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Phase behavior of charged colloids at a fluid interface
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We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an
almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of
only 103–104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless,
Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter,
we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect
structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young
theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the
displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive
dynamical behavior.
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I. INTRODUCTION

Colloidal systems have long been used as a model for inves-
tigating fundamental questions in condensed matter physics.
Two-dimensional (2D) systems are of particular interest, both
for the rich physical phenomena they display [1,2] and for the
ease with which they can be imaged, via video or confocal
microscopy [3]. To create such a system, colloidal particles
must somehow be confined to a surface. This can be done by
using colloids sedimented onto a solid or fluid substrate [2,4,5],
by physically confining colloids between the parallel walls of
a thin sample chamber [1,6], or by using charged particles that
bind electrostatically to a fluid interface [7,8]. The latter system
has the advantage that the surface to which the particles bind
does not have to be flat and so is particularly useful in exploring
the role of background curvature in determining the structure
and dynamics of topological defects in 2D materials [9,10].
However, the phase behavior of colloids in this kind of system,
which is necessary for a full understanding of experiments
undertaken at finite temperature, has not been investigated.

In this work, we study systems of 103–104 charged colloidal
particles that are electrostatically bound to an almost-flat fluid
interface, shown schematically in Fig. 1. We demonstrate that
the interaction between particles is consistent with a dipolar
pair potential. We measure the dipole moment of the particles,
which allows us to directly compare the phase behavior of our
system to previous experiments and simulations using dipolar
particles [2,11,12].

Using density as the control parameter, we show that the
phase behavior of our system is consistent with the theory of
defect-mediated melting due to Kosterlitz, Thouless, Halperin,
Nelson and Young, whereby the transition from isotropic fluid
to crystalline solid happens via an intermediate hexatic phase
[13–15]. We identify the solid, isotropic fluid, and hexatic
phases by measuring the bond-orientational order parameter
ψ6 and associated space and time correlation functions g6(r)
and g6(τ ). Finally, we show that the classification of our
samples into solid, isotropic fluid, and hexatic phases is con-
sistent both with the topological defect structure predicted by
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Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) the-
ory and with the dynamical behavior that has been described
previously [16].

II. MATERIALS AND METHODS

Our experimental system is composed of diameter d =
1.1 μm poly(methyl methacrylate) (PMMA) particles that
bind electrostatically to the interface between an oil and an
aqueous phase. The particles are initially dispersed in a 1:1 vol-
umetric mixture of cyclohexyl bromide (CHB) and dodecane,
while the aqueous phase consists of a 10 mM solution of NaCl
in a 90 wt. % glycerol-water mixture. The dielectric constant
ε of the oil is 4.3ε0, where ε0 is the permittivity of the vacuum
[17]. The CHB is purified and stored according to the protocols
given in Refs. [7,18]. The PMMA particles are sterically
stabilized with covalently bound poly(12-hydroxystearic acid)
(PHS) [19]. Previous work has shown that, when dispersed
in similar oils, micron-sized PHS-coated PMMA particles
acquire a charge q of around +500e, where e is the elementary
charge [7,20]. While the charging mechanism is still incom-
pletely understood [18,21,22], particle charging in our system
is robust and reproducible [20]. To facilitate measurement of
particle dynamics with confocal microscopy, we fluorescently
dye the particles with absorbed rhodamine 6G [23].

To prepare the particle-laden interfaces we use in our exper-
iments, we use an atomizer to deposit droplets of the aqueous
phase onto a cover slip. We then incorporate the cover slip into
the construction of a glass capillary channel, which is filled
with the particle dispersion at the desired concentration. As the
particle dispersion flows into the chamber, some of the particles
bind irreversibly to the surface of the droplets, while others
bind to the bare glass surface. The experimental geometry is
shown schematically in Fig. 1. Particles that are bound to the
interface are mobile and can reach thermodynamic equilib-
rium. To control the flatness of the fluid interfaces, prior to the
droplet deposition step, the cover slip is immersed in a bath of
KOH-saturated isopropanol (IPA) and rinsed sequentially with
deionized water, acetone, and IPA. The cover slip is blown dry
with an N2 sprayer and dried in an oven at 70 ◦C for at least
15 min prior to use. By varying the immersion time of the cover
slips in the KOH solution, we control the advancing contact
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FIG. 1. Schematic of the experimental geometry. In the side view
panel, the height h of the droplet is exaggerated compared to the base
diameter D. In experimental samples, h � 5 μm. Particles sitting on
the interface (shown in full color) are mobile, while the remaining
particles (shown as faded) bind randomly and irreversibly to the bare
glass surface. The boundary of the droplet is delineated by a row of
particles stuck to the glass. The inset shows the origin of the dipolar
repulsion between interfacial particles.

angle of the deposited droplets of the aqueous phase.1 We find
that immersing the cover slips for 30 min gives contact angles
of approximately 1◦, which are appropriate for this experiment.
Apart from the KOH immersion step, we follow the same
protocol to clean all glass surfaces that come into contact with
the particle dispersion. Once the capillary channel has been
filled, we seal it: first with a buffer layer of glycerol and then
with optical adhesive (Norland Products Inc. NOA 68).

Following the above procedures, we obtain a sample cham-
ber that contains several particle-laden interfaces, ranging in
base diameter D from around 200 to 500 μm. Each interface
has a slightly different areal density ρ of PMMA particles, thus
allowing us to approximately uniformly sample areal densities
in the range 0.01–0.15 μm−2. We estimate the curvature of the
droplets as follows: Using a 10× magnification, 0.3 numerical
aperture air objective mounted on a Leica TCS SP5 II confocal
microscope, we image the particles in a single confocal slice.
If all the particles appear in the field of view, the maximum
thickness of the drop must then be less than the optical section
thickness, around 5 μm. Since the dimensions of our droplet
are far smaller than the capillary length, we ignore the effect
of gravity2 and assume that the droplets take the shape of a
spherical cap. Since D > 200 μm and the thickness is less than
5 μm, the radius of curvature must be at least 1 mm: far greater

1We speculate that the dramatic change in the wetting properties
of glass cover slips upon immersion in KOH IPA is caused by
gradual removal of residues left over from the manufacturing process,
roughening of the glass surface upon contact with the base bath, or
some combination of these mechanisms.

2Assuming the surface tension of our interface lies in the typical
range for an interface between an oil phase and an aqueous phase,
20–50 mN m−1, the capillary length is 0.3–0.5 cm.

than the length scales probed in our experiments. Thus, when
analyzing our experimental data, we treat the droplet surface
as flat.

After waiting at least a day for the samples to equilibriate,
we use confocal microscopy to record the motion of the
particles for up to several hours, at a rate of 0.25–1.0 frames/s.
Using standard routines [24], we locate the particles in the
field of view. Delaunay triangulations of the instantaneous
particle positions identify sites with more or fewer than six
nearest neighbors, called disclinations. Trajectories obtained
by linking particle positions in adjacent frames reveal the
mobility of individual particles.

Snapshots and movies of particle layers of different densi-
ties captured and analyzed in this way display the qualitative
features of the three phases predicted by Kosterlitz, Thouless,
Halperin, Nelson, and Young. The low-density isotropic fluid
phase shown in Fig. 2(a) is characterized by homogeneously
distributed disclination defects and uniformly mobile particles.
By contrast, the high-density equilibrium crystal phase, shown
in Fig. 2(c), is only capable of supporting sparse clusters of
tightly bound defects that do not affect the long-range order of
the lattice. In this phase, the particles that compose the crystal
are uniformly confined to the vicinity of their lattice sites. As
we show in Sec. III, the resulting caged diffusion can be used
to measure in situ the strength of the interparticle interactions.

At intermediate particle densities, such as that shown
in Fig. 2(b), isolated disclinations condense into the defect
clusters that characterize the hexatic phase. These clusters
facilitate particle mobility, disrupt translational order, and
induce long-lived spatial inhomogeneities in the structure and
dynamics of the particles.

III. MODEL FOR INTERPARTICLE INTERACTIONS AND
MEASUREMENT OF DIPOLE MOMENT OF PARTICLES

To compare the phase behavior of our system with that
observed in other systems [2,11,12,25], it is important to know
both the form and magnitude of the interparticle repulsion [26].
In previous work, we studied the behavior of PHS-coated
PMMA particles at an interface between two fluids that are
similar in composition to those described here [20]. In our
system, the PMMA particles appear to be wetted very little (or
possibly not at all) by the aqueous phase and can be described
as spheres with charge q sitting on top of a conducting medium,
as shown in the inset in Fig. 1. In the same work, we showed
that the force binding individual particles to the interface is
electrostatic in origin and that the interaction between pairs of
particles is dipolar. These results are consistent with previous
experimental and theoretical work [27–29] on systems of
charged particles in the vicinity of a fluid interface. In our
system and similar ones, the interaction of two charged
particles is the sum of the Coulomb repulsion between the
particles and the Coulomb attraction between each particle
and the image charge of the other. Thus, in the limit where
the interparticle distance r is large compared to the diameter
d of the particles, the net interaction between two interfacially
bound particles can be approximated by a pair potential of the
form

U (r) � A

r3
,
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FIG. 2. Three samples of hydrophobic PMMA particles electrostatically bound to almost-flat droplets, at areal densities ρ of (a) 0.036, (b)
0.043, and (c) 0.049 μm−2. The top row shows a confocal micrograph of each sample. For samples (b) and (c), the entire, roughly circular
droplet is shown (see Fig. 1). In each sample, the inset square has a side length of 100 μm. The middle row shows Delaunay triangulations
of the particle positions in a selected region, in the first frame of each movie. Particles with five or seven nearest neighbors are respectively
indicated by red triangles and green disks. The bottom row shows the particle trajectories over 25 min.

where A = p2/8πε, with p = qd the magnitude of the electric
dipole moment of the particles.3 As shown in Fig. 2(c iii),
when the interfacial density of the particles is high enough,
they form a crystalline solid phase. In a hexagonal lattice
composed of repulsive dipolar particles, the average value of
p can be estimated by observing the fluctuations of the
particles relative to the cage formed by their nearest neighbors.
To quantify the interactions between our interfacial PMMA
particles, we use a method due to Parolini et al. [30], which
we now outline briefly.

We begin by identifying a region of the interface where
several hundred particles are arranged in a defect-free crystal
lattice that is at least 20 μm from the droplet boundary. We
consider only samples where the density gradient across the
subregion of interest is less than 0.3% per interparticle spacing
and avoid the grain boundaries or isolated dislocations that are

3The latter relation assumes a constant charge density on the surface
of the particle, but the dipolar form of the interaction holds even for
more complicated boundary conditions on the surface of the particle.

occasionally present in our samples. These nonequilibrium
features may be identified quantitatively, for instance, by
anomalous behavior of the dynamic Lindemann parameter
γL(τ ) or the non-Gaussian parameter α2(τ ), which we define
in Sec. V. To further check that we are measuring equilibrium
properties, we verify that our results do not depend strongly
on the particular choice of subregion.

At each instant t in time, the Delaunay triangulation defines
Ni , the set of nearest neighbors of particle i. The position of
particle i relative to its neighbors is given by

ri,NN(t) = ri(t) − 1

nb

∑

j ∈Ni

rj (t),

where the sum is taken over the nb neighbors of particle
i. The nearest-neighbor relative mean square displacement
(NNMSD) as a function of time interval τ is defined as

〈δrNN(τ )2〉 = 〈[ri,NN(t + τ ) − ri,NN(t)]2〉, (1)

where the average is taken over particles i and starting times t .
When calculating the quantity ri,NN(t + τ ), we use the set of
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FIG. 3. (a) Nearest-neighbor relative mean square displacement
curves for three crystalline samples, at different densities ρ. (b) A
log-log plot of the limiting value of the NNMSD, as a function of
areal density. The dashed line is the best-fit line with slope −5/2,
as predicted by Eq. (2). This fit gives an electric dipole moment
p = (455 ± 20) e μm.

neighbors defined at time t , even if those particles no longer
share a Delaunay bond with particle i at time t + τ . Figure 3(a)
shows 〈δrNN(τ )2〉 curves for three crystalline samples, at
different densities ρ. In all these samples, 〈δrNN(τ )2〉 reaches
a plateau value 〈δr2

NN〉. According to [30], this value is related
to the force constant A, and hence to the dipole moment p, by
the equation

〈
δr2

NN

〉 = 29/2αkBT

35/4A
ρ−5/2, (2)

where we have used the relation between ρ and interparticle
spacing a in a hexagonal lattice, ρ = 2/a2

√
3. The constant α

is calculated in Ref. [30] and is approximately equal to 0.0531.
Figure 3(b) shows the results of applying this method to ten
crystalline samples at different areal densities. The error bars
show the discrepancy between the results of calculating the
limiting value of 〈δr2

NN〉 in two different ways: first by using
the plateau in the NNMSD curve as a function of time and
second by computing the variance of the histogram of frame-
to-frame displacements in the x and y directions separately.
For a particle diffusing in an isotropic harmonic potential,
sampled over sufficiently long times, these two methods should
give the same result. Fitting the data to Eq. (2), we find that
p = (455 ± 20) e μm.

When discussing phase behavior in this system, it
is convenient to introduce the dimensionless interaction
parameter 
,


 = A(πρ)3/2

kBT
,

where T = 293 K is the temperature at which the experiments
take place. Using 
 to describe the effective temperature of
the system allows us to directly compare our results with
previous experiments [2,31] and simulations [11] using dipolar
repulsive particles.

IV. KTHNY THEORY: TOPOLOGICAL DEFECTS
AND ORIENTATIONAL CORRELATIONS

Over the past several decades, KTHNY theory has been
shown to describe the phase behavior of a broad class of
2D materials, including dipolar repulsive particles [26,32,33].
According to this theory, melting of a 2D crystalline solid takes
place via two continuous transitions, which can be understood
in terms of the topological defects present in the material.
Two types of topological defects are important: disclinations,
points that have a number of nearest neighbors other than six,
and dislocations, bound pairs of one five-coordinated and one
seven-coordinated disclination. A dislocation is characterized
by a Burgers vector, which represents the magnitude and
direction of the lattice distortion induced by the dislocation
[34]. Some examples of these kinds of defects are shown in
Figs. 4(a) and 4(b).

According to KTHNY theory, in the solid phase at equilib-
rium, no free topological defects are present. However, there
may be thermally activated pairs of dislocations of opposite
Burgers vector that are bound by an attractive potential.
These kinds of structures, an example of which is shown
in Fig. 4(c), are not topological, since they can occur via
local rearrangements of the lattice. At sufficiently low 
,
this attraction can be overcome by thermal fluctuations and
the dislocation pairs dissociate. Although the resulting free
dislocations destroy the finite shear modulus of the crystal
lattice, the resulting material is not an isotropic fluid, but
rather a liquid crystalline hexatic phase. The transition to the
isotropic fluid is completed when the dislocations themselves
unbind into their constituent disclinations.

FIG. 4. Delaunay triangulations of typical particle configurations,
taken from the samples shown in Fig. 2. Five- and seven-coordinated
disclinations are marked by red triangles and green disks, respectively.
Sample (a) shows three unpaired disclinations, while (b) shows two
unpaired dislocations (five to seven pairs). Sample (c) shows a pair of
dislocations with opposite Burgers vector. This configuration is not a
topological defect.
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TABLE I. Topological defect structure and properties of correla-
tion functions g6(r) and g6(τ ) in the solid, hexatic, and fluid phases,
according to KTHNY theory.

Isotropic fluid Hexatic Solid

topological defects free disclinations free dislocations none
lim
r→∞

g6(r) ∝ exp (−r/ξ6) r−η6 const

lim
τ→∞

g6(τ ) ∝ exp (−τ/τ6) τ−η6/2 const

Using data from experiments and simulations, different
groups have explored various ways of quantitatively testing the
predictions of KTHNY theory [25,35]. Of particular interest
is the bond-orientational order parameter ψ6, since it can
be easily calculated from real-space data and because the
functional form of the associated correlation functions g6(r)
and g6(τ ) clearly discriminates between the phases of the
material.

If particle k has position rk at time t , the bond-orientational
order parameter ψ6(rk,t) is then defined by

ψ6(rk,t) = 1

nb

∑

j∈Nk

e6iθkj ,

where the sum is taken over the nb nearest neighbors of particle
k. The angle between particle k and its j th neighbor, θkj , is
taken with respect to an arbitrary but fixed axis. The degree
of local hexagonal order is given by |ψ6|. In the crystal phase,
the orientation of the hexagonal unit cell is given by 1

6 arg ψ6.
The space and time correlation functions g6(r) and g6(τ ) are
defined

g6(r) = Re{〈ψ∗
6 (rk,t)ψ6(rl ,t)〉|rk−rl |=r},

g6(τ ) = Re{〈ψ∗
6 (rk,t)ψ6(rk,t + τ )〉}.

When calculating g6(r), the averages are taken over time and
pairs of particles {k,l} satisfying the condition |rk − rl| = r .
For g6(τ ), the averages are taken over all particles k and starting
times t . Thus, g6(r) is a two-particle correlation function,
while g6(τ ) is a single-particle quantity. According to KTHNY

theory, these correlation functions have distinct behaviors in
each of the three phases: For large r and τ , both functions tend
to a constant value in the solid phase, decay algebraically in the
hexatic phase, and decay exponentially in the isotropic fluid,
with a characteristic decay length (time) ξ6 (τ6). Kosterlitz-
Thouless-Halperin-Nelson-Young theory predicts that, in the
hexatic phase, the exponent η6 of the power-law decay of g6(r)
is twice the exponent of the power-law decay of g6(τ ) and
further dictates that, at the fluid-hexatic transition, η6 reaches
a critical value of −1/4 [32]. Some of these predictions are
summarized in Table I.

Figures 5(a) and 5(b) respectively show g6(r) and g6(τ ),
plotted for nine samples at values of 
 ranging from 53
to 91. In our analysis of the temporal correlation function
g6(τ ), we rescale τ by the average time τ0 required for a
freely diffusing particle to traverse the mean distance between
particles a. This step is necessary because the thickness of
the aqueous layer underneath the particles (see Fig. 1) varies
between samples. Thus, even in the limit of very low particle
density, different samples may have diffusion coefficients D0

that vary by as much as a factor of 4. We estimate τ0 from
the small-time behavior of the NNMSD curves, such as those
shown in Fig. 3. At the smallest time intervals for which we
have data, we assume that the particle is freely diffusing inside
its cage of nearest neighbors and fit the first two data points of
the 〈δrNN(τ )2〉 curve by a straight line, containing the origin,
with slope 4D0.4 This allows us to estimate the time for a
freely diffusing particle to traverse one interparticle spacing,
τ0 = a2/4D0. For our samples, τ0 is of order 30 min.

4The low temporal resolution of our data affects the accuracy of
determining D0 in this way. For particles in the solid phase, a more
accurate determination of D0 is available by fitting the mean square
displacement curves to a more elaborate model [36]. Comparing
the values of D0 thus obtained to the values obtained by our short-
time linear-fit method, we estimate that the error incurred by our
method is at most around 50% and typically significantly smaller.
This error, although systematic, is far smaller than the variation in the
(unrescaled) particle mobilities.

slope = -1/4

0-1-2-3

(a)

slope = -1/8

(b)

FIG. 5. Shown are log-log plots of orientational correlation functions g6(r) and g6(τ ), for nine samples at different values of 
. The sloped
dashed lines in each plot indicate algebraic decay with the exponents expected at the fluid-hexatic transition, while the horizontal dashed line
in the g6(r) plot separates the curves that decay (
 � 74) from those that reach a constant value (
 � 79). Using these curves, we identify the
fluid-hexatic and solid-hexatic transitions at 
FH = 68 ± 2 and 
HS = 76 ± 3.
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For samples with 
 � 67, both g6(r) and g6(τ ) show the
exponential decay characteristic of the isotropic fluid phase,
while for 
 � 79, both functions tend to a constant value
at large r and τ . For the sample at 
 = 74, g6(r) shows
behavior consistent with the power-law decay expected in the
hexatic phase. For 
 = 68, the slope of g6(r) equals the critical
value of −1/4 within experimental error and so we cannot
unambiguously assign this sample to either phase. As can be
seen from Fig. 5(b), for the samples at 
 = 68 and 
 = 74, our
data for g6(τ ) do not allow us to distinguish between algebraic
decay with a small negative power and a constant value. Thus,
we estimate that the transition between the hexatic and the
isotropic fluid phases occurs at 
FH = 68 and the transition
between the hexatic and the ordered phase occurs at 
HS = 76.

We also note that the g6(r) and g6(τ ) curves for the

 = 79 sample lie above those for the sample at 
 = 83,
indicating that the former sample is more ordered. This
apparent nonmonotonic behavior might reflect sample-to-
sample variation in electric dipole moment p, which would
cause experimental uncertainty in our calculated values of 


and may also account for some of the spread of the data in
Fig. 3. In fact, since the limiting values of the correlation
functions should be a monotonic function of 
, we can use the
deviation from monotonicity to estimate the uncertainty in our
stated values of 
. Doing this, we find that the uncertainty
in 
 is approximately 3%. This figure only accounts for
sample-to-sample variation: The uncertainty in the mean value
of the electric dipole moment p calculated from the data in
Fig. 3 could lead to all the stated values of 
 being shifted
systematically from their true values by as much as 8%. In
spite of these experimental uncertainties, the values of 
FH

and 
HS that we find are in quantitative agreement with those
found in previous experiments [12,16].

The final orientational quantity we define is the average
orientational order parameter �6 = 〈ψ6(rk,t)〉, where the
average is taken over all points k and times t . We expect that,
in the isotropic fluid phase, |�6| = 0, while in the crystalline
solid phase, |�6| takes a finite positive value, which tends to
unity as 
 increases. In Fig. 6(a) we plot |�6| as a function
of interaction parameter 
. Figure 6(b) shows the total defect
fraction, defined as the fraction of particles that have a number
of nearest neighbors other than six. Between 
FH and 
HS, the
defect fraction drops dramatically and we see a corresponding
growth in the orientational order |�6| in the system.

Figure 6(c) shows a plot of the fraction of unpaired
dislocations ndisloc and disclinations ndisc. A topological defect
is defined as unpaired if it is does not share a Delaunay bond
with any other defect. Thus, the five-coordinated disclination
in the center of Fig. 4(a) is unpaired, as are the two dislocation
defects in Fig. 4(b). On the other hand, both the cluster of
defects in the top right of Fig. 4(a) and the two adjacent
dislocations of opposite Burgers vector in Fig. 4(c) are paired
and neither contributes to ndisloc or ndisc. While computa-
tionally straightforward, our definition of unpaired defects
does not provide a direct measurement of the concentration
of free defects in the sense of KTHNY theory. This is true
for at least two reasons. First, our definitions of ndisloc and
ndisc treat energetically bound but nonadjacent defects as
unpaired. This leads us to overestimate the number of free
defects, especially in the solid and hexatic phases. Second,

ndisloc

5ndisc

FHΓ HSΓ

(a)

(b)

(c)

FIG. 6. (a) Absolute value of the average bond-orientational order
parameter, plotted as a function of the interaction parameter 
.
The dashed lines indicate the values of 
 at the fluid-hexatic and
hexatic-solid transitions, as defined by the behavior of the correlation
functions g6(r) and g6(τ ) (see Fig. 5). (b) Fraction of particles that
do not have six nearest neighbors. (c) Fraction of particles that form
unpaired disclinations or dislocations. To enable these quantities to
be displayed on the same plot, the fraction of unpaired disclinations
is multiplied by a factor of 5.

our definitions completely neglect defect clusters, such as the
structure in the top right of Fig. 4(a), which may contain
one or several net topological defects. This will cause us to
underestimate the number of free defects, especially in the
fluid phase, where such clusters proliferate. Despite these
shortcomings, we find that ndisloc and ndisc display the expected
behavior in the vicinity of the transitions: Near 
 = 
FH, ndisc

drops dramatically, while near 
 = 
HS, ndisloc does the same.

V. DYNAMICAL MEASURES OF PHASE BEHAVIOR

As well as displaying distinctive spatial structure, different
phases of a material are typically characterized by their
dynamics. To investigate this aspect of the phase behavior
of our samples, we plot, in Fig. 7, the dynamic Lindemann
parameter γL(τ ) and the non-Gaussian parameter α2(τ ) [16].
The dynamic Lindemann parameter γL(τ ) is defined

γL(τ ) = 〈δrNN(τ )2〉
2a2

, (3)
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(b)

(a)

FIG. 7. Shown are log-log plots of (a) the dynamic Lindemann
parameter γL(τ ) and (b) the non-Gaussian parameter α2(τ ). Panel
(a) shows that, for samples identified as belonging to the ordered
phase by our analysis of the correlation functions, γL(τ ) reaches a
constant value, while the samples with 
 < 
HS behave diffusively or
subdiffusively. The horizontal dashed line indicates the critical value
γ c

L = 0.0097 predicted by Eqs. (2) and (3), evaluated at the density
ρHS corresponding to 
HS. Panel (b) shows that, in the isotropic fluid,
α2 peaks at some intermediate time scale, while in the candidate
hexatic samples (
 = 68 and 74), non-Gaussian behavior grows over
the time scales we observe. The inset in (c) highlights the dramatic
growth in the maximum value of α2 in the hexatic phase. The vertical
dashed lines indicate 
FH and 
HS, as defined by the behavior of the
correlation functions g6(r) and g6(τ ).

where the NNMSD 〈δrNN(τ )2〉 is defined in Eq. (1). The non-
Gaussian parameter α2(τ ) is defined as

α2(τ ) = 〈δrNN(τ )4〉
2〈δrNN(τ )2〉2

− 1.

This quantity measures the extent to which the histogram of
particle displacements deviates from the normal distribution.
Using the phase classification based on the behavior of the
correlation functions g6(r) and g6(τ ), our measurements of
γL(τ ) and α2(τ ) are consistent with previous measurements of
the dynamics of systems in the solid, fluid, and hexatic phases
[16].

In the solid phase, the dynamic Lindemann parameter
reaches a plateau value at long time. The observed critical value
of the dynamic Lindemann parameter is γ c

L = 0.012 ± 0.001.
This is close to the value predicted by evaluating Eqs. (2)
and (3) at the density ρHS corresponding to the hexatic-solid
transition, γ c

L = 0.0097 ± 0.005. This comparison serves as a

consistency check on Eq. (2) and the measured value of 
HS.
In the solid phase, the non-Gaussian parameter α2(τ ) has a
small positive value independent of time. This may be because
the quantities ri,NN are not statistically independent, as they
take into account the positions of the nearest neighbors.

In the fluid phase, we observe diffusive behavior γL(τ ) ∝ τ

at long times, while the non-Gaussian parameter α2(τ ) displays
a local maximum at time intervals τ/τ0 ∼ 0.1. These time
scales also correspond to the presence of a shoulder in the γL(τ )
curves and are also similar to the characteristic times τ6 of the
exponential decay of the g6(τ ) curves shown in Fig. 5. All
these time scales may originate in collective rearrangements
of defect clusters, such as that shown in Fig. 4(a).

In the sample we identify as belonging unambiguously to
the hexatic phase (
 = 74), γL(τ ) behaves subdiffusively over
observed times. For the sample at 
 = 68, the correlation
functions g6(r) and g6(τ ) are consistent with critical behavior
and we are unable to assign it to either the fluid or the
hexatic phase. For this sample, the slope of γL(τ ) appears
to be approaching 1 at the longest times we measure, perhaps
indicating that it is indeed a fluid. Previously, Zahn and Maret
showed that α2(τ ) tends to a constant value of order unity for
systems in the hexatic phase [16]. Our data are consistent with
this finding, but we do not record our candidate hexatic samples
for sufficiently long times to verify the limiting behavior. We
do however observe the sharp growth in the maximum value
of α2(τ ) in the hexatic phase that was reported in the same
study.

+π/6

−π/6

FIG. 8. Plot of the Delaunay triangulation of interfacially bound
particles in a single quadrant of a roughly circular droplet. This sample
has 
 = 120 and approximately 2000 particles in total. The color map
shows the local orientation of the lattice, given by 1

6 arg ψ6, while
five- and seven-coordinated disclinations are indicated by triangles
and disks, respectively. The thick black curve identifies the droplet
edge. (Disclinations are not plotted for the particles on the boundary.)
Away from the edge, the system forms a monocrystal that spans the
interior of the droplet. Immediately adjacent to the droplet edge, the
lattice is aligned with the edge. Where the orientation of the interior
region does not match that of the edge, grain boundaries form, a
few lattice spacings from the boundary. These grain boundaries are
delineated by a chain of polarized dislocations (five to seven pairs).
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VI. CONCLUSION

In this work, we study a system of charged colloidal
particles that are electrostatically bound to a fluid interface
and interact via electric dipole-dipole repulsion. We show that
the phase behavior of this system is well described by KTHNY
theory, with density as the control parameter. Using the
orientational correlation functions g6(r) and g6(τ ), we assign
each sample to the solid, isotropic fluid, or hexatic phase. We
demonstrate that the concentration of unpaired dislocations
and disclinations is consistent with the KTHNY picture of
defect-mediated melting. Finally, we find that each phase
displays distinctive dynamical behavior, as measured by the
dynamic Lindemann parameter γL(τ ) and the non-Gaussian
parameter α2(τ ).

Given the small number of particles in our system, the
extent to which our data are well modeled by KTHNY theory
is quite surprising. This agreement is only possible because
the orientation of the droplet edge, which is delineated by a
line of pinned particles (see Fig. 2), does not propagate into the
interior of the droplet. In the fluid phase, this is expected, since
orientational correlations decay exponentially over lengths of
a few interparticle spacings; this decay is evident in the 
 � 67
curves in Fig. 5(a). In the crystal phase, as shown in Fig. 8,
the orientation inherited from the droplet edge is destroyed
by a series of grain boundaries that run around the inner

perimeter of the droplet. These grain boundaries separate an
interior monocrystalline region from an outside layer, a few
interparticle spacings wide, which is aligned with the edge
of the droplet. Evidently, the strain fields associated with
these grain boundaries are not large enough to significantly
disrupt the phase behavior of the material in the interior
region. In the hexatic, it is not immediately clear how the
system accommodates the presence of the droplet edge, since
grain boundaries are difficult to identify unambiguously in this
phase.

The concurrence between our findings and previous work
on larger systems of dipolar repulsive particles extends
to quantitative agreement on the transition values of the
interaction parameter 
 [2,12], although the sparsity our data,
as well as the error bars for 
 shown, for example, in Fig. 6,
limits our ability to determine the width of the hexatic window.
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