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Dynamics of field-driven population inversion in a confined colloidal mixture
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We study, using Langevin dynamics simulations, the change in composition of a binary colloidal mixture
confined in a finite-length channel, induced by an external field. The field-induced transition from a near-bulk
composition to an inverted population is studied as a function of time, for different field strengths and system
parameters. For state points corresponding to reversible field cycles, the cyclic filling and emptying of the channel
by the minority species are compared. Extrapolation of the physical relaxation times to the colloidal regime is
performed through a series of simulations at increasing value of the damping parameter. For state points at which
the mixture is unstable at zero field, reproducible irreversible cycles are illustrated. For reversible field cycles,
the scaling with the particles size of the characteristic cycling time is discussed.
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I. INTRODUCTION

Due to their importance in domains ranging from materials
science to biology, fluids confined in external fields have
been the subject of continued interest. While molecular fluids
have been studied extensively [1–3], emphasis has recently
been put on confined colloids, due to the possibility to tune
the effective interaction between macroparticles and their
phase behavior by various fields. Besides specific factors such
as composition, geometry, and interaction strength, electric
(magnetic) fields indeed affect the static and dynamic behavior
of confined fluids by exerting forces or torques on the dipolar
particles, thus lowering their potential energy. Understanding
the dynamical behavior of the fluid is of great importance in
many applications, in which the fundamental mechanism relies
on the difference between consecutive states of the systems.
This gave rise to intense experimental and theoretical work
on the equilibrium and dynamical field effects on confined
fluids [4–23].

Among the studies dealing with the control of confined
fluids by external fields, Brunet et al. [8,9] discussed the
potentially useful phenomenon of a field-induced population
inversion near bulk instability of binary mixtures (PINBI). The
authors of Refs. [8,9] showed that, under certain conditions, it
is possible to produce a field-induced jump in the adsorption
of the confined minority component. Without repeating the
arguments detailed in the original articles, we recall here that
the field-induced PINBI effect results [8] from the combination
of two actually quite generic physical mechanisms: (1) the
effect of an electric field on polar particles and (2) large
composition fluctuations in an open pore when the bulk
mixture is close to a phase transition. Furthermore, the required
ingredients, polar or polarizable particles and mixtures with
unfavorable AB interactions, are quite common. Reference [9]
also stressed the fact that a field control of the composition of
the confined fluid that does not rely on a subtle combination of
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specific interactions should be robust and feasible with simple
components. In experimental realizations, chemical specificity
would enter through the composition of the stabilizing layers
of the colloids, so as to facilitate the demixing.

The authors suggested that the resulting discontinuity in the
physical properties of the mixture could be used for a range of
possible applications, for example, to modulate the dielectric
response of a confined fluid for optical applications or its
viscosity for electromechanical ones. A similar population
change in other confined binary mixtures, driven by density or
specific interactions, has been discussed in Refs. [10–13]. The
idea of considering a system made of a bulk region and a finite
region of space, in which the external potentials are applied
to achieve local changes, is also present in other studies. For
instance, size selectivity in ion channels through an effective
potential is considered in Ref. [24] and density or composition
modulation by local external potentials in Ref. [25], besides
the studies of Refs. [10–13]. We stress that the field effect
discussed here (and also with the optical tweezers technique
suggested in [25]) is obtained without affecting the state or
the bulk fluid or having to tune its composition. This is
an important advantage in comparison with other methods
in which selectivity requires a permanent specific field that
cannot be changed simply.

Up to now, the studies of PINBI have been concerned with
the equilibrium structure and static properties, including the
intriguing interplay of the population change with the phase
and structural transitions [26,27]; see also Ref. [28] for a
similar study on confined dipolar fluids. A natural next step
is to investigate the dynamical nonequilibrium aspects of the
population inversion. Questions such as how long it takes for
the population to be inverted by the external field (filling by the
minority species), what happens when the field is subsequently
turned off, and what the characteristic filling time is and how it
is affected by the system parameters are all significant for the
realization of applications that rely on the time evolution or,
conversely, the fast response of the density and composition
of the confined fluid. In this paper we give at least qualitative
answers to some of these questions.
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TABLE I. Parameters of the WCA potential giving the same second virial coefficients B
(2)
ij as those of hard-sphere mixtures.

1-2 interaction

Parameters 1-1–2-2 interaction Nearly additive Nonadditive

σ HS
ij /σHS 1 1.01624 1.2

B
(2)
ij /σ 3

HS 2.09 2.20 3.62

WCA (λ = 0.9,ε∗ = 1) (λ = 0.92,ε∗ = 0.37) (λ = 1.08,ε∗ = 1)

We start from the same basic situation considered in
previous studies [8,9], that of a geometrically confined binary
mixture in which one species is dipolar and thus benefits
from an interaction with an external field. We consider states
points in the phase diagram close to the bulk demixing,
so as to make the external field effect more pronounced.
The relaxation towards equilibrium depends on the specific
geometry. We consider confinement in a finite-size slitlike
channel in contact with a bulk mixture through a true interfacial
region. This situation is closer to experimental realizations
such as in microfluidic devices than the infinite open pore
usually considered in similar studies. We conducted extensive
Langevin dynamics simulations, focusing, among the relevant
physical parameters, on the influence of the field strength on
the channel filling and emptying. We also present results for
increasing values of the implicit solvent friction parameters,
which we then use to extrapolate the physical relaxation times
to the colloidal regime.

This paper is organized as follows. In Sec. II we present
the model and the simulation technique. In Sec. III results for
the dynamics of the composition change are given. The main
results are summarized in Sec. IV

II. MODEL AND SIMULATION TECHNIQUES

A. Model

We consider a binary mixture of uncharged spheres (labeled
1) and dipolar ones (labeled 2) of equal effective hard-
sphere diameter σHS. We aim at modeling a mixture of
hard-sphere-like colloidal system with a large difference in
the dipole moment; see, for example, Refs. [5,29,30] for recent
experimental work. To avoid the difficulties with discontinuous
potentials in molecular dynamics (MD) simulation, the hard-
sphere part of the pairwise interaction is replaced by a
softer, purely repulsive, Lennard-Jones potential treated in the
Weeks-Chandler-Andersen (WCA) fashion [31]:

uij (r) =
{

4εij

[( σij

r

)12 − ( σij

r

)6] + εij if r � 21/6σij

0 otherwise.
(1)

For simplicity, we take the same interaction potential
between like spheres, all particles with the walls, but a different
one between unlike spheres, since this is one important ingredi-
ent of the PINBI effect. We choose to specify the diameters σij

and use the interaction strengths εij to match the hard-sphere
interaction through the virial equivalence. The plain WCA
potential is however rather soft, its range of the order of
0.1σij being too large for modeling hard-sphere-like colloids.
Therefore, we take σij = λijσHS with λij < 1 to have a steeper
variation of uij (r) at the scale of σHS (see Table I). Hereafter,

σHS will be used as the unit of length; its value will depend
on the specific system that is considered. A typical value for
colloids is σHS ≈ 1 μm. To set the interaction strength in the
range corresponding to colloids, we took λ11 = λ22 = 0.9. The
common interaction strength ε11/kBT = ε22/kBT , with T the
temperature and kB the Boltzmann constant, is determined
from the second virial coefficient B(2) by setting the B

(2)
WCA =

B
(2)
HS and the relation B

(2)
HS = 2πσ 3

HS/3 for hard spheres. The
εii/kBT determined in this manner is independent of σHS,
since the WCA potential depends only on the reduced distance
r/σ . It does however depend on λii , giving ε11/kBT = 194
for λ11 = 0.9. In Sec. III B 3, in which we discuss the size
dependence of the interaction strength, we show that the
energy scale e0 = 194kBTa ≈ 8 × 10−19 J, with Ta = 300 K
the ambient temperature, sets an appropriate scale for the
strength of the repulsive potential between hard-sphere-like
colloidal particles. The typical value of ε/kBT ∼ 1 appropriate
to the molecular scale would be obtained with λ closer to unity;
for example, λ = 0.98 gives ε/kBT = 1.034. Hereafter, we
will use for convenience e0 as the energy scale.

By taking different values for the cross diameter σ12, it
is possible to simulate a positive nonadditivity that desta-
bilizes the mixture [32,33] and favors population inversion
at low fields [9]. The nonadditivity is matched to that
of a hard-spheres mixture, in which the cross diameter is
σ HS

ij = 1
2 (σ HS

i + σ HS
j )(1 + δ), with a positive nonadditivity δ,

through the second virial coefficient B
(2)
12 . We use ε12 as

the fitting parameter, while σ12 is fixed to λσ HS
12 (chosen so

as to have ε12 not too different from e0). Two models are
considered: (i) a nearly additive mixture with δ = 0.016 and
(ii) a nonadditive mixture with δ = 0.2. The corresponding
values of ε∗ = εij /e0, λij = σij /σHS, and B

(2)
ij are given in

Table I and interaction potentials are plotted in Fig. 1.
The dipolar hard spheres carry a point dipole μ at their

center. To avoid the complication of having to determine the
self-consistent local field during the simulation (see [34] and
references therein), we assume that the dipole is permanent.
The dipoles interact through the dipolar potential

u
ij

dip = 1

4πεeff

[
μi · μj

r3
ij

− 3
(μi · r ij )(μj · r ij )

r5
ij

]
, (2)

where εeff = εrε0 is the effective dielectric constant of the
confined fluid with ε0 the permittivity of the vacuum. For con-
venience, we express the dipole moment as μ = μ∗√e0ε0σ

3
HS.

In the simulations, we use a dimensionless value μ∗ = 0.49,
corresponding to μ = 1.3 × 10−24 Cm with σHS = 1 μm
and e0 = 194kBTa, and a relative permittivity εr = 10. This
relatively low value is consistent with the absence of free
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FIG. 1. Plot of the WCA potentials for the 1-1 and 2-2 interactions
(solid line) and the nearly additive (dashed line) and nonadditive
(dotted line) mixtures (1-2 interaction).

charges in the model [9]. The confinement geometry is shown
in Fig. 2. The confined fluid exchanges particles with the
surrounding bulk through an interface formed with rounded
WCA walls [a quarter of circle in the (x,z) plane], thus forming
a bottlenecklike channel; the system is assumed to be infinite
in the y direction. The extent in the x direction of the bulk
part is twice the channel length, to reduce the length of the
simulations. This geometry corresponds, in fact, to a network
of channels interconnected by bulklike regions, but this should
not create qualitative differences from the situation of a single
channel. Note that this particular geometry is chosen so as to
facilitate the study by molecular dynamics of a finite pore with
an explicit and smooth interface with the bulk. The symmetry
is imposed to enable the use of periodic boundary conditions,
in particular in the treatment of the electrostatics with existing
three-dimensional algorithms (see below).

The distance between the WCA walls is taken in most
cases to be H slit = 7σHS, in order to reduce the jamming
effect at higher confinement that significantly hinders particle
motion and hence slows down the composition changes.
A nonuniform external electric field E(x,z) is applied in
the channel, with a direction normal to the walls in the
central region. It is the sum of the electric fields created by
two oppositely charged plates: E(x,z) = E+(x,z + (H slit +
σHS)/2) + E−(x,z − (H slit + σHS)/2). The plates of extent
a = 10σHS in the x direction bear a surface charge density ±q.

FIG. 2. Slit pore geometry used in the simulations. Lengths are
in units of σHS.

The field generated in a medium with effective permittivity εeff

is given by

E±(x,z) = ±q

4πεeff
b(x,z), (3)

with

bx(x,z) = ln

[
(x + a/2)2 + z2

(x − a/2)2 + z2

]
, (4)

by(x,z) = 0, (5)

bz(x,z) = 2

[
arctan

(
x + a/2

z

)
− arctan

(
x − a/2

z

)]
. (6)

In our simulation, we use the reduced surface charge den-
sity q∗ = q/

√
e0ε0/σ

3
HS. For εr = 10, a field of E = 2.5 ×

105 V/m in the center of the channel is obtained by setting
q∗ = 14.3.

The finite plates have an offset of σHS/2 from the WCA
walls (cf. Fig. 2), in order to minimize the effect of image
forces, assuming continuity of the dielectric constant through-
out the system. To achieve these conditions in practice, εeff

should thus be close to the permittivity of the walls. As we do
not aim at being quantitative, we also assume that the plates
are uniformly charged, in spite of being of finite width. As
shown in Fig. 3, the field is not completely negligible in the
bulk, but its strength is much smaller than in the channel.

To summarize, the reduced input parameters in the MD
simulations are σij /σHS and εij /e0 for the WCA potential
and q∗, μ∗, and εr for the applied field and the dipolar
potential, and the reduced temperature T ∗ = kBT/e0. Finally,
a reduced friction coefficient γ ∗ also needs to be set, since the
temporal evolution of the particles is governed by the Langevin
dynamics equation, given here for the translational degrees of
freedom for particle i as

mr̈ i = −∇iUi − γ ṙ i + W i(t), (7)

where Ui is the total potential energy of the ith particle, γ is
the friction coefficient, and W i is the random force on particle
i, related to γ such that the fluctuation-dissipation theorem is
obeyed.

From the particle’s mass m and friction coefficient γ , one
defines a characteristic relaxation time τR = m/γ . Conversely,

FIG. 3. Distribution of the applied field across the system. The
arrow length is proportional to the field strength.
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a thermostat-independent time unit τN (or Newtonian time
unit) can be defined from the interaction potential. For the
WCA potential

τN = σHS

√
m/e0, (8)

from which a reduced friction coefficient is defined as γ ∗ =
γ τN/m = τN/τR. Numerical values of γ can be estimated
from the Stokes-Einstein relation for a sphere of diameter
σ in a solvent with viscosity ηs as γ = 3πσηs. Using m =
ρwaterπσ 3

HS/6 with σHS = 1 μm gives m = 5.23 × 10−16 kg.
The resulting time scale is τN = 2.55 × 10−5 s, and using
for the viscosity ηs = 10−3 Pa s one obtains γ = 9.42 ×
10−9 kg/s, corresponding to a reduced friction coefficient
γ ∗ = 460. For such a large value of γ ∗ the simulation time
would then be prohibitive. Therefore, we choose to perform a
series of runs at increasing (but much smaller) values of γ ∗.
This choice sets the time scale for the dynamics and we find
it instructive to plot the time evolution of relevant quantities is
seconds, assuming the typical value of the physical parameters.
However, caution is required before interpreting this as the
evolution in real time, for the reasons detailed in Sec. III B 3.

Another issue is the choice of an appropriate ensemble. To
simulate an infinite bulk reservoir at fixed chemical potentials,
one should work in a grand canonical ensemble. However,
we found that the canonical (N , V , and T ) conditions are
more suited to the geometry used here, aimed at obtaining
absolute values of the relaxation times for a finite reservoir.
Since some particles need in effect to travel from the outermost
part of the bulklike region to the channel, this makes the
relaxation times for composition changes dependent on the
specific geometry. On the other hand, for an infinitely large
reservoir, one would have to simulate very large systems in
order to obtain relaxation times that do not depend on the
extent of the reservoirs. Therefore, we use N1, N2, V , and T

as the control variables, particle numbers, total volume, and
temperature also being accessible experimentally.

To achieve a state point in the bulk that remains outside the
two-phase domain in the simulation box we use results from
previous work [8,9] for the hard-sphere mixture, to which
the steep WCA potentials should be relevant. The simulation
box is filled with N1 = 13 637 apolar spheres and N2 = 718
dipolar ones in most runs. This corresponds to a mole fraction
of xb

2 = 0.05 of dipolar spheres in the bulk, roughly the same,
at zero field, in the bulk and in the channel. The corresponding
(reduced) densities of dipoles and apolar spheres at zero field
determined from Monte Carlo (MC) runs are (ρ2 = 0.02,ρ1 =
0.38) and (ρ2 = 0.021,ρ1 = 0.40) in the central region of the
bulk and the channel, respectively. With the above value of
xb

2 , the concentration of the dipolar spheres in the channel
saturates for nonzero fields at a lower value than with the
smaller xb

2 = 0.02 considered in [8,9], but the channel filling
with the dipoles is faster.

B. Details of simulations

All MD simulations were conducted using the ESPRESSO

package [35,36], modified accordingly to account for the
system geometry (Fig. 2) and applied external field [Eq. (3)].
The long-range dipolar forces were evaluated using the dipolar

P3M method [37,38]. In this method, the simulation box
must be periodic in all three dimensions and therefore the
unwanted interaction between periodically replicated systems
in the z direction is subtracted using the dipolar layer correction
method [39–41]. A time step δt = 0.01τN was found sufficient
to resolve the composition change in the channel, verified by
comparison with a test simulation employing a time step ten
times smaller.

Starting from a random distribution of the particles, the
system is equilibrated at zero field during at least ∼1 × 106

time steps. To speed up the simulation, a small value of the
damping parameter γ ∗ = 0.046 is used during the equilibra-
tion, in which case the Langevin dynamics acts as a mere
thermostat. The field is then turned on and the dynamics is
followed by computing at regular time intervals the average
number of particles in a channel region of extent a in which
the field is nearly uniform (shaded area in Fig. 2), until the
concentration saturates. The equilibrium of the system at
nonzero field is then monitored during a time teq � 1 × 106δt .
The total length of the field cycles depends of course on teq,
which may vary in the figures shown in the following sections.
Therefore, the time elapsed since the field is turned on until
the beginning of the equilibrium (when the concentration no
longer changes significantly) and similarly at emptying (field
off until returning to equilibrium) will be denoted by tcycle and
referred to as the field cycle time length. It is thus independent
of teq. As a check of correct equilibration with and without a
field, a comparison is made with MC simulations. Finally, the
field is turned off and the (possible) emptying of dipoles is
monitored similarly until a new equilibrium state is reached.

Depending on the initial state point, one can distinguish
between two different scenarios. In the first, after turning
the field off, the system returns to its initial state. Molecular
dynamics and MC simulations then describe the same equi-
librium, as evidenced by the density profiles, for example. For
such a state point, the unperturbed system is in the one-phase
domain and the field cycle is reversible. In the second scenario
the system does not return to its initial state. Such an initial
point likely corresponds to a thermodynamic state in which
the mixture should be phase separated. Differences are then
sometimes found between MC and MD simulations, which
explore different, probably metastable, states due to finite
system size. The field cycle is then not reversible. We attempt
to avoid such state points whose detailed study would require
simulating phase equilibria. When this occurs, all coexisting
phases would then contribute to the properties of the confined
fluid. This might be undesirable for applications that require
enough contrast between the response at the filled and empty
states.

III. RESULTS

A. Density profiles at equilibrium

After equilibration at q∗ = 0, the field is switched on and
the dipolar spheres begin to fill the channel while simulta-
neously the apolar spheres leave it, until a new equilibrium
is reached. The converse holds when the field is turned off.
The results presented here are for a nearly additive mixture;
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FIG. 4. Density profiles at zero field of (a) dipolar spheres and (b) apolar spheres for MC (crosses) versus MD (γ ∗ = 0.046, circles and
squares) simulations. Circles and squares correspond to initial (q∗ = 0) and final (q∗ = 14.3 → 0) states, respectively. Note the difference in
the y-axis scale. The lines are guides to the eye.

results for the nonadditive case will be discussed later. A
comparison is made with MC simulations to validate the
correct equilibrium for the MD simulations.

The density profiles of dipolar and apolar particles inside
the channel without an external field (q∗ = 0 and q∗ = 14.3 →
0) are shown in Fig. 4. The density profiles in Fig. 4(a) are
somewhat noisy because of the small number of dipoles in the
channel at zero field and the relatively short runs we performed.
The figures evidence a normal population in the channel at zero
field, essentially the same composition and density of dipolar
spheres as in the bulk: xp

2 ≈ 0.05 and ρ2 ≈ 0.021. The return to
the initial state after a full cycle q∗ = 0 → 14.3 → 0 confirms
that indeed the bulk state point is in the one phase domain.

Equilibrium density profiles at q∗ = 14.3 are shown in
Fig. 5. This figure clearly shows a population inversion with
respect to the bulk. The density profiles also evidence a
preferential population by the dipoles in the region near the
walls, a result consistent with previous results for true hard
spheres: a progressive wetting by the dipoles [27]. As a
normal field favors mixing, the mixture is even more stable
at q∗ = 14.3 than in the absence of the field.

FIG. 5. Plot of the MD (γ ∗ = 0.046) density profiles in the
channel for q∗ = 14.3. White and black circles correspond to dipolar
and apolar spheres, respectively. The sampling in the x direction was
restricted to x/σHS ∈ [−2.5,2.5]; cf. Fig. 6.

We conclude this section with a two-dimensional (2D)
representation of the total density profile (Fig. 6), with a
color modulated by the composition in dipoles. This color
map should correspond to the observations in experiments
using confocal microscopy. The regions that appear green
consist essentially of apolar spheres. This is the case for the
entire fluid in Figs. 6(a) and 6(c). After the field is turned
on [Fig. 6(b)], the dipoles gather in the central part of the
channel, forming an hourglass shape. Similar structuring of
dielectric spheres bearing a field-induced dipole are typically
analyzed in terms of dielectrophoretic forces [16,19–21,42],
following the laws of macroscopic electrostatics. Although in
our system permanent dipoles in a field gradient are also drawn
to the strong-field region, it is not straightforward to extend
the electrostatic argument to our system. This is because of the
additional and important role of dipole-dipole interactions as
well as the steric interactions with apolar spheres and walls,
which favor the preferential adsorption of the dipoles.

B. Dynamics of the composition change

1. Cycling the field reversibly

In this section, we examine the dynamics of population
inversion. We first consider a nearly additive mixture at low
damping (reduced friction coefficient γ ∗ = 0.046). Results
for the time evolution of the dipolar spheres mole fraction
inside the pore are given in Fig. 7; see also the Supplemental
Material for animated snapshots of the filling and emptying
[43]. Hereafter, we use the parameters given in Sec. II A to
convert the simulation time unit into seconds with the time
scale τN = 2.55 × 10−5s. With this scale, one has roughly
tcycle ∼ 0.3 s in Fig. 7. Several features of the dynamics are
notable. (i) The composition of dipolar spheres in the pore x

p
2

saturates slightly below 0.6. This means that the population
inversion is not complete (cf. the results in [9] for an open
pore) where the mole fraction of dipoles is x

p
2 ≈ 0.98. This

is a consequence of working under canonical conditions and
using the nearly additive mixture. The particular combination
of parameters used here (xb

2 not too small, moderate bulk
density) also contributes to give a less marked field-induced
variation in x

p
2 compared to the previous studies in open [9] and
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FIG. 6. The 2D density-composition profiles (ρT,x2) from MD simulation with γ ∗ = 0.046. The charge densities in the three steps of the
field cycle are (a) q∗ = 0, (b) q∗ = 0 → 14.3, and (c) q∗ = 14.3 → 0.

closed pores [7]. (ii) The filling and emptying dynamics are
different. This is understandable considering the contrasting
initial conditions: While the dipoles are roughly uniformly
distributed throughout the box at zero field, they are mostly
concentrated in the channel at nonzero field. (iii) Curiously,
just after the field is turned off and emptying begins, xb

2 sharply
peaks. This occurs due to an initial decrease in the number
of apolar spheres in the channel instead of an increase. This
anomalous behavior is most likely due to the sudden expulsion
of the dipoles from the channel, which initially also drags
a significant number of apolar spheres outside the channel
(recall that dipoles that are aligned parallel by the field but
not in a head-to-tail configuration repel each other). (iv) After
the sharp decrease in x

p
2 during emptying, it fluctuates during

its relaxation more than prior to filling. These long-lived
oscillations, at low damping, are likely a consequence of a
large departure from equilibrium of the initial configuration
at q∗ = 14.3 to a channel that has a very small number of
dipoles (N2 ≈ 50; cf. the number of dipoles in Fig. 10). In
Fig. 8, where we used γ ∗ = 0.46, which is ten times larger
than in Fig. 7, a similar dynamics is observed for both nearly
additive and nonadditive mixture. Here tcycle is of course larger,
roughly by a factor 5. For different values of γ ∗, a nearly linear

FIG. 7. Filling and emptying dynamics of dipolar spheres inside a
channel containing a nearly additive mixture during a cycle q∗ = 0 →
14.3 → 0. Here and in the following figures, up and down arrows
indicate when the field is turned on and off, respectively. The reduced
friction coefficient is γ ∗ = 0.046.

scaling of the dynamics with γ ∗ is shown in Fig. 9: Filling
curves with increasing values of γ collapse to a single curve
when time is scaled by roughly the same factor as γ . A similar
observation holds also for the emptying dynamics. We will thus
retain the value tcycle ∼ 1.5 s for γ ∗ = 0.46 as the reference
for discussing its variation with the physical parameters.

The role of the steric effects is shown in Fig. 10, where we
plot the number of dipolar spheres in the pore for the same
conditions as in Fig. 8 (green) and for a pure dipolar fluid
(red). The filling is naturally faster in the latter case, albeit
no population inversion occurs here since the other species
is absent. Rather, one gets a smooth field-induced filling of
the channel by the dipoles. It was shown in Refs. [8,9] that
for a pure dipolar fluid at similar conditions, much larger
field magnitudes are required to achieve a sufficient density
of dipoles in the pore. Recall that the closer to the bulk
instability, the lower the field strength required to observe
the PINBI effect. Therefore, unless the field strength is high,
the field-induced response will concern mostly the suspending
medium, while its content in dipoles is weakly modulated by
the field.

The effect of increasing the field strength by a factor of
2 on the filling is shown in Fig. 11. The filling is naturally
faster for increasing q, an important observation in relation

1 2 3 4
0

0.2

0.4

0.6

t(s)

x
p 2

FIG. 8. Filling and emptying of the channel for the cycle q∗ =
0 → 14.3 → 0 for nearly additive (red) and nonadditive (green)
mixtures. The nearly additive plot was shifted when emptying. The
friction coefficient is γ ∗ = 0.46.
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0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

t(s)/α

x
p 2

γ∗ = 0.46: α↑,↓ = (1, 1)
γ∗ = 4.6: α↑,↓ = (9, 8)

γ∗ = 46: α↑,↓ = (90, 85)

FIG. 9. Filling and emptying versus rescaled time for the cycles
q∗ = 14.3 → 0 using several dampings. The parameter α with up and
down arrows gives the scaling factor for the filling and the emptying,
respectively.

to the value of tcycle that one aims at. However, increasing
q beyond a certain threshold value has little effect on the
filling time and the saturation concentration; the latter even
slightly decreases. We attribute this to two competing effects:
At increasing field strength, the reduced potential energy of
the dipoles inside the pore, which favors filling, also causes an
increase of the orientational order of dipoles in the pore and
hence increases their lateral repulsion, which is unfavorable to
filling. In passing, we note that the decrease of the height of
the initial peak at emptying for smaller q is consistent with the
interpretation given in the preceding section.

In all the situations discussed above, the field is switched
on and off instantaneously. One may of course do this more
progressively. We therefore tested also a smooth (sigmoidal)
variation of q or a linear one. As expected, the main effect
is a smoother filling or emptying, possibly with longer-lived
metastable states, for some state points corresponding to a
phase separated fluid, which will be discussed in the next
section.

0.8 1 1.2 1.4 1.6
0

200

400

600

t(s)

N
p 2

FIG. 10. Filling dynamics for the cycle q∗ = 0 → 14.3: pure
dipoles (red) vs the nearly additive mixture (green). The friction
coefficient γ ∗ = 0.46.
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x
p 2

q∗ = 14.3/4
q∗ = 14.3/2
q∗ = 14.3

FIG. 11. Filling and emptying for the cycles q∗ = 14.3/4, 14.3/2,
and 14.3 → 0 of the nearly additive mixture. The friction coefficient
is γ ∗ = 0.46.

Our discussion thus far has focused on nearly additive mix-
tures at state points in which the mixture is in a homogeneous
one-phase state, both with and without the applied field. Since
the PINBI effect is sensitive to the distance from the bulk
instability, it is natural to also study a nonadditive mixture. A
full cycle for such a mixture (see Table I), in the same state
point we used so far (ρb = 0.40,xb

2 = 0.05), is shown in Fig. 8.
Again, the mixture returns to its initial state. Hence, nonad-
ditivity alone is insufficient, at this state point, to generate a
qualitatively different cycle. This is not the case, however, in
other state points, as shown in the following section.

2. Irreversible field cycle

To illustrate the second kind of behavior, namely, that of ir-
reversible field cycles, we consider a higher ρb = 0.6 and xb

2 =
0.1 for which the nonadditive mixture should be in a two-phase
domain at zero field. Starting from a channel nearly empty of
dipoles, in a possibly metastable state, the field is switched on
and a new equilibrium is reached with almost complete filling
x

p
2 ≈ 1. Since a normal field favors mixing, the system is then

in a single dipole-rich phase. When the field is switched off,
the nonadditive mixture does not return to its initial state in a
reasonable time (see Fig. 12); the cycle is irreversible.

In contrast, Fig. 12 also shows that the population inversion
in the nearly additive mixture is reversible. This suggests that
the nearly additive mixture is at a one-phase state point, though
we did not check this by a simulation of the phase equilibrium.
For state points corresponding to phase separation, one may
view this effect of the field as a means to select one of
the coexisting phases, namely, the one rich in dipoles: The
initial conditions at zero field with few dipoles should be
representative of the dipole-poor phase. For a two-phase state
point, after switching on the field and thus favoring a high
dipole concentration inside the pore, the system is more likely
to remain in this state after turning off the field. Judging from
the dipole composition in Fig. 12 after a quite long simulation
time, the state that is reached after turning off the field should
be close to the actual conjugate phase at zero field.

We plot in Fig. 13 the 2D density-composition maps for the
irreversible cycle. When the field is switched on [Fig. 13(b)]
the dipoles completely fill the channel and a layered structure
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FIG. 12. Cycling the field q∗ = 0 → 14.3/2 → 0 for the nearly
additive (red) and the nonadditive (green) mixtures. The bulk density
and the composition are ρb = 0.6 and xb

2 = 0.1, respectively. The
lowest friction coefficient γ ∗ = 0.046 was used to speed up the
simulation.

is clearly visible. When the field is switched off [Fig. 13(c)] the
layering nearly disappears and the dipole composition in the
pore slightly decreases. The boundary between dipolar and
apolar spheres remains roughly unchanged, although more
diffuse.

As a final illustration of the different behaviors that might be
observed with some combinations of the parameters, we show
in Fig. 14 a situation in between the two distinct behaviors
observed in Fig. 12, for the state point (ρb = 0.52,xb

2 = 0.1)
and γ = 0.046. For these conditions, the nonadditive mixture
does not return to the initial state after cycling the field
but to states with higher values x

p
2 ≈ 0.35 and x

p
2 ≈ 0.25,

at least in the time window of the figure. That different
compositions can be reached after successive extinguishment
of the field is a clear indication of nonequilibrium final states.
In such situations, we find that a MC run started with the MD
configuration obtained after 2 × 104 time steps remains also
in states with higher x

p
2 compared to the MD simulation, an

indication that the Langevin dynamics explore clearly distinct
states. A possible cause is that the state is metastable at nonzero
field. Interestingly, the full cycle appears reproducible, as other

FIG. 14. Reversibly switchable irreversible cycles in the nonad-
ditive mixture. The charge density is q∗ = 0 → 14.3/2 → 0. The
other parameters are given in the text.

cycles return to the same state at nonzero field. Studying in
detail such a situation akin to similar reversibly switchable
cycles studied in other contexts (see, for example, [44,45]) is
left for future work.

3. Discussion

From the perspective of real experiments, the important
point is the time scale of the field-induced transitions. At a
given field strength and dipole moment, the relevant parame-
ters are the Newtonian time scale τN and the reduced damping
parameter γ ∗ = γ τN/m = τN/τR. One important observation
already made above is that the variation of the field cycle
time tcycle is roughly linear with γ ∗, at least when it is not
very small. Here τN depends on the particle parameters (size,
mass, and interaction strength) and γ on the particle size and
solvent viscosity ηs, which is an independent parameter. With
σHS = 1 μm, m = 1 × 10−15 kg, and ηs = 10−3 Pa s one gets
τR = 1 × 10−7 s. Then, from B

(2)
WCA = 2πσ 3

HS/3 and λ = 0.9,
ε11 = 194kBTa gives τN = 2.55 × 10−5 s and hence γ ∗ = 460.
From the friction coefficient γ = kBT/D0 the diffusion time is
τD ∼ 2 s. The ordering of these time scales is τR � τN � τD,
as expected. This means that for colloids one has γ ∗ 	 1.

FIG. 13. The 2D density-composition profiles (ρT,x2) from MD simulation with γ ∗ = 0.046. The bulk density and composition are
ρb = 0.6 and xb

2 = 0.1, respectively. The charge densities in the three steps of the field cycle are (a) q∗ = 0, (b) q∗ = 0 → 14.3/2, and (c)
q∗ = 14.3/2 → 0.
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FIG. 15. Interaction strength ε11/kBT of the WCA potential
versus colloid diameter σHS. The inset shows a close-up for small σHS.

For the value γ ∗ = 460 given above, the field cycle shown in
Fig. 9 should last approximately tcycle = 1500 s, if the other
parameters are fixed (in particular τN).

To obtain shorter times, one may consider using smaller par-
ticles, besides increasing the field, which is inefficient beyond
a certain threshold (see Fig. 11). Since m, ε11, and γ would also
be affected, a model for the structure of the colloidal sphere
is necessary. One may nevertheless tentatively estimate the
scaling as follows: From its definition and using γ = 3πσHSηs,
the reduced friction coefficient scales as γ ∗ ∼ σ 2

HS/(mε11)1/2.
Since the mass scales as σ 3

HS, the variation of γ ∗ with the
particle size is determined by the interaction strength. Insight
to the variation of ε11/kBT with the particle size is gained
when B(2) is computed for the actual interaction potential φSS

between two spheres of Lennard-Jones centers. Although very
steep at the scale of σHS, φSS differs from a pure hard-sphere
interaction that yielded a size-independent interaction strength.
The scaling of ε11 with the size can then obtained by solving
numerically the equation B

(2)
WCA = B

(2)
φSS

with

B(2) = 2π

∫
dr r2(1 − e−uij (r)/kBT ) (9)

for an interaction potential uij (r). Here φSS is computed from
the model of 1/r12 centers uniformly distributed in a sphere of
diameter σHS (see [46] for explicit expressions). Ignoring the
van der Waals attraction should be reasonable for hard-sphere-
like colloids, as in an index-matched dispersion [47]. We used
a Hamaker constant AH = 5 × 10−20 J typical of hydrocarbons
[48] and the corresponding diameter σmol = 0.4 nm of the
molecular species uniformly distributed in the sphere [the
WCA diameter was then taken as σ = 0.9(σHS + σmol), an
expression expected to be more realistic for small colloids].
With these conditions, one finds two regimes (see Fig. 15).

(i) For σHS � 0.1 μm the interaction strength is roughly
constant, ε11/kBT ∼ 200, because φSS(r) is very steep. This
would give τN ∼ σ

5/2
HS , γ ∗ ∼ σ

1/2
HS , and hence tcycle ∼ σ 3

HS. The
previous estimation tcycle = 1500 s for a size of 1 μm would
thus become tcycle ∼ 1.5 s when using 0.1-μm-sized colloids,
i.e., a reduction by a factor 103.

(ii) Below 0.1 μm, the interaction strength changes with
the size, roughly as σ 3

HS in the range 0.01 μm � σHS �
0.1 μm. We thus have τN ∼ σHS, γ ∗ ∼ 1/σHS, and hence
size-independent time intervals, i.e., tcycle � 1.5 s if all the
other variables remain fixed (this cannot strictly hold, for the
dipole moment for example). Below 0.01 μm, ε11 behaves
roughly as σ 2

HS, giving τN ∼ σ
3/2
HS and γ ∗ ∼ 1/σ

1/2
HS so that

tcycle would decrease linearly with the diameter.
Field cycles even shorter are expected for molecular

dimensions. However, one should then keep in mind that
our model system assumes flat walls, purely repulsive
interactions, etc. On the other hand, our model at high values
of γ ∗ could correspond to colloidal suspensions. Relaxation
times are then higher by several orders of magnitude and
would however be reliable only for dilute suspensions, since
the model lacks the hydrodynamic interactions that exist
between macroparticles moving in a molecular fluid. The
values ρT � 0.4 used here seem a bit too high to safely neglect
hydrodynamic interactions [49–51].

To conclude, realistic estimates of the physical time would
require working with a more complete model. It is then
necessary to model the system at the appropriate scale and
ensure that the reduced parameters used in the computation
are consistent with the actual physical parameters. This
care for realistic computations is illustrated in some related
studies such as that of Edmonds et al. [52], who used the
same methodology as the one used here to study the forced
translocation under an applied voltage of polymers through
solid-state nanopores.

IV. CONCLUSION

In summary, we studied the dynamical aspects of the
field-induced population change in a confined mixture and
confirmed that the field effect can be observed in a realistic
geometry. While confirming previous observations pertinent to
equilibrium states in infinite pores, the major aspect introduced
here is the time evolution towards equilibrium with the
switching on or off of the field. We considered the influence of
two key parameters: (i) the field strength, showing a nontrivial
saturation effect, and (ii) the interaction additivity parameter
δ, showing that it can affect the reversibility of the field cycles,
opening the possibility to select with the field one of the
phases at coexistence. By confirming scaling with the damping
parameter of the filling and emptying within Langevin dynam-
ics, it has been possible to extrapolate towards physical times
spanning several orders of magnitude. Our results should be
helpful in the design of devices based on the dynamical aspects
of the composition change [6,15,16]. Finally, depending on
the characteristic time scale involved in a specific application,
the necessity to improve some aspects of the model to treat
molecular or colloidal mixtures has been emphasized.
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[37] J. J. Cerdà, V. Ballenegger, O. Lenz, and C. Holm, P3M algorithm
for dipolar interactions, J. Chem. Phys. 129, 234104 (2008).

[38] J. J. Cerdà, V. Ballenegger, and C. Holm, Particle-particle
particle-mesh method for dipolar interactions: On error esti-
mates and efficiency of schemes with analytical differentiation
and mesh interlacing, J. Chem. Phys. 135, 184110 (2011).

[39] A. Arnold, J. de Joannis, and C. Holm, Electrostatics in periodic
slab geometries. I, J. Chem. Phys. 117, 2496 (2002).

[40] J. de Joannis, A. Arnold, and C. Holm, Electrostatics in periodic
slab geometries. II, J. Chem. Phys. 117, 2503 (2002).

022605-10

https://doi.org/10.1021/j100181a059
https://doi.org/10.1021/j100181a059
https://doi.org/10.1021/j100181a059
https://doi.org/10.1021/j100181a059
https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1088/0034-4885/62/12/201
https://doi.org/10.1016/S1359-0294(02)00055-9
https://doi.org/10.1016/S1359-0294(02)00055-9
https://doi.org/10.1016/S1359-0294(02)00055-9
https://doi.org/10.1016/S1359-0294(02)00055-9
https://doi.org/10.1038/nature01328
https://doi.org/10.1038/nature01328
https://doi.org/10.1038/nature01328
https://doi.org/10.1038/nature01328
https://doi.org/10.1038/nature02758
https://doi.org/10.1038/nature02758
https://doi.org/10.1038/nature02758
https://doi.org/10.1038/nature02758
https://doi.org/10.1063/1.3106222
https://doi.org/10.1063/1.3106222
https://doi.org/10.1063/1.3106222
https://doi.org/10.1063/1.3106222
https://doi.org/10.1063/1.3273870
https://doi.org/10.1063/1.3273870
https://doi.org/10.1063/1.3273870
https://doi.org/10.1063/1.3273870
https://doi.org/10.1103/PhysRevE.82.021504
https://doi.org/10.1103/PhysRevE.82.021504
https://doi.org/10.1103/PhysRevE.82.021504
https://doi.org/10.1103/PhysRevE.82.021504
https://doi.org/10.1016/S0021-9797(02)00042-5
https://doi.org/10.1016/S0021-9797(02)00042-5
https://doi.org/10.1016/S0021-9797(02)00042-5
https://doi.org/10.1016/S0021-9797(02)00042-5
https://doi.org/10.1021/jp805678v
https://doi.org/10.1021/jp805678v
https://doi.org/10.1021/jp805678v
https://doi.org/10.1021/jp805678v
https://doi.org/10.3938/jkps.54.660
https://doi.org/10.3938/jkps.54.660
https://doi.org/10.3938/jkps.54.660
https://doi.org/10.3938/jkps.54.660
https://doi.org/10.1021/jp206635g
https://doi.org/10.1021/jp206635g
https://doi.org/10.1021/jp206635g
https://doi.org/10.1021/jp206635g
https://doi.org/10.1103/PhysRevLett.101.038302
https://doi.org/10.1103/PhysRevLett.101.038302
https://doi.org/10.1103/PhysRevLett.101.038302
https://doi.org/10.1103/PhysRevLett.101.038302
https://doi.org/10.1103/PhysRevLett.96.015703
https://doi.org/10.1103/PhysRevLett.96.015703
https://doi.org/10.1103/PhysRevLett.96.015703
https://doi.org/10.1103/PhysRevLett.96.015703
https://doi.org/10.1063/1.2909198
https://doi.org/10.1063/1.2909198
https://doi.org/10.1063/1.2909198
https://doi.org/10.1063/1.2909198
https://doi.org/10.1088/0953-8984/21/47/474203
https://doi.org/10.1088/0953-8984/21/47/474203
https://doi.org/10.1088/0953-8984/21/47/474203
https://doi.org/10.1088/0953-8984/21/47/474203
https://doi.org/10.1063/1.3100304
https://doi.org/10.1063/1.3100304
https://doi.org/10.1063/1.3100304
https://doi.org/10.1063/1.3100304
https://doi.org/10.1063/1.2965906
https://doi.org/10.1063/1.2965906
https://doi.org/10.1063/1.2965906
https://doi.org/10.1063/1.2965906
https://doi.org/10.1063/1.3257688
https://doi.org/10.1063/1.3257688
https://doi.org/10.1063/1.3257688
https://doi.org/10.1063/1.3257688
https://doi.org/10.1021/jp107529n
https://doi.org/10.1021/jp107529n
https://doi.org/10.1021/jp107529n
https://doi.org/10.1021/jp107529n
https://doi.org/10.1103/PhysRevE.87.052128
https://doi.org/10.1103/PhysRevE.87.052128
https://doi.org/10.1103/PhysRevE.87.052128
https://doi.org/10.1103/PhysRevE.87.052128
https://doi.org/10.1140/epjst/e2013-02054-3
https://doi.org/10.1140/epjst/e2013-02054-3
https://doi.org/10.1140/epjst/e2013-02054-3
https://doi.org/10.1140/epjst/e2013-02054-3
https://doi.org/10.1103/PhysRevLett.95.247801
https://doi.org/10.1103/PhysRevLett.95.247801
https://doi.org/10.1103/PhysRevLett.95.247801
https://doi.org/10.1103/PhysRevLett.95.247801
https://doi.org/10.1103/PhysRevE.80.021409
https://doi.org/10.1103/PhysRevE.80.021409
https://doi.org/10.1103/PhysRevE.80.021409
https://doi.org/10.1103/PhysRevE.80.021409
https://doi.org/10.1080/00268976.2012.660205
https://doi.org/10.1080/00268976.2012.660205
https://doi.org/10.1080/00268976.2012.660205
https://doi.org/10.1080/00268976.2012.660205
https://doi.org/10.1080/00268976.2015.1014003
https://doi.org/10.1080/00268976.2015.1014003
https://doi.org/10.1080/00268976.2015.1014003
https://doi.org/10.1080/00268976.2015.1014003
https://doi.org/10.1063/1.3564916
https://doi.org/10.1063/1.3564916
https://doi.org/10.1063/1.3564916
https://doi.org/10.1063/1.3564916
https://doi.org/10.1039/B909953K
https://doi.org/10.1039/B909953K
https://doi.org/10.1039/B909953K
https://doi.org/10.1039/B909953K
https://doi.org/10.1021/la301288r
https://doi.org/10.1021/la301288r
https://doi.org/10.1021/la301288r
https://doi.org/10.1021/la301288r
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1063/1.1674820
https://doi.org/10.1088/0953-8984/6/23A/022
https://doi.org/10.1088/0953-8984/6/23A/022
https://doi.org/10.1088/0953-8984/6/23A/022
https://doi.org/10.1088/0953-8984/6/23A/022
https://doi.org/10.1088/0953-8984/22/32/325108
https://doi.org/10.1088/0953-8984/22/32/325108
https://doi.org/10.1088/0953-8984/22/32/325108
https://doi.org/10.1088/0953-8984/22/32/325108
https://doi.org/10.1080/00268976.2010.490794
https://doi.org/10.1080/00268976.2010.490794
https://doi.org/10.1080/00268976.2010.490794
https://doi.org/10.1080/00268976.2010.490794
https://doi.org/10.1016/j.cpc.2005.10.005
https://doi.org/10.1016/j.cpc.2005.10.005
https://doi.org/10.1016/j.cpc.2005.10.005
https://doi.org/10.1016/j.cpc.2005.10.005
https://doi.org/10.1063/1.3000389
https://doi.org/10.1063/1.3000389
https://doi.org/10.1063/1.3000389
https://doi.org/10.1063/1.3000389
https://doi.org/10.1063/1.3657407
https://doi.org/10.1063/1.3657407
https://doi.org/10.1063/1.3657407
https://doi.org/10.1063/1.3657407
https://doi.org/10.1063/1.1491955
https://doi.org/10.1063/1.1491955
https://doi.org/10.1063/1.1491955
https://doi.org/10.1063/1.1491955
https://doi.org/10.1063/1.1491954
https://doi.org/10.1063/1.1491954
https://doi.org/10.1063/1.1491954
https://doi.org/10.1063/1.1491954


DYNAMICS OF FIELD-DRIVEN POPULATION INVERSION . . . PHYSICAL REVIEW E 95, 022605 (2017)
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