the solid green and the dashed red curves. The inset visualizes the
asymptotic behavior for large values of ν.

resonance situation is found, which is defined by the system
frequencies and the strength of the spatial trap. This resonance
is visualized in Fig. 7, where �max is plotted as a function of
the propulsion frequency ν. As illustrated by the solid green
and the dashed red curves, the self-propulsion strength only
affects the maximum value of �max but does not shift the
resonance frequency. The semilogarithmic plot in the inset
of Fig. 7 reveals the asymptotic behavior of �max for very
large values of ν. The limit cases ν → 0 and ν → ∞ have
also been calculated analytically from Eq. (25) and yield
for θ = 0

lim
ν→0

�max = 4
F 2

0

λ0

λ0 + 1

(λ0 + 1)2 + ω2
+ 8

3λ0
(30)

and

lim
ν→∞�max = F 2

0

λ0

λ0 + 1

(λ0 + 1)2 + ω2
+ 8

3λ0
, (31)

respectively.

IV. TIME-DEPENDENT HARMONIC POTENTIAL

Now, we keep the self-propulsion force fixed at the value
F0 and instead consider a time dependence in the strength of
the spatial trap, given by

λ(t) = λ0[1 + cos (
t)]. (32)

This situation constitutes a simple reference case for a
time-dependent confinement. The constant term in Eq. (32)
guarantees that the potential is always attractive, i.e., confining.
Thus, the particle is under the influence of a temporally

FIG. 8. Sketch of the time-dependent harmonic potential along
the x direction for different times 
t . The potential oscillates between
the solid orange curve and the horizontal red line. The inset shows
the behavior of the trap strength λ versus time.

opening-closing trap as sketched in Fig. 8. Accordingly, the
frequency 
 is referred to as breathing frequency [19].

The translational Langevin equation adapted to this new
situation reads in a nondimensionless form

d

dt

(
x(t)
y(t)

)
=βD

[
F0

(
cos [ϕ(t)]
sin [ϕ(t)]

)
−λ0[1 + cos (
t)]

(
x(t)
y(t)

)]

+
√

2D

(
ξx(t)
ξy(t)

)
. (33)

Again, as already done for the circling frequency ω and the
propulsion frequency ν, we define a dimensionless breathing
frequency 


′ = 
/Dr but omit the prime in the following.
Since a full analytical solution of Eq. (33) is not available,
most of the results in this section were obtained numerically.

A. Results for vanishing noise

Similar to the case of a circle swimmer with time-dependent
self-propulsion in a constant harmonic trap as studied in
Sec. III, subsequent to an initial regime the noise-free trajec-
tories obtained from the Langevin equations (33) and (4) are
closed rosette-like curves for rational ratios of the frequencies

 and ω. This time, the trajectories are governed by the
interplay between the circle swimming and the temporal
behavior of the spatial trap. Correspondingly, the period
is defined by Tp = 2π

Dr
LCM( 1

ω
, 1



). As before, most of the
trajectories consist of several petals and have an initial regime
that is determined by the initial conditions r0, ϕ0.

Some example trajectories are shown in Fig. 9. For reasons
of clarity, the initial behavior of the circle swimmer has been
removed from the plots. The formation of the swimming path
is exemplarily described based on Fig. 9(a): In that case,
three petals arise since the breathing frequency 
 = 1.5 is
three times as large as the circling frequency ω = 0.5. Thus,
during one full rotation of the particle, the trap completes three
oscillations, which each lead to the formation of one petal. The
particle reaches the outermost point of a petal some time after
the potential is minimal, and the turning points that are closest
to the trap center correspond to times when the potential has

022606-8



BROWNIAN MOTION OF A CIRCLE SWIMMER IN A . . . PHYSICAL REVIEW E 95, 022606 (2017)

FIG. 9. Noise-free trajectories of a circle swimmer with constant
self-propulsion in a temporally varying harmonic trap. The parame-
ters F0 = 1, λ0 = 2, and ϕ0 = 0 are the same in all plots. The values of
the breathing frequency 
 and the circling frequency ω are varied as
follows: (a) 
 = 1.5 and ω = 0.5, (b) 
 = ω = 0.5, (c) 
 = 0.5 and
ω = 0.51, and (d) 
 = 0.4 and ω = 1.2. All plots show the periodic
trajectories for long times after relaxation of the initial conditions.
The magenta cross represents the center of the trap. In (a) and (b), the
particle orientation at various points of the trajectory is visualized by
the sketched Janus particles whose direction of propulsion is indicated
by arrows. The orange square symbol marks the point where the trap
strength is minimal, and the bullet symbol refers to the maximum
potential.

just started to decrease again from its maximum value. The
sketched Janus particles inside the figure indicate the particle
orientation at the respective points of the trajectory. As the
relation 
 = 3ω holds for the situation shown in Fig. 9(a),
the fourth petal is formed exactly on top of the first one so that
the periodic trajectory arises.

In analogy to the situation in Sec. III A, trajectories without
any rotational symmetry around the trap center occur for ω =
n
 with n = 1,2,3,.... As shown in Fig. 9(b), the condition

 = ω leads to a slightly distorted ellipse-like trajectory,
where the center of the trap is located near a strongly bent side
of the curve. For higher values of n = ω/
, more complicated
swimming paths with n − 1 inner loops are created [cf.
Fig. 9(d)]. The generic case, however, which is realized in all
situations where ω/
 is a noninteger number, is trajectories
with an m-fold rotational symmetry (m � 2) around the trap
center. An example of a trajectory with large m is shown in
Fig. 9(c).

With regard to the maximum distance dmax from the
trap center, which a particle can reach during its periodic
motion, we again find a resonance situation determined by the
frequencies in the system. As shown by the blue (dark) curves
in Fig. 10, for fixed values of ω and λ0 there is a clear maximum

�20, 0�2, F0�5
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FIG. 10. Maximum distance dmax from the trap center of a noise-
free circle swimmer with constant self-propulsion in a temporally
varying harmonic trap. While the blue (dark) curves are plotted as a
function of the breathing frequency 
, the green (light) curves show
the dependence on the circling frequency ω. The parameters for each
curve are specified in the figure. Any effect from the initial behavior
of the particle has been neglected. The maximum value of dmax occurs
at 
 = 1.2 for the dot-dashed blue curve, at 
 = 2.7 for the dashed
blue curve, and at 
 = 20.2 for the solid blue curve. For the green
curves, the maximum is always at ω = 0. In the inset, the asymptotic
behavior for large frequencies is shown.

of dmax as a function of 
. While the position of this maximum
is usually close to 
 = ω, for large values of the trap strength
λ0 it is shifted toward lower breathing frequencies 
. This is
illustrated by the dot-dashed blue curve in Fig. 10 as compared
with the dashed blue curve. Interestingly, the maximum value
of dmax that the particle can reach is greater in the former case.
This is counterintuitive at first sight because the only difference
between the two cases is the trap strength, which is higher
for the dot-dashed curve. Thus, one would expect that the
circle swimmer is more strongly confined in the region close
to the trap center. However, since the maximum occurs at a
smaller breathing frequency, the time interval during which the
temporally oscillating potential is weak so that the particle can
escape from the trap center is extended. This overcompensates
the increased trap strength.

As illustrated by the green (light) curves in Fig. 10, the
maximum value of dmax as a function of the circling frequency
ω for fixed 
 and λ0 always occurs at ω = 0. This is plausible
since in that case the particle orientation is constant so that the
full swimming strength can be used in order to move straight
away from the trap center. For very large values of ω, dmax

goes to zero.
Another feature of the maximum escape distance of a circle

swimmer with constant self-propulsion in a temporally varying
harmonic trap is the appearance of a second local maximum
in addition to the global maximum. As a function of 
,
this local maximum gets more pronounced when increasing
the ratio ω/λ0. It occurs approximately at half the value of
the breathing frequency at the global maximum (cf. solid
blue curve in Fig. 10). When dmax is plotted as a function
of the circling frequency ω, a small local maximum becomes
visible at ω ≈ 
 for high ratios 
/λ0 (cf. solid green curve in
Fig. 10).
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FIG. 11. Noise-averaged trajectories of a circle swimmer with
constant self-propulsion in a temporally varying harmonic trap. Both
plots are for F0 = 50, λ0 = 10, and 
 = 10 while the values of the
other parameters are ω = 5 and ϕ0 = π/2 in (a) and ω = 10 and
ϕ0 = 0 in (b). In each plot, the initial regime is visualized by the
dashed green curve, and the dot-dashed purple segment represents
the mean swimming path during one period.

B. Effect of Brownian noise

Concerning the influence of Brownian noise, most of the
findings for the case of a circle swimmer with time-dependent
self-propulsion in a constant trap can analogously be trans-
ferred to the situation of a circle swimmer with constant self-
propulsion in a temporally varying trap. Similar to Sec. III B,
the main effect of the thermal noise is that self-similar mean
trajectories are established (see Fig. 11), which bear the
characteristics of their noise-free counterparts. Subsequent
to an initial regime, the curves collapse into the trap center
with the period Tp = 2π

Dr
LCM( 1

ω
, 1



) of the self-similar pattern,
exactly like the period of the same situation in the noise-free
case. In Fig. 11, the mean swimming path during one period
Tp is visualized by the dot-dashed purple curve. Segments
of the same shape but with decreasing size are continuously
repeated as time proceeds. When the circling frequency and
the breathing frequency are equal, the self-similar trajectory
is a distorted spira mirabilis, which surrounds the trap center
[cf. Fig. 11(b)].

V. EXPERIMENTAL REALIZATION

There are various experimental setups representing the
situation described by our theoretical model. Active Brownian
particles with a programmed propulsion velocity in an external
field can in principle be realized at wish by using self-
diffusiophoretic colloidal Janus particles [31,53,58], where

both the self-propulsion and the time-dependent confinement
can be controlled independently by using laser fields with
different wavelengths. The active rotational motion can be
implemented either by using asymmetric particles [53] or—for
spherical Janus particles—by specifically designed inhomo-
geneities in the gold or platinum cap [77]. One important
aspect when preparing the experimental setup is to thoroughly
take care of the optical properties of the Janus particles. Since
the intensities required for optical tweezers are relatively high,
the interactions of a two-component Janus particle with the
light field are in general more complicated than for simple
homogeneous colloidal particles. This might even lead to
situations where it is not possible to trap Janus particles
by using setups which perfectly work for passive colloidal
particles. Therefore, the optical landscape has to be designed
specifically for the system under study.

An alternative option is to use acoustic tweezers [78]
instead of optical landscapes for the trapping. This method
has recently been applied successfully to self-propelled Janus
particles driven by the catalytic decomposition of hydrogen
peroxide [59]. An important advantage of this acoustic
confinement is the possibility of designing a near-harmonic
trap with a trapping radius being significantly larger than the
size of the swimmer.

Finally, another experimental situation corresponding to
our theoretical model is active granular hoppers on a vibrating
plate. Such systems have first been realized by using self-
propelled polar granular rods [79,80]. In that case the direction
of the active motion is determined by the particle shape.
Similarly, it is also possible to include an active rotational
motion by designing appropriate asymmetric particle shapes.
However, a deterministic torque can also be achieved for
isotropic particles by implementing the asymmetry not in the
shape of the particles themselves but in the design of their
legs, which are in contact with the vibrating plate [60,81]. In
such a system, the translational and rotational activity can be
tuned by the amplitude and frequency of the vibrations. The
confining potential can be realized by a corrugated surface.

All of these experiments are feasible in principle but require
a thorough preparation and execution.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have investigated the dynamics of a
Brownian circle swimmer in an external harmonic potential.
By including a time dependence both with regard to the
self-propulsion velocity and for the spatial potential, we have
found an interesting interplay of different frequencies.

In the absence of thermal noise, periodic trajectories
are observed after passing an initial regime. The period of
the trajectories is governed by the frequencies characterizing
the circle swimming, the time-dependent self-propulsion, and
the oscillating external potential, respectively. The existence
of the initial regime is a direct consequence of the presence of
the external potential. If thermal fluctuations are included, the
mean trajectories for fixed initial orientation are spiral curves
collapsing toward the trap center. They show a characteristic
self-similar behavior for long times. The period of the
self-similarity is determined by the common period of the
frequencies of the system.
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Moreover, the maximum spatial range a particle can explore
inside the trap has been investigated. As a function of the trap
strength and the various frequencies of the system, there is
a resonance situation in which the swimmer can escape the
maximum distance from the trap center. Changing the strength
of the self-propulsion does not affect the resonance frequency
but only alters the value of the maximum possible distance.

We have also provided a general result for the mean-square
displacement, which we explicitly solved analytically for
the case of a time-dependent self-propulsion and a constant
external potential. On top of a detailed analysis of the influence
of the propulsion frequency, we have addressed several
limiting cases. In general, for long times, the mean-square
displacement oscillates around a constant mean value.

For the future, it is interesting to investigate the dynamics
of circle swimmers in more complicated external poten-
tials [82,83]. While a single harmonic trap is the simplest
example of spatial confinement, a versatile trapping and
escaping behavior is expected for periodic structures such as
a staircase-like potential or traveling waves [57]. An intricate
interplay between the different frequencies of the system will
determine whether a particle is trapped in the first valley of a
static staircase potential or is able to proceed to subsequent val-
leys in order to approach the global minimum of the potential.
In this context, a consequential next step would be to generalize
previous results on the escape rate of self-propelled particles
from a metastable potential well [84] toward circle swimmers.

Another interesting topic is the collective behavior of circle
swimmers in a harmonic trap. It is expected that the formation
of clusters as has been observed in the context of passive
particles [85–90] is strongly affected by the chiral motion of

active circle swimmers. In such systems of higher particle
density, hydrodynamic particle-particle interactions will also
play an important role and thus have to be included in the
theoretical modeling [91].

Last but not least, the investigation of chiral microswim-
mers in various kinds of external confinement will most likely
provide valuable insight for the design of functional micro-
machines that have the ability to transport nanoscale cargoes
in a liquid environment [92,93], for example. These devices
can even exploit various kinds of taxes [94–97], which in
combination with confinement effects [51,98–100] helps them
to navigate through complex environments. Self-propelled par-
ticles combined with temporally varying harmonic potentials
have recently also been suggested as a key building block for
the realization of micrometer-sized heat engines [17,101,102].
To optimize the efficiency of such stochastic heat engines,
a detailed understanding of the underlying processes and
the competition between translational and rotational mo-
tion as characteristic for circle swimming is an important
prerequisite.
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APPENDIX: GENERAL RESULTS FOR A CIRCLE SWIMMER IN A HARMONIC TRAP

In the following, we present the results for the most general case of a circle swimmer with time-dependent self-propulsion in
a temporally varying harmonic trap. The given theoretical framework also contains the situations discussed before in detail as
special cases. The general equations of motion in a nondimensionless form are

d

dt
x(t) = βD{F (t) cos [ϕ(t)] − λ(t)x(t)} +

√
2D ξx(t) (A1)

and

d

dt
y(t) = βD{F (t) sin [ϕ(t)] − λ(t)y(t)} +

√
2D ξy(t). (A2)

In the absence of random forces and torques, after an initial regime the circle swimmer moves on a periodic trajectory with the
period Tp = 2π

Dr
LCM( 1

ω
, 1


, 1
ν
). By averaging over the Brownian noise, the mean position along the x direction is obtained as

〈x(t)〉
R

= cx exp

[
− λ0



sin (
Drt) − λ0Drt

]
+

{
F 0 exp

[
− λ0



sin (
Drt) − λ0Drt

]

×
∫ Dr t

0
dτ cos(ωτ + ϕ0)[1 + cos(ντ + θ )] exp

[
− τ + λ0



sin(
τ ) + λ0τ

]}
. (A3)

Correspondingly, the y component is

〈y(t)〉
R

= cy exp

[
− λ0



sin (
Drt) − λ0Drt

]
+

{
F 0 exp

[
− λ0



sin (
Drt) − λ0Drt

]

×
∫ Dr t

0
dτ sin

(
ωτ + ϕ0

)
[1 + cos (ντ + θ )] exp

[
− τ + λ0



sin (
τ ) + λ0τ

]}
. (A4)

Equations (A3) and (A4) represent self-similar noise-averaged swimming paths, which collapse into the trap center.
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The second moment is given by 〈r2(t)〉/R2 = 〈x2(t)〉/R2 + 〈y2(t)〉/R2 with

〈x2(t)〉
R2

= exp

[
− 2

λ0



sin(
Drt) − 2λ0Drt

]
c2
x + exp

[
− 2

λ0



sin(
Drt) − 2λ0Drt

]

×
({

2cxF 0

∫ Dr t

0
dτ cos(ωτ + ϕ0)[1 + cos(ντ + θ )] × exp

[
− τ + λ0



sin(
τ ) + λ0τ

]}

+
∫ Dr t

0
dτ1

∫ τ1

0
dτ2

(
F 2

0 exp[−(τ1 − τ2)][1 + cos(ντ1 + θ )][1 + cos(ντ2 + θ )]

×
{

cos[ω(τ1 − τ2)] + cos[2ϕ0 + ω(τ1 + τ2)]e−4τ2

}
exp

[
λ0



sin(
τ1) + λ0τ1

]

× exp

[
λ0



sin(
τ2) + λ0τ2

])
+ 8

3

∫ Dr t

0
dτ exp

[
2
λ0



sin(
τ ) + 2λ0τ

])
(A5)

and

〈y2(t)〉
R2

= exp

[
− 2

λ0



sin(
Drt) − 2λ0Drt

]
c2
y + exp

[
− 2

λ0



sin(
Drt) − 2λ0Drt

]

×
({

2cyF 0

∫ Dr t

0
dτ sin(ωτ + ϕ0)[1 + cos(ντ + θ )] exp

[
− τ + λ0



sin(
τ ) + λ0τ

]}

+
∫ Dr t

0
dτ1

∫ τ1

0
dτ2

(
F 2

0 exp[−(τ1 − τ2)][1 + cos(ντ1 + θ )][1 + cos(ντ2 + θ )]

×
{

cos[ω(τ1 − τ2)] − cos[2ϕ0 + ω(τ1 + τ2)]e−4τ2

}
exp

[
λ0



sin(
τ1) + λ0τ1

]

× exp

[
λ0



sin(
τ2) + λ0τ2

])
+ 8

3

∫ Dr t

0
dτ exp

[
2
λ0



sin(
τ ) + 2λ0τ

])
. (A6)

These equations can be solved analytically for a constant spatial trap. In that case, by defining

G1 = (λ0 + 1)

{
F0

e2λ0Dr t − 1

2λ0
+ f (Drt,ν,θ,2λ0) − f (Drt,ω,0,λ0 − 1) − fc(Drt,ω,0,ν,θ,λ0 − 1)

}

+ω

{
f

(
Drt,ω, − π

2
,λ0 − 1

)
+ fc

(
Drt,ν,θ,ω, − π

2
,λ0 − 1

)}
, (A7)

G2 = (λ0 + 1){f (Drt,ν,θ,2λ0) + fc(Drt,ν,θ,ν,θ,2λ0)} − (ω − ν)

{
f

(
Drt,ν,θ − π

2
,2λ0

)

+ fc

(
Drt,ν

′
,θ,ν,θ − π

2
,2λ0

)}
− (λ0 + 1){f (Drt,ω,θ,λ0 − 1) + fc(Drt,ν,θ,ω,θ,λ0 − 1)}

+ (ω − ν)

{
f

(
Drt,ω,θ − π

2
,λ0 − 1

)
+ fc

(
Drt,ν,θ,ω,θ − π

2
,λ0 − 1

)}
, (A8)

and

G3 = (λ0 + 1){f (Drt,ν,θ,2λ0) + fc(Drt,ν,θ,ν,θ,2λ0)} + (ω + ν)

{
f

(
Drt,ν,θ − π

2
,2λ0

)

+ fc

(
Drt,ν,θ,ν,θ − π

2
,2λ0

)}
− (λ0 + 1){f (Drt,ω,θ,λ0 − 1) + fc(Drt,ν,θ,ω,θ,λ0 − 1)}

+ (ω + ν)

{
f

(
Drt,ω,θ − π

2
,λ0 − 1

)
+ fc

(
Drt,ν,θ,ω,θ − π

2
,λ0 − 1

)}
, (A9)

with fc(t,ν,θ,ω,ϕ,λ) = 1
2f (t,ω + ν,ϕ + θ,λ) + 1

2f (t,ω − ν,ϕ − θ,λ), one obtains

〈x2(t)〉 + 〈y2(t)〉
R2

= 2e−λ0Dr t

(
cx

〈x(t)〉
R

+ cy

〈y(t)〉
R

)
− (

c2
x + c2

y

)
e−2λ0Dr t + 8

3λ0
(1 − e−2λ0Dr t )

+F0e
−2λ0Dr t

[
2G1

(λ0 + 1)2 + ω2
+ G2

(λ0 + 1)2 + (ω − ν)2
+ G3

(λ0 + 1)2 + (ω + ν)2

]
. (A10)

022606-12
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In the above formulas, the function f is defined by Eq. (8) and the mean positions 〈x(t)〉/R and 〈y(t)〉/R are given in Eqs. (23)
and (24), respectively. For cx = cy = 0, the second moment in Eq. (A10) is identical to the mean-square displacement visualized
in Fig. 6(b).
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[58] I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, and C. Bechinger,
J. Phys.: Condens. Matter 24, 284129 (2012).

[59] S. C. Takatori, R. De Dier, J. Vermant, and J. F. Brady, Nat.
Commun. 7, 10694 (2016).

[60] J. Deseigne, O. Dauchot, and H. Chaté, Phys. Rev. Lett. 105,
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