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Simple empirical model for identifying rheological properties of soft biological tissues
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Understanding the rheological properties of soft biological tissue is a key issue for mechanical systems used in
the health care field. We propose a simple empirical model using fractional dynamics and exponential nonlinearity
(FDEN) to identify the rheological properties of soft biological tissue. The model is derived from detailed material
measurements using samples isolated from porcine liver. We conducted dynamic viscoelastic and creep tests on
liver samples using a plate-plate rheometer. The experimental results indicated that biological tissue has specific
properties: (i) power law increase in the storage elastic modulus and the loss elastic modulus of the same slope;
(ii) power law compliance (gain) decrease and constant phase delay in the frequency domain; (iii) power law
dependence between time and strain relationships in the time domain; and (iv) linear dependence in the low strain
range and exponential law dependence in the high strain range between stress-strain relationships. Our simple
FDEN model uses only three dependent parameters and represents the specific properties of soft biological tissue.
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I. INTRODUCTION

A. Background

Understanding the physical phenomena underlying the
mechanical properties of human tissue has a great impact
on bioscience and engineering. This knowledge will lead to
further development of machines and systems in the health
care field. Recently, the health care field has realized the
benefit of using intelligent machines (such as robots) that can
physically interact with humans. As a by-product, the physical
information measured by the machines can also be used for
cybersystem construction (such as machine learning).

Understanding the rheology, the study of materials with
both solid and fluid characteristics in which the response to
strain under applied stress is evaluated, of biological tissues is
a key issue for current research in the human health care field.
Rheology is relevant to many technological applications, rang-
ing from biological science (e.g., medicine, sports, biology,
biomechanics) to engineering (e.g., robotics, mechatronics,
material mechanics, control theory, computational mechanics,
information technology). Modeling of soft tissue rheological
properties is a core technology for developing various health
care machines and systems to assist human activity. For
example, a mathematical model of target objects (human,
organ, tissue, etc.) is required for mechanical design, motion
planning, information processing, and control.

These research and development areas require fundamental
equations that are limited to the essential properties of the
macroscopic behavior of the target matter (i.e., microscale
modeling is not necessary). In short, the development of fun-
damental macroscopic models of the properties of biological
matter is a key research issue pertinent to health care machines
and systems designed for humans, organs, and tissues.
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In spite of their scientific and technological importance,
mainly because they are difficult to model, very little knowl-
edge has been established regarding the rheological properties
of soft biological tissues. The properties of soft biological
tissues are different from those of synthetic matter, and the
rheological properties of soft biological tissue cannot be
directly modeled in the same manner as synthetic matter [1,2].
This difference in properties has limited the development
of methods for sensing, parameterizing and information
processing of rheological properties of soft biological tissue.

B. Goal and motivation

The goal of this study is to establish a universal fundamental
model to represent the macroscopic rheological properties of
soft biological tissue, as well as a method for measuring these
properties.

The motivation behind this study is the need for a “simple
model” that accurately represents the specific rheological prop-
erties of soft biological tissue. The model should be strongly
correlated with experimental data derived from actual biolog-
ical tissue. A “simple model” means that the model should
utilize the minimum number of parameters, yielding a math-
ematical equation that is easy to understand and implement.
Use of a simple model is essential for robust identification and
discrimination of tissues using rheological information.

C. Related research

Many researchers have reported that the rheological prop-
erties of soft biological tissues have distinct properties in com-
parison to industrial synthetic materials [1,3], such as metals.
For example, researchers reported that biological tissues have
viscoelastic properties [1–4]. Researchers have also reported
that soft biological tissues exhibit a very nonlinear relationship
between strain and stress [1–7]. Numerous studies have dealt
with both the nonlinearity and/or viscoelasticity of biological
tissue [1–31]. Models that neglect viscoelasticity and/or
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nonlinearity result in variability and incongruous analysis of
the rheological properties of soft biological tissue [1,3,10]. In
this article, we describe the complex viscoelastic and nonlinear
properties of soft biological tissue as “rheological properties.”

An ordinary linear differential equation (LDE) is generally
used to model viscoelastic properties (e.g., Voigt-Maxwell-
Kelvin model) [1–4]. In other words, the terms of the equation
for rheological properties have been generally modeled us-
ing both “linear” and “integer order” differential equations
explicitly or implicitly. Small order LDE models do not fit
data from biological tissues well, and a large number of
parameters are used in LDEs to increase model accuracy (e.g.,
generalized Maxwell model). These models only represent
linear relationships between stress and strain [1,3,6,8,9].

Hyperelastic models (e.g., Ogden, Mooney-Rivlin models)
are generally used to represent stress-strain nonlinearity [1–7],
although the number of parameters in hyperelastic models also
tends to be large. Moreover, these models are time independent
and do not represent dynamic (viscoelastic) properties. Thus,
additional terms and parameters are needed to represent
dynamic properties in a hyperelastic model [10].

The equations in some related work [4,6,21–31] have
dealt with both viscoelasticity and nonlinearity. However,
these models tend to become overly complex and involve
an excess number of material parameters to represent these
properties. Existing models with numerous parameters, such
as those combining hyperelastic models with viscoelastic
models, are unsuitable for identifying model parameters. The
use of a large number of parameters leads to a risk of
overfitting the parameter identification and ill-posedness of
inverse problems. Having a large number of parameters also
increases computational costs.

A standard model based on a simple equation with few
parameters that is highly correlated with experimental data
from soft biological tissues does not currently exist. A
preferred model should have a small number of parameters that
are strongly correlated with the experimental data. Therefore,
we have conducted studies aimed at developing a model with
these characteristics [32–39]. The model is derived from com-
prehensive material data obtained from in vitro measurements
of porcine liver [32–35]. The model was also validated using
in vitro breast tissue (fibroglandular tissue, fat, muscle) [36,37]
and partially evaluated using muscle tissue [38,39]. The model
combines a fractional differential equation with a polynomial
expression for stress-strain nonlinearity, which consists of
four parameters [32–37]. However, two parameters in the
model, both parameters representing nonlinear properties,
correlate and interfere with one another. In addition, the
parameter identification from the experimental data of these
two parameters is complex; specifically, global searching and
optimization are required. Moreover, the physical laws of
soft biological tissue were not explicitly introduced in these
articles. The model and scope of these earlier publications are
briefly introduced in Appendix A.

D. Objectives

The objective of this article is to propose a simple model that
represents the rheological properties, meaning, viscoelastic
and nonlinear properties, of soft biological tissues. Specifi-

cally, we propose a simple model, using only three dependent
parameters, incorporating fractional dynamics and exponential
nonlinearity to identify rheological properties. The advantage
of our model is that it is strongly correlated with various
experimental data and uses a small number of parameters,
thereby rendering it suitable for parameter identification and
inverse analysis. This article also examines the physical laws
of soft biological tissue based on the experimental data and
model.

Figure 1 shows an overview of this article. The model
is derived from detailed material measurements using actual
biological tissue. Specifically, we used samples isolated from
various porcine livers. We selected liver samples because
liver is a relatively simple tissue with low anisotropy when
compared with other biological organs and tissues. We used
a plate-plate rheometer to measure the liver samples, as
the rheometer can dynamically control and measure stress
and strain applied to the sample. We conducted a dynamic
viscoelastic test and creep test to derive and evaluate the
model. Individual differences between liver samples (phys-
ical properties of biological tissues differ between indi-
vidual samples) were represented by the values of model
parameters.

II. MATERIALS AND METHODS

In this section, we explain how we measured and modeled
the rheological properties of the samples. First, we introduce
our rheological model scheme. We then explain the study
materials and measurement procedures.

A. Proposed model

The rheological model in this study relies on experimental
data obtained from biological tissues. We first give the model
equations (1a) and (1b) to enhance the readability of this
article. Here, we present a scalar and simple shear model for
soft biological tissue. The proposed rheological model utilizes
fractional dynamics and exponential nonlinearity (FDEN); the
equations are as follows:

tαr
dα

dtα
(Gx) = f {x < xb}, (1a)

tαr
dα

dtα

(
Gxbe

x−xb
xb

) = f {x > xb}, (1b)

where x is strain (torsional strain), f is stress (torsional stress),
and t is time, as variables; α is a noninteger derivative order
representing the index of viscoelasticity, tr is the reference time
scale, G is the linear viscoelastic stiffness at an arbitrarily
chosen time tr , and xb is the boundary strain in which the
characteristics change to nonlinearity, as the parameters of the
model. e is Napier’s constant. The details of the calculations
regarding x and f are described in Appendix B.

Equation (1b) is derived from the connectivity between
linear equation (1a) and exponential nonlinear equation (1b);
the exponential curve (1b) is tangent to the straight line (1a).

The other form of Eq. (1b) is as follows:

tαr
dα

dtα
(Gie

Gn x) = f {x > 1/Gn} (2)
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FIG. 1. An overview of this article. The model is derived from detailed material measurements using actual biological tissue. Specifically,
we used samples isolated from various porcine livers. We used a plate-plate rheometer to measure the liver samples in which the rheometer can
dynamically control and measure stress and strain applied to the sample (a). For example, we conducted a dynamic viscoelastic test and a creep
test with several stresses (b) to derive and evaluate our empirical model (c). Individual differences between liver samples (physical properties
of biological tissues differ between individual samples) were represented by the values of model parameters.

where Gn is nonlinear viscoelastic stiffness (Gi is a dependent
parameter). Each parameter should fulfill the following rela-
tionship (3) concerning the connectivity between (1a) and (2).
The detailed calculation is described in Appendix E:

Gn = 1

xb

, Gi = Gxb

e
. (3)

The model has a total of three parameters, α, G, and Gn (or
xb), as representative parameters according to the relationships
in (3).

The details of the experimental methods and derivation
process of the model from the experimental data are described
in the next sections.

B. Materials and conditions

Figure 2 shows the details of the measuring components.
We used porcine liver in this study because porcine abdominal
organs have properties similar to those of humans and are
widely used in laparoscopic surgery training for novice
surgeons. We chose to measure the properties of liver samples

FIG. 2. Details of the measuring components (a) and actual
experimental setup (b). We used porcine liver as the sample for this
study. We used a plate-plate rheometer to measure the stress loaded
on the sample and sample strain. The liver sample was cut into slices,
and the slices were placed on a measurement table. The samples were
soaked in a saline solution at 35 ◦C during each test. Sandpaper was
attached to the top plate and the measurement table to prevent sliding.
Radius R was 20 mm and gap d was 5 mm.

because liver, consisting of homogeneous and isotropic tissue,
would be relatively easy to model. We used cryogenically
preserved liver samples (4 ◦C on ice) that were taken within
24 h postmortem and that did not include membranes or large
blood vessels. Specimens were not frozen at any time during
the procedure.

We used a plate-plate rheometer (AR550 or AR-G2; TA
Instruments, New Castle, DE) to measure the stress loaded
on the sample and sample strain. The shear stress rheometer
was selected because the shear test must be independent of
any change in cross-sectional area in the stress calculation.
In addition, the effect of gravity could be disregarded. From
these measurements, the conventional shear strain x and con-
ventional shear stress f were calculated. The measurements
of strain x and stress f are valid only when there is no slip
between the sample and the plates. Thus, sandpaper (P80
grain size) was attached to the top plate and the measurement
table to prevent sliding. The details of the calculation are
described in Appendix B. The liver sample was cut into slices
(diameter 20 mm, height 5 mm), and the slices were placed
on a measurement table. The samples were soaked in saline
solution at 35 ◦C during each test.

C. Procedures

1. Initializing procedures

After the saline solution reached the target temperature, the
gap was zeroed to the surface of the saucer. The saline solution
was stable and there was no reflux flow. Each tissue sample
was placed on a measurement table, and the sample thickness
(=gap d) was determined. The sample thickness was defined as
the distance between the surface of the saucer and the surface of
the parallel plate (part of the measuring device) at the time that
the normal stress resulting from contact between the parallel
plate and the sample reached 0.1 N. To engage the sample and
parallel plate, preloading for 180 s and unloading for 180 s
were performed thrice under a load constant shear stress fc of
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750 Pa. The following series of experiments were conducted
for each sample, after the above initializing procedures.

2. Dynamic viscoelastic test

Sine-wave stress from 0.1 to 10 rad/s, providing 1.5% strain
amplitude xo, was applied to the sample. The compliance J

(gain from stress amplitude fo to strain amplitude xo), phase
delay φ, storage elastic modulus G′, and loss elastic modulus
G′′ of each angular frequency ω were measured. As shown
in the following experimental results (Fig. 6), 1.5% (=0.015)
strain amplitude is in the range where liver tissue exhibits linear
responses. The effect of mass (inertia) and shear viscosity
from the external normal saline solution could be disregarded
at frequencies less than 10 rad/s. Data were collected from
11 liver samples. We obtained a pair of results (storage elastic
modulus G′, loss elastic modulus G′′) or (compliance J , phase
φ) from the dynamic viscoelastic test. The detailed process to
obtain the experimental results from the dynamic viscoelastic
test is provided in Appendix C.

3. Creep test and nonlinear measurement

A torsional creep test was performed after the dynamic
viscoelastic test. The creep test, in which step responses
to strain x(t) are observed under constant stress fc, was
repeatedly performed, applying several stresses on the sample.
Time series of strain data x(t) were measured during each
experiment. The constant shear stress fc load ranged from 25
to 750 Pa, and the time series of strain data x(t) were recorded
for 180 s at each stress level. Each test was performed at
intervals of 180 s. The load shear stress during each interval
was 0 Pa. The reference strain was set to 0 at each creep test
to account for residual stress and strain. We ignored the data
obtained from 0 to 1 s because of vibrations during the early
transient stage. The details of this area are presented in our
previous article [34,35]. Data were collected from 64 liver
samples.

III. RESULTS AND MODELING

A. Mechanical complex impedance

Here, mechanical complex impedance G∗ is defined as
follows:

G∗(ω) = G′(ω) + jG′′(ω). (4)

Here, ω is angular frequency, j is the imaginary unit, G∗ is
the complex mechanical impedance, G′ is the storage elastic
modulus, and G′′ is the loss elastic modulus.

Typical experimental results of a dynamic viscoelastic test
(in this section, mechanical complex impedance G∗) of a
sample are shown in Fig. 3. All liver samples exhibit the same
trend as the typical sample; data trends are the same, however,
model fit data and parameters are different.

Both the storage elastic modulus G′ and the loss elastic
modulus G′′ increased with the angular frequency ω. We found
that both the storage elastic modulus G′ and the loss elastic
modulus G′′ exhibit a power law form over two decades.
Furthermore, G′ and G′′ are approximately proportional to
ω1/8 (α = 0.125 = 1

8 ).

FIG. 3. Mechanical complex impedance. The typical experimen-
tal results of a dynamic viscoelastic test (in this figure, mechanical
complex impedance) of a sample. The asterisk plot is the experimental
result for the storage elastic modulus G′. The cross plot is the
experimental result for the loss elastic modulus G′′. Both the storage
elastic modulus G′ and the loss elastic modulus G′′ increased as the
angular frequency ω increased. Both the storage elastic modulus G′

and the loss elastic modulus G′′ exhibit a power law form over two
decades. Furthermore, G′ and G′′ are approximately proportional to
ω1/8 (α = 0.125 = 1

8 ). The G′ of our model is the line, and the G′′

of our model is the dashed line. The G′ and G′′ of our model, which
fit the typical experimental results, indicate that our model and the
experimental results are highly correlated.

The mechanical complex impedance of our model has the
same characteristics as the experimental results, i.e., power law
forms of G′ and G′′, and the same slopes of G′ and G′′. The
expansion of the equation to explain the above characteristics
is as follows. Our model is represented as Eq. (5) [the same
equation as (1a) is described for readability] because the
dynamic viscoelastic tests were conducted in the linear range
of the stress-strain relationship

tαr
dα

dtα
(Gx) = f. (5)

Because Eq. (5) takes the form of a frequency transfer
function, the complex shear modulus G∗ can be expressed in
terms of the Laplace operator as follows:

G∗(s) = F (s)

X(s)
= G (tr s)α. (6)

Equation (7) is derived from the mechanical complex
impedance of (6) using s = jω:

G∗(jω) = G

(
j

ω

ωr

)α

. (7)

Here, ω is the angular frequency, ωr is the reference scale,
defined as ωr = 1/tr . The reference scale ωr is used in
the following explanations about the frequency domain,
Secs. III A and III B and Appendix F, to enhance the readability
of this article.
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TABLE I. Accuracy evaluation results for the present model.

Sample number
Equation and experimental data (number of trials) Avg. of R2 Max. of R2 Min. of R2 S.D. of R2

Equations (11a) and (11b) and dynamic viscoelastic test 11 0.840 0.902 0.751 0.008
Equation (18) and creep results 64 (712) 0.997 1.000 0.950 0.0073
Equations (19a) and (19b) and nonlinear measurement 64 0.986 1.000 0.923 0.018

Then, Eq. (7) expands to (8a) and (8b) from (4) with
separation of the real and imaginary parts of (7):

G′(ω) = G′(ωr )

(
ω

ωr

)α

, (8a)

G′′(ω) = G′′(ωr )

(
ω

ωr

)α

. (8b)

Here, G′(ωr ) is a constant parameter that represents the
storage elastic modulus, and G′′(ωr ) is a constant parameter
that represents the loss elastic modulus. These parameters
have the following relationship (10) because of a constant
parameter that represents the complex modulus G∗(jωr )
derived from (9):

G∗(jωr ) = G (j )α = G cos

(
π

2
α

)
+ jG sin

(
π

2
α

)
, (9)

G =
√

G′(ωr )2 + G′′(ωr )2, (10a)

G′(ωr ) = G cos

(
π

2
α

)
, (10b)

G′′(ωr ) = G sin

(
π

2
α

)
. (10c)

Equations (11a) and (11b) were derived from (8a) and (8b)
by log-log transformation through the transformation to
dimensionless quantities:

log

[
G′(ω)

G′(ωr )

]
= α log

(
ω

ωr

)
, (11a)

log

[
G′′(ω)

G′′(ωr )

]
= α log

(
ω

ωr

)
. (11b)

Thus, our model equation represents the same trend as the
experimental results, i.e., power law dependence of G′ and G′′.
The parameters (G and α) of Eqs. (11a) and (11b) were
identified by fitting the experimental results for each sample.

We used the extended Kalman filter (EKF) algorithm to
identify the parameters (see Appendix F for details) because
Eqs. (11a) and (11b) are nonlinear simultaneous equations:
both equations include parameters (G and α). The G′ and G′′
in our model, which fit typical experimental results, are shown
in Fig. 3, showing that our model and the experimental results
are strongly correlated. It should be noted that the derivative
order α is not an integer (α = 0.125 = 1

8 ). Our model also
fits the experimental data from all liver samples well. The
coefficient of determination R2 between our model and the
experimental data from the series of G′ and G′′ in all samples is
approximately 90%. Each data set was fitted with a pair (G, α),
and then the results were averaged. Tables I and II list the
model accuracy evaluation and fundamental statistics of the
model parameters. For example, the average data of (G, α) are
shown in Tables I and II.

B. Bode diagram

Typical experimental results of a dynamic viscoelastic test
(in this section, a gain diagram and phase diagram) of a sample
are shown in Fig. 4. Figure 4 is a plot of the same data
presented in Fig. 3, the only difference being the expression of
data from dynamic viscoelastic tests. Compliance (gain) J , the
multiplicative inverse of G∗, decreased as angular frequency
ω increased. We found that compliance (gain) J assumes a
power law form over two decades. We also found that the
phase delay φ remained constant over two decades.

The Bode diagram of our model has the same characteristics
as the experimental results, namely, power law form of com-
pliance (gain) J and constant phase delay φ. The expansion of
the equation to explain the above characteristics is as follows.
The Laplace operator of the Bode diagram is as follows:

J (s) = X(s)

F (s)
= 1

G(tr s)α
, (12a)

J (jω) = 1

G
(
j ω

ωr

)α . (12b)

TABLE II. Fundamental statistics of the parameters when tr = 1 (ωr = 1).

Test Parameter Sample number Avg. Max. Min. S.D.

Dynamic viscoelastic test G 11 391.1 518.2 248.2 111.2
Dynamic viscoelastic test α 11 0.131 0.146 0.118 0.011
Dynamic viscoelastic test Jo 11 0.00275 0.00402 0.00192 0.000853
Dynamic viscoelastic test φ 11 −11.85 −10.60 −13.12 0.980
Nonlinearity measurement G 64 544.8 1294 341.8 155.3
Nonlinearity measurement Gn 64 8.547 13.18 5.26 1.604
Nonlinearity measurement xb 64 0.121 0.190 0.076 0.0022
Nonlinearity measurement Gi 64 23.90 39.64 11.35 6.206
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FIG. 4. Bode diagram. The typical experimental results of a
dynamic viscoelastic test [gain diagram (a) and phase diagram (b)] of
a sample. The plots in the gain diagram and phase diagram show the
experimental results. Compliance (gain) J , the multiplicative inverse
of G∗, decreased as the angular frequency ω increased. Compliance
J assumes a power law form over two decades. We also found that
the phase delay φ remained constant over two decades. The lines
are the compliance (gain) J and phase φ results of our model. The
parameters of our model fit the typical experimental results, showing
that our model and the experimental results are highly correlated.

The compliance (gain) J is defined from Eq. (12) as follows:

J (ω) =
∣∣∣∣ 1

G
(
j ω

ωr

)
α

∣∣∣∣ = 1

G
(

ω
ωr

)α = J (ωr )(
ω
ωr

)α , (13)

where J (ωr ) is the coefficient that represents the compliance,
defined as J (ωr ) = Jo = 1/G.

Equation (14) is derived from the log-log transformation of
(13) through the transformation to dimensionless quantities

log

[
J (ω)

J (ωr )

]
= −α log

(
ω

ωr

)
. (14)

In addition, the model equation of the phase delay φ is derived
from (8a) and (8b):

φ(ω) = arg

[
1

G
(
j ω

ωr

)α

]
= −π

2
α = φo, (15)

where φo (= −π
2 α) is the coefficient that represents the phase

delay. Thus, our model equation represents the trend observed
in the experimental results.

We calculated the compliance (gain) J and phase φ of
our model via identification of the parameter of mechanical
complex impedance for each sample because the parameters
were the same. The compliance (gain) J and phase φ results
from our model, the parameters of which fit the typical
experimental results, are shown in Fig. 4, which shows that
our model and the experimental results are strongly correlated.

Our model fit the experimental data from all liver samples well.
Each data set was fitted with a pair (Jo, φo), and then the results
were averaged. Table II lists the fundamental statistics of the
model parameters. For example, the average data of (Jo, φo)
are shown in Tables I and II.

C. Creep test (step response)

A typical example of the experimental results for a creep
test, the creep response obtained by assuming the input step
stress, is shown in Fig. 5(a). The strain of liver samples
increased over a time interval of 180 s. Figure 5(b) shows
a log-log diagram of the same data described in Fig. 5(a). We
found that the time series data of the creep response exhibited
a power law form over two decades [Fig. 5(b)].

A model equation of strain x(t) in the creep test can be
calculated. We assumed that Eq. (1a) is valid for a single creep
test, while nonlinearity was evaluated by a series of creep
tests under several applied stresses fc. Specifically, Eq. (1a)
becomes (16) if (1a) is solved for the conditions of the creep
test. Here, the applied stress is constant fc.

Strictly and theoretically speaking, the quantity xc is well
defined by Eq. (16) at small deformations x < xb based on
(1a), but is not defined at deformations x > xb based on (1b).
However, we use here Eqs. (16) and (1a) also in the nonlinear
range x > xb for a single creep test because the power law
is still useful to determine the quantity xc (the details of this
point are explained in Appendix D):

x(t) = fc

G�(1 + r)

(
t

tr

)α

= xc

(
t

tr

)α

. (16)

Here, x is strain, t is time, fc is constant applied stress, and
�(. . .) is the gamma function. xc is the coefficient determining
the strain value as a parameter, which is defined as follows:

xc = fc

G�(1 + α)
. (17)

In this case, the Riemann-Liouville definition [40] (but
not only this definition) was used to solve the fractional
integration of (1a). Equation (18) is derived from the log-
log transformation of (16) through the transformation to
dimensionless quantities

log

(
x

xc

)
= α log

(
t

tr

)
. (18)

Thus, our model equation represents the trend observed in
the experimental results. The parameters (xc, α) of Eq. (18)
were identified by fitting the experimental results in the log-log
domain. We used the least squares method (LSM) algorithm,
linear regression, to identify the parameters of Eq. (18) for
each sample. We calculated the other independent parameter
G via Eq. (17). The time series data x(t) from our model, the
parameters of which fit the typical experimental results, are
shown in Figs. 5(a) and 5(b). Figures 5(a) and 5(b) show that
our model and the experimental results are strongly correlated.
Our model fits the experimental data from all liver samples
well. The coefficient of determination R2 between our model
and the experimental data from the time series of displacement
in all samples at all stresses exceeded 99%. Each data set
was fitted with a pair (xc, α), and then the results were
averaged. Tables I and II list the model accuracy evaluation and
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FIG. 5. Creep test (step response). (a) A typical example of experimental results of a creep test, the creep response obtained by assuming
the input step stress fc. (b) A log-log diagram of the same data described in (a). The plots in (a) and (b) are the experimental results. The strain
of the sample increased over a time interval of 180 s. We found that the time series data of the creep response exhibited a power law form over
two decades. The lines are the time series data of our model. Our model equation represents the trend observed in the experimental results.
This figure shows that our model and the experimental results are highly correlated.

fundamental statistics of the model parameters. For example,
the average data of (xc, α) are shown in Tables I and II.

D. Nonlinearity measurement

The nonlinear properties of samples were investigated
based on a series of creep tests under several applied stresses
fc. Specifically, we examined the relationship between the
constant applied stress fc and the strain coefficient xc in a series
of creep tests using several stresses. Typical experimental
results for nonlinearity measurement of the sample are shown
in Figs. 6(a) and 6(b). Figure 6(b) shows a semilog diagram of
the same data described in Fig. 6(a). Figure 6(a) shows that the
relationship between xc and fc exhibits linear characteristics
under low strain conditions. The stress nonlinearly increased
under high strain conditions. Figure 6(b) shows that the stress
increase during high displacement is linear in the semilog
scale; stress increases exponentially in the linear scale space.
We found that the linear straight line and nonlinear curves
connected smoothly, with the exponential curve being tangent

to the straight line in the linear region. We modeled the
nonlinear properties of the soft biological tissue based on these
results and considerations, as shown in Eqs. (19a) and (19b):

Gxc = fc {xc < xb}, (19a)

Gxbe
xc−xb

xb = fc {xc > xb}. (19b)

The other form of Eq. (19b) is as follows:

Gie
Gn xc = fc {x > 1/Gn}. (20)

Here, xc is strain and fc is stress. G is a proportionality
factor (referred to as linear viscoelastic stiffness or linear
stiffness herein), xb is the boundary strain between the linear
and nonlinear range (called simply boundary strain), Gn

is a proportionality factor in log space (called nonlinear
viscoelastic stiffness or nonlinear stiffness), and Gi is the
dependent parameter.

Each parameter should fulfill the following relationship due
to the exponential curve (19b) being tangent to the straight line
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FIG. 6. Nonlinearity measurement. Typical experimental results
when tr = 1 are shown in (a) linear scale and (b) semilog scale. (a)
Shows that the relationship between strain xc and stress fc exhibits
linear characteristics under low strain conditions. (b) Shows that the
stress increase during high displacement is linear in the semilog
scale; stress increases exponentially in the linear scale space. We
found that the linear straight line and nonlinear curves connected
smoothly, with the exponential curve tangent to the straight line
in the linear region. The stress-strain relationship of our model,
which fits the typical experimental results, is shown by the line. Our
model and the experimental results are highly correlated. There is an
overlapping area, where the results exhibit both linear dependence
and exponential law dependence. Linearity holds to a certain degree
above the boundary strain xb, and exponential law dependence holds
to a certain degree below the boundary strain xb.

(19a) (details of this relationship are shown in Appendix E):

Gn = 1

xb

, Gi = Gxb

e
. (21)

The following equations (22a) and (22b) are derived
from the natural logarithm of both sides in (19b) and (20),
respectively:

xc

xb

= ln

(
e

Gxb

f

)
{xc > xb}, (22a)

Gnxc = ln

(
Gne

G
f

) {
xc >

1

Gn

}
. (22b)

The parameters (G, Gn, Gi , and xb) of Eqs. (19a) and (22b)
were identified by fitting the experimental results for each
sample. We used the EKF algorithm to identify the parameters
of Eqs. (19a) and (22b) (see Appendix G for details), as
they are nonlinear simultaneous equations. The stress-strain
relationship of our model, which fits the typical experimental
results, is shown in Fig. 6, and shows that our model and
the experimental results are strongly correlated. Our model
also fits the experimental data from all liver samples well.
The coefficient of determination R2 between our model and
the experimental data in all samples was approximately 95%.
Each data set was fitted with a pair (G, Gn), and then the
results were averaged. Tables I and II list the model accuracy
evaluation and fundamental statistics of model parameters. For
example, the average data of (G, Gn) are shown in Tables I
and II.

Thus, we derived the nonlinear equations for our model
shown in (1a) and (1b). This section derived the static equation
of the FDEN model (in the case of α = 0). We assume here that
Eqs. (19a) and (19b) can hold true in a more general situation
for strain x and stress f in the absence of creep tests. Moreover,
we assume that the nonlinear relationship between xc and fc

still holds at arbitrary α more generally because coefficients fc

and xc in Eq. (16) are defined as time-independent parameters,
and these parameters are valid for arbitrary α in Eq. (16).

IV. DISCUSSION

The main contribution of this article is the proposal of
a fractional dynamics and exponential nonlinearity (FDEN)
model to identify the rheological properties of soft biological
tissue. We found from experimental results that biological
tissues have specific properties: (i) power law increase in the
storage elastic modulus G′ and the loss elastic modulus G′′
of the same slope (G′,G′′ ∝ ωα); (ii) power law compliance
(gain) J and constant phase delay φ in the frequency domain
(J ∝ ω−α , φ = −π

2 α) over two decades; (iii) power law
dependence between time and strain relationships (x ∝ tα)
over two decades; and (iv) linear dependence in the low strain
range (f ∝ x) and exponential law dependence (ln f ∝ x) in
the high strain range between stress-strain relationships. The
FDEN model uses only three dependent parameters, such as
α, G, and xb (or Gn), and represents the specific properties of
soft biological tissues. The advantage of our model is that it
strongly correlates with various experimental data, as shown
in Sec. III. In addition, the small number of parameters used
is valuable because it is suitable for parameter identification
and inverse analysis. For example, the parameter identification
methods in this article are basic, with only the LSM and EKF
being used. Lastly, the meaning of each parameter is intuitively
understood (e.g., α: ratio of viscoelasticity, G: linear stiffness,
Gn: nonlinear stiffness, xb: boundary strain between the linear
and nonlinear range) and it is possible to compare the values
with those of other tissues. The details are discussed in the
following sections.

A. Viscoelastic model using fractional calculus

We found from experimental results that soft biological
tissues have specific viscoelastic properties, as described above
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in (i)–(iv). Single terms in the fractional dynamics model (1a)
represent the specific properties of soft biological tissues.

Fractional calculus is an approach to mathematically
describe natural phenomena that are related to viscoelas-
tic behavior [41]. It is a branch of mathematical analysis
concerned with taking real or complex number powers of
differential operators. Fractional dynamics is a field of study
in physics and mechanics concerned with investigating the
behavior of objects and systems that are characterized by
power law nonlocality, power law long-term memory, or
fractal-type properties by using integration and differentiation
of noninteger orders, i.e., by fractional calculus methods [42].
Fractional dynamics models are powerful tools in describing
the dynamic behavior of various materials. The advantages of
fractional dynamics models are their ability to describe real
dynamic behavior and the fact they are simple enough for
engineering calculations [43]. The equations for viscoelastic
models are generally based on stress-strain analyses and are
traditionally represented with derivatives of integer order
(ordinary differential equations). In other words, traditional
methods to fit the viscoelastic response include several spring
and dashpot elements. Recently, fractional dynamics models
proved to be efficient in describing rheological materials such
as rubber and tissues, reducing the number of parameters and
showing a power law response [44].

Over the last few years, fractional calculus has become
an important tool in the analysis of viscoelastic materials
composed of synthetic polymers [45]. For example, Caputo
et al. [46–48] found good agreement with experimental results
when using a fractional calculation for the description of
viscoelastic materials and established the connection between
the fractional calculation and the theory of linear viscoelas-
ticity [49]. Several authors [50,51] have also suggested the
use of differential or integral equations of fractional order to
describe viscoelastic behavior that is intermediate between
purely elastic and purely viscous [52].

Although fractional calculus is widely applied in describing
the solid-liquid duality of synthetic polymers, it had until
recently attracted limited attention in the field of biological
materials, biomechanics, and bioviscoelasticity [53]. Suki
et al. [54] found the pressure and volume response of a whole
lung to be characterized by fractional calculus. Fractional
calculus is also useful in biology-related fields because many
tissuelike materials (polymers, gels, emulsions, composites,
and suspensions) exhibit power law responses to applied
stress or strain [55]. Yuan et al. [56] studied lung tissue and
found its fractional order of evolution, while Chen et al. [57]
applied the same model to agarose gels used for culturing
tissues, particularly cartilage. An example of the power law
behavior of elastic tissue was observed recently for viscoelastic
measurements of blood vessels, where the analysis of these
data was most conveniently performed using fractional order
viscoelastic models [55]. Recent studies reveal that fractional
calculus can be used to model smaller components such as cells
[57–59]. The framework of fractional calculus has also been
used in research on magnetic resonance elastography [53,60].
As above, fractional dynamics is gaining popularity in the
field of viscoelasticity, with data and models already reported
for the liver [32–35], breast tissues [37], lung [54,61], vessels
[44], muscle [38,39], brain [62], tendons [63], muscle cells

[57], blood cells [58], and living cells [59]. In short, research
on fractional calculus has been applied widely to many fields,
including biological materials.

The parameter α in fractional equation (1a) is the derivative
order and is commonly taken to range between 0 and 1. If α

is 0, Eq. (1a) describes the behavior of a spring where G

specifies the spring’s stiffness. If α is 1, Eq. (1a) defines a
dashpot, in which G defines the viscosity. Thus, the fractional
equation (1a) interpolates between the material behavior of
a spring and that of a dashpot [49]. The rheological element
that refers to Eq. (1a) was therefore introduced by Koeller
and termed a “springpot” [55,64]. As such, the derivative
order α represents the index of viscosity of the system in the
fractional dynamics model. A viscoelastic material is more
governed by elastic properties than by the viscous properties
when the derivative order α is close to 0, and vice versa when
the derivative order α is close to 1.

The value of the derivative order α was approximately
0.125 (= 1

8 ) from the experimental results presented in this
article, indicating that the characteristics of soft biological
tissue (liver) are intermediate between those of elastic and
viscous bodies and that this tissue is relatively close to an
elastic material.

B. Fractional calculus for the dynamic viscoelastic
and creep tests

In this article, the viscoelastic properties of soft biological
tissues (liver) have been examined. The simple empirical
equations describing strain creep [Eqs. (16) and (18)] have
been put in a concise mathematical framework. We have
chosen to describe viscoelasticity in terms of a fractional
calculation as in Eq. (1a). Certain important advantages of
fractional calculus must be emphasized [44,54]: (i) fractional
dynamics models accurately describe complex models with
fewer parameters, (ii) they improve curve fitting, principally
with power law responses, and (iii) they allow for a physical
justification of fractal structure of soft biological tissue, as
described in the Sec. IV C.

1. Dynamic viscoelastic test

Measurements of mechanical complex impedance G∗ in
dynamic viscoelastic tests over a wide range of forcing
frequencies (10−1–101 rad/s) in tissue samples revealed that
the frequency dependence of rheological behavior represents a
weak power law relationship over a wide range of frequencies
(G′,G′′ ∝ ωα). For example, Fabry [65] reported that a weak
power law relationship held over a range of frequencies
(10−2–103 Hz) in muscle cells. The storage modulus G′
increases with increasing frequency according to a weak power
law (G′ ∝ ωα) with a power law exponent of approximately
0.125 (α = 0.125 = 1

8 ). The loss modulus G′′ also follows
the power law (G′′ ∝ ωα) with a power law exponent of
approximately 0.125 (α = 0.125 = 1

8 ). Fractional calculus
provides a natural framework for describing such weak power
law relationships [63].

In contrast, mechanical models using ordinary differential
equations have long been used, and their qualitative behavior
is not representative of the actual behavior of materials. The
characteristics of the frequency dependencies could be similar;
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however, the slopes of the experimental results do not fit those
of the theoretical curves [43]. The shortcomings of ordinary
differential models can be recognized by comparing the fre-
quency curves exhibited by a material with those predicted by
the models. The weak power law behavior cannot be accounted
for by standard viscoelastic models characterized by ordinary
differential equations [63]: (i) storage modulus G′ should
remain constant (G′ = const) at low frequencies, which would
indicate elastic behavior in ordinary differential equations and
(ii) loss storage modulus G′′ increases and approaches a power
law exponent of 1 (G′′ ∝ ω) at high frequencies, indicating
viscous behavior in ordinary differential equations.

2. Creep test

Recent studies also indicated that the time domain data of
tissues are well represented by a simple empirical equation
involving a power law in time [x(t) ∝ tα]. Some studies also
reported that creep responses represent power law stress to
a step input in the time domain. Fung [1] demonstrated in
his theory that a distribution of time constants proportional to
power of time over a finite range of time constants is appro-
priate for many tissues [54]. Djordjevic and co-workers [63]
reported that a parallel combination of a fractional calculus
(springpot) and a dashpot properly predict the measured values
for a rheological model of cultured smooth muscle cells [55].
As above, fractional calculus provides a natural framework for
describing such power laws in the time domain [63].

In contrast, mechanical models using ordinary differential
equations lack consistency between their qualitative behavior
and the real behavior of material curves. Although the charac-
teristics of time dependencies could be similar, the slopes of
experimental results do not fit those of the theoretical curves.
The shortcomings of ordinary differential models can be
recognized by comparing the time domain curves observed for
a material with those predicted by the models [43]. The power
law behavior cannot be accounted for by standard viscoelastic
models characterized using ordinary differential equations,
such that (i) strain should remain constant at sufficient elapsed
times [x(t) → const at t → ∞], which would indicate elastic
behavior in ordinary differential equations; and (ii) exponential
increases in transient state [x(t) = xo(1 − et/T )], which would
indicate viscous behavior in ordinary differential equations.

C. Fractal structure and the fractional ladder model

Theoretical aspects of the fractional calculus of soft biologi-
cal tissue are partially explained with fractal geometry [66] and
holonic systems [67] in nature. Currently, fractal geometry and
fractional calculus are applied to phenomenological theories
for complex systems [41]. Soft biological tissues also have
fractal structures, such as in Fig. 7. A fractal is a natural
phenomenon or a mathematical set that exhibits a repeating
pattern displayed at every scale. For example, Schiessel and
Blumen [45], Schiessel et al. [68], and Heymans and Bauwens
[52] have demonstrated that fractional equations, such as
(1a), can be realized physically through the fractal structure
of hierarchical arrangements of springs and dashpots like
ladders [69]. Figure 7(a) displays an infinite number of thin
elastic membranes and viscous compartments. Figure 7(b) is
a magnified region of Fig. 7(a), and Fig. 7(c) is a magnified

FIG. 7. Fractal structure of soft biological tissues [70]. A repeat-
ing pattern with thin elastic membranes and viscous components
is displayed at every scale. Panel (a) displays an infinite number
of thin elastic membranes and viscous compartments. Panel (b) is
a magnified view of panel (a), and panel (c) is a magnified view
of panel (b), thus showing the self-similar layered structure. By
allowing the number of structural components to extend indefinitely,
the self-similarity of biological media is revealed.

region of Fig. 7(b), showing the self-similar layered structure.
By allowing the number of structural components to extend
indefinitely, the self-similarity of biological media is revealed.
This topology is also depicted in Fig. 7, where the alternating
elastic and viscous components are visualized as a self-similar
hexagonal packing of spheres within spheres [70]. A related
work [70] describes the details of the following layered fractal
models of soft biological tissues based on the schema shown in
Figs. 7 and 8. In order to capture these fractal components with
the elastic membranes and viscous saline of biological tissue,
a fractal ladder of springs and dashpots in Fig. 9 is introduced
[70]. A paper [70] described the properties of the model shown
in Fig. 9(a), which presents the fractional derivative term
with derivative order 1

2 . Similar fractal tree networks were
considered [70] to model other orders of fractional calculus.

The fractal ladder model is defined with self-recursive
properties, which result from the fractal structure, to explain
the linear fractional model. In other words, the fractal ladder
model is constructed with the same fractal ladder model as in
Fig. 8. For example, the fractional order term with (α = 1

2 ) is
derived using spring term (α = 0) and viscous term (α = 1)
from the self-similar properties. The properties P (s) of overall
part (a) are the same as those for the dotted area (b) in Fig. 8;
in other words, the properties of part (b) are also P (s). Then,
the following equation holds from the self-similar properties:

P (s) = 1
1
k

+ 1
P (s)+cs

. (23)

Here, P (s) is the Laplace function of overall properties. The
following equation (24) is derived from the expansion of (23):

P (s)2 + csP (s) − kcs = 0. (24)

The following equation (25) is obtained by solving Eq. (24):

P (s) = −cs +
√

(cs)2 + 4kcs

2

= k
− c

k
s +

√
c
k
s
(

c
k
s + 4

)
2

. (25)
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FIG. 8. The fractal ladder model. The model is defined with self-
recursive properties, which result from the fractal structure, to explain
the linear fractional model. The fractal ladder model is constructed
with the same fractal ladder model. This figure explains that the
fractional order term with (α = 1

2 ) is derived using spring term (α =
0) and viscous term (α = 1) from the self-similar properties. The
properties P (s) of overall part (a) are the same as those for the dotted
area (b) and also (c); in other words, the properties of parts (b) and
(c) are also P (s).

For (cs)/k � 1, the binomial approximation is applied,
yielding the law frequency approximation

P (s) =
√

kcs1/2. (26)

Thus, P (s) is a fractional order term with α= 1
2 . Generally, a

fractional order term with α=n/2m{(0<α< 1
2 ) ∧ (n,m∈N )}

is generated in the same manner through the iterated calcu-
lation of the fractal ladder model using the fractional term.
Here, the fractal ladder model, which was constructed using
the fractional derivative term with αk and αc, is considered.
The properties of overall part P ′(s) are the same as those for
the dotted area. Then,

P ′(s) = 1
1

pks
αk

+ 1
P ′(s)+pcsαc

. (27)

The following equation is obtained by solving the above
equation:

P ′(s)2 + pcs
αcP ′(s) − pkpcs

αk+αc = 0. (28)

The following equation is obtained by solving the above
equation:

P ′(s) = −pcs
αc +

√
(pcsαc )2 + 4pkpcsαk+αc

2

= pk

− pc

pk
sαc +

√
pc

pk
sαc

(
pc

pk
sαc + 4sαk

)
2

. (29)

For pcs
αc/pk � 1, the binomial approximation is applied,

yielding the law frequency approximation

P ′(s) = √
pkpcs

(αk+αc)/2. (30)

The 1
4 - and 1

8 -order fractional terms (springpots) are derived
from the above calculation using (αk,αc) = (0, 1

2 ) and (0, 1
4 ),

respectively.
These recursive ladder expansions provide various deriva-

tive order parameters. Specifically, the ladder model can also
be considered as a fundamental mechanical component of
the fractional derivative term, allowing more complex fractal
networks, or recursive ladders, to be constructed.

For instance, consider a recursive ladder model constructed
by replacing the viscous damper in Fig. 9(a) with a fractal
ladder, producing the arrangement shown in Fig. 9(b) with
derivative order α = 1

4 . Similarly, a recursive ladder may be
constructed by replacing the springs in Fig. 9(b) with a fractal
ladder, producing the arrangement shown in Fig. 9(c) with
derivative order α = 1

8 .
Here, we introduced the fractal structure of soft biological

tissue and the relationship between fractal structure and frac-
tional calculus geometrically. The calculations in this section
(23)–(30) also reveal that soft biological tissue has holonic
properties, where a holon is something that is simultaneously
a whole and a part [67]. For example, the overall finite ladder
model shown in Fig. 8(a) functions first as a whole, while the
finite ladder model shown in Fig. 8(b) functions first as a part.
Thus, the same finite ladder model acts as a holon: both a
whole and a part.

D. Main contribution

From the perspective of fractional calculus, the main
contribution of this study is to propose integration with
fractional calculus and nonlinear equations, in other words,
utilizing the nonlinearity of fractional calculus, a prefactor
that switches smoothly from linear line to exponential curve, to
describe soft biological tissue. The history of using fractional
dynamics in the study of viscoelastic materials is long
standing; however, the nonlinearity of the fractional term for
soft biological tissue has not yet been considered in related
studies.

The measured exponent α, close to 1
8 , suggests that the liver

tissue is mechanically equivalent to a cubed fractal structure
(fractal of a fractal of a fractal) whose basic elements are
elastic and viscous elements (refer to Fig. 9). The structure of
soft biological tissue is generally and reasonably considered as
a simple fractal structure with elastic membrane and viscous
fluid, as shown in Fig. 7. The experimental results with cubed
fractal structure raise the issue of the actual structure of soft
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FIG. 9. Fractal ladder of springs and dashpots in order to capture these fractal components with the elastic membranes and viscous saline
of biological tissue. Fractal tree networks were considered to model fractional calculus [orders α of 1

2 , 1
4 , and 1

8 are described in (a), (b), and
(c), respectively]. These recursive ladder expansions provide various derivative order parameters of a springpot model (d). Specifically, the
ladder model can also be considered as a fundamental mechanical component of the fractional derivative term, allowing more complicated
fractal networks, or recursive ladders, to be constructed. The parameter α (derivative order and also power law exponent) was approximately
1
8 (= 0.125) according to the experimental results of the dynamic viscoelastic tests in Figs. 3 and 4. This result suggests that liver tissue has a
complex fractal structure such as in (c), where the liver tissue is mechanically equivalent to a cubed fractal structure (fractal of a fractal of a
fractal) whose basic elements are elastic and viscous elements.

biological tissue; how it could be related to a cubed fractal
structure remains obscure.

The fractional model with a single term is most suitable
for the identification of biorheological properties, while many
previous studies also have proposed serial and/or parallel
arrangements of ordinary order models and fractional order
models (such as a fractional generalized Voigt model with
a fractional term). The single fractional derivative term has
the strong advantage of high model accuracy, although the
frequency range was relatively low in this study, and the power
law relationship is suitable for parameter identification, as
described in Secs. IV F, IV G, and IV H.

E. Exponential nonlinearity

Figure 6 and Eq. (19b) show that stress on soft biological
tissue increases exponentially with strain. Exponential trends
are generally known in fields such as economics and in natural
evolutionary processes. For example, value grows exponen-
tially with time, technology has advanced at an exponential
rate [71] (exponential growth of computing power is known
as Moore’s law), market price in inflation shows exponential
growth [72], and population growth (such as Malthusian
Theory of Population) is exponential. The experimental results
of stress and exponential models imply that the behaviors in
the stress-strain relationship may have similar mathematical
and physical structures, although the variable is not time but
strain. In this theory, the exponential growth evolves due to
a linear positive feedback mechanism, such as Eq. (31b); an

upward change in stress induces further increases in stress
rather than just incremental additions:⎧⎪⎪⎨

⎪⎪⎩
dαϕ

dtα
= f

∂2ϕ

∂x2
= 0

{−xb < x < xb}, (31a)

⎧⎪⎪⎨
⎪⎪⎩

dαϕ

dtα
= f

∂2ϕ

∂x2
=

(
1

xb

)2

ϕ

{x > xb} ∨ {x < −xb}, (31b)

where ϕ is the intermediate variable between the upper
and lower equations. We introduce a second-order partial
differential equation here because of the negative and positive
symmetry properties of the stress-strain relationship, as shown
in Fig. 10 and Eq. (32). The solution for the second-order
partial differential equation is as follows:

− Gxbe
− x+xb

xb = f {x < −xb}, (32a)

Gx = f {−xb < x < xb}, (32b)

Gxbe
x−xb

xb = f {x > xb}. (32c)

Here, the solution for the first-order partial differential
equation only represents positive or negative exponential stress
changes.

The smoothness of a fundamental mathematical function
largely affects the robustness of identification, inverse analysis,
structure analysis in computer simulations, and optimization
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FIG. 10. Negative and positive symmetry property of stress-strain
relationship to introduce the second-order partial differential equation
(in the case of G = 1000 and xb = 0.1). The solution of the first-order
partial differential equation only represents positive or negative
exponential stress changes. The solution of the second-order partial
differential equation represents positive and negative exponential
stress changes, such as those shown in this figure.

using structure analysis. In particular, the smoothness at a
point where the mathematical function changes (specifically,
x = xb, − xb) is important. Differentiability class is generally
used in the classification of functions according to smoothness,
more specifically, the properties of their derivatives. The dif-
ferentiability class of our nonlinear model, between equations
such as (19a) and (19b), (32a) and (32b), and (32b) and (32c),
is C1 at x = xb, −xb; this means curves are continuous and
differentiable at x = xb, −xb. In other words, curves are
joined and their first derivatives are continuous at x = xb,
−xb. Thus, the smoothness of the function in our nonlinear
model is maintained (the differentiability class is C1) when
compared with linear models. The mathematical process to
explain the connectivity is shown in Appendix E. These smooth
characteristics are an advantage of our model because the
robustness of calculations in the boundary between linear and
nonlinear characteristics is high.

We can estimate the origin of strain from data in the
nonlinear range due to the constraint condition of parame-
ters described in Eq. (21) because of the properties of an
exponential function. The subtangent, which is a geometric
term meaning certain line segments defined using the line
tangent to a curve at a given point and the coordinate axes, is
constant in an exponential function. Moreover, the value of the
subtangent is xb in our model. The subtangent can be estimated
using the tangent (Gn) of the semilog graph of the stress-strain
relationship: xb = 1

Gn
(refer to Fig. 10). This is an important

characteristic because the zero strain point of soft biological
tissue is generally difficult to define for the following reasons:
(i) the zero strain point cannot be defined from linear data;
(ii) the deformation of soft biological tissue is relatively large
and is markedly affected by gravitational force; and (iii) the
viscoelasticity of soft biological tissue makes measuring the
zero strain point difficult. We can estimate the zero point from
the value of xb via an exponential function with Gn in the
nonlinear range.

F. Time and frequency scale invariance

One attribute of power laws is their scale invariance. Scaling
the argument by a constant factor causes only a proportionate
scaling of the function itself. Scaling by a constant simply
multiplies the original power law relationship by the constant
(parameter α in this article). Thus, it follows that all power
laws with a particular scaling exponent are equivalent up to
constant factors, as each is simply a rescaled version of the
others. There is no internal time scale that could typify the
dynamics, and no time characteristics are evident.

Time scale invariance during creep tests can be described
based on the above discussion, and creep response is not tied
to any time scale; thus, it may be regarded as being scale
free. More specifically, as explained in this article, obtaining
numerous time series data from creep tests is not necessary
due to invariance in the time scale property. Only two data
points (t1,x1) and (t2,x2) at any time point are sufficient to
identify the parameter of Eq. (18): α = log(x2/x1)

log(t2/t1) , xc = x1
(t1/tr )α

and G = fc

xc�(1+α) . Naturally, this is only a theory pertaining
to identical conditions, and many data points are preferable to
enhance the robustness of measurements.

Frequency scale invariance during dynamic viscoelastic
tests can be described in the same manner. There are no internal
frequency scales that could typify the dynamics, and no
characteristic frequency was evident. Mechanical impedance
responses are not tied to any frequency scale; thus, they may
be regarded as being scale free. More specifically, obtaining
numerous frequency series data from dynamic viscoelastic
tests is not necessary due to invariance in frequency scales.
Only two data points (ω1,J1) and (ω2,J2) at any frequency
point are sufficient to robustly identify the parameter of
Eq. (14): α = − log(J2/J1)

log(ω2/ω1) and Jo = 1/G = J1

(ω1/ωr )−α . As for
time scale invariance, this is only a theory pertaining to
identical conditions, and many data points are preferable to
enhance the robustness of measurements.

G. Strain scale invariance

Strain scale invariance, while nonlinearity is not a power
law, also holds at the linear area and nonlinear scale. The
relationship between stress and strain in the linear range
exhibits strain scale invariance because of linearity. The
relationship between the logarithms of stress and strain
in the nonlinear range also exhibits strain scale invariance
because of the exponential law dependence. This scale invari-
ance produces a strong relationship for identifying parameters.
Theoretically speaking, a two-point data set containing only
(xc1,fc1) and (xc2,fc2) in the linear range is sufficient to
identify linear stiffness G (slope of stress and strain in the linear
space): G = fc2−fc1

xc2−xc1
. Moreover, zero point (xc1,fc1) = (0,0)

can be included to calculate this process: G = fc2

xc2
. In addition,

a two-point data set in the nonlinear range is sufficient to
identify nonlinear stiffness Gn (slope of stress and strain in the
semilog space): Gn = ln(fc2/fc1)

xc2−xc1
. Of course, the aforementioned

numbers for this data set are theoretical for identical situations,
and many data points are preferable to enhance measurement
robustness.

In addition, strict classifications between the linear and non-
linear ranges should not be necessary because of the smooth
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connectivity between the linear and nonlinear properties of
soft biological tissues (Fig. 6). There is an overlapping area
where both linearity and exponential law dependence hold.
Linearity holds to a certain degree beyond the boundary strain
xb. Furthermore, the exponential law dependence holds to a
certain degree before the boundary strain xb. In other words,
the data set in the overlapped area includes information from
both the linear and nonlinear ranges. These properties, which
are common to soft biological tissues and the FDEN model,
are useful for identifying parameters, and it is possible to
identify both linear and nonlinear stiffness using only data
sets derived from the overlapping area: both G = fc2−fc1

xc2−xc1

and Gn = ln(fc2/fc1)
xc2−xc1

. However, further research is required to
confirm this hypothesis.

H. Identification algorithm

According to the simple model equation, its power law
properties, and its exponential law dependence, parameter
identification in the FDEN model is simpler when compared
to other reported models. The small number of parameters
in the FDEN model contributes to a simple algorithm and
parameter identification. These characteristics may also be
effective in inverse analysis of computer structural simulations
of tissue and organ deformation. For example, the parameter
identification methods in this article are basic, with only
LSM and EKF being used. The parameters of the model
in the creep test can be identified using LSM. EKF was
used to identify the parameter of the dynamic viscoelastic
tests, mechanical impedance, because Eqs. (11a) and (11b)
are nonlinear simultaneous equations. EKF was also used
to identify the parameter of nonlinear models between the
stress-strain relationship because Eqs. (19a) and (22b) are
nonlinear simultaneous equations.

The parameters of the model in the Bode diagram were iden-
tified via parameter identification of mechanical impedance
in this article. It should be noted that LSM is sufficient to
identify the values of α and G in (14) using the data set of
compliance (gain) J . The correlation between model (15)
and the experimental data of the phase φ should be carefully
checked in this case, as phase data can affect identification of
the parameters.

I. Parameter variation

Tables I and II list the model accuracy evaluation and
fundamental statistics of model parameters. Statistical analysis
of the samples used in this study revealed that the maximum
values of α, G, and Gn were approximately 1, 4, and 3 times the
minimum values, respectively. These results indicate that the
linear stiffness G and the nonlinear stiffness Gn (also, xb as an
independent parameter) have a large degree of variation when
compared with the ratio of viscoelasticity α. The one limitation
of this study is that the number of samples was insufficient to
statistically analyze the variations in each parameter. We plan
to study other tissue types in order to compare and discriminate
between tissues using these static and variable parameters
(e.g., [37]).

J. Limitations

The main limitation of this study is that we only measured
and evaluated liver samples. Similar evaluations must be
performed with other tissues in order to clarify the univer-
sality of the FDEN model. This will allow us to clarify
the applicability of our model to various tissue types. We
believe that the FDEN model can represent other biological
tissues consisting of a single tissue type, excluding nonsoft
tissues and tissue exhibiting plasticity. Our previous nonlinear
viscoelastic model with four parameters [32–35] has already
been partially evaluated using breast tissues (fibroglandular
tissue, fat, muscle) [36,37]. We plan to evaluate the FDEN
model using other tissues in future studies.

The theoretical limitation of this article is in the derivation
of the nonlinear equation: we assume power law dependence
holds in the single creep test. We will research theoretical
discussion of this point in future work (for example, the
relationship with yield strain in [73]) because this article only
covers the feasibility of power law approximation in the creep
test. The coefficient of determination R2 between our model
and the experimental data from the time series of displacement
in all samples at all stresses exceeded 99%, as shown in
Table I. We also describe the feasibility of the approximation
mathematically in Appendix D.

Another limitation of this study is the lack of stress
relaxation and indentation tests. These are basic tests to
evaluate viscoelastic properties and stress-strain nonlinearity,
respectively. Parameter identification in the FDEN model
using these tests is described in Appendixes H and I.
Stress relaxation analysis using fractional viscoelasticity was
introduced in related studies [50,51], as well as in our work on
human stretch applications [39]. Moreover, indentation (in the
case of needle insertion and palpation for medical robotics)
using the nonlinear model has been introduced in related
studies [32–37].

V. CONCLUSION

We proposed a simple empirical model using fractional
dynamics and exponential nonlinearity (FDEN) to identify
the rheological properties of soft biological tissue. The
model is derived from detailed material measurements using
samples isolated from porcine liver. We conducted dynamic
viscoelastic tests and creep tests on liver samples using a
rheometer. The experimental results indicated that biological
tissue has specific properties, such as (i) power law increase
in the storage elastic modulus and the loss elastic modulus
with the same slope; (ii) power law compliance (gain)
decrease and constant phase delay in the frequency domain
over two decades; (iii) power law dependence between time
and strain relationships under constant force; and (iv) linear
and exponential dependence that switches smoothly between
stress-strain relationships. Our simple FDEN model uses
only three dependent parameters and represents the specific
properties of soft biological tissue.

ACKNOWLEDGMENTS

This work was supported in part by the Japan Science and
Technology Agency (JST) Precursory Research for Embryonic

022418-14



SIMPLE EMPIRICAL MODEL FOR IDENTIFYING . . . PHYSICAL REVIEW E 95, 022418 (2017)

Science and Technology (PRESTO), Japan; in part by the
Global Centers of Excellence (GCOE) Program and Grants
for Excellent Graduate Schools, Japan; and in part by a
Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology (MEXT)
(Grant No. 25350577), Japan. We thank an anonymous referee
for his/her special effort to help us improve the presentation of
the manuscript.

APPENDIX A: REFERENCES TO AUTHORS’ OWN WORK

We have conducted studies aimed at developing a rheologi-
cal model for soft biological tissues with these characteristics,
using simple equations and few parameters, that is highly
correlated with experimental data [32–39]. The scope of these
articles is only to propose a model that is highly correlated
with experimental data. The rheological model in this study
relies on experimental data obtained from biological tissues.
We first give the model equations (A1a) and (A1b):

dα

dtα
(Gx) = f {x < xo}, (A1a)

dα

dtα
{G[1 + a(x − xo)2]x} = f {x > xo}, (A1b)

where G is the viscoelastic modulus in the linear region, a

is the coefficient determining the change in stiffness in the
nonlinear range, and xo is the threshold of strain between
linearity and nonlinearity. The model combines a fractional
differential equation with a polynomial expression for stress-
strain nonlinearity, which consists of four parameters (G, α,
a, xo).

The model with (A1a) and (A1b) is derived from compre-
hensive material data obtained from in vitro measurements of
porcine liver [32–35]. The model with (A1a) and (A1b) was
also validated using in vitro breast tissue (fibroglandular tissue,
fat, muscle) [36,37]. The model (A1a) was partially evaluated
in muscle tissue in the linear range [38,39].

The limitations of the above model, proposed by the author
in previous studies, compared with the FDEN model, proposed
in this article, are as follows. The two parameters (a and xo) in
the model, both parameters representing nonlinear properties,
correlate and interfere with one another. In addition, the
parameter identification from the experimental data of these
two parameters (a and xo) is complex; specifically, global
searching and optimization are required.

The physical law was not explicitly introduced in these
articles, while this article explicitly described the laws in
soft biological tissue, such as the power law in the time and
frequency domains and the exponential law in the stress-strain
relationship.

This article also defines a simple identification method fully
using the laws. The relationship between fractal geometry
(also, holonic systems) and fractional calculus is newly
introduced in this article. Moreover, this article newly found
that the parameter α (derivative order and also power law
exponent) was approximately 1

8 (=0.125) according to the
experimental results of the dynamic viscoelastic tests, as
shown in Figs. 3 and 4. This suggests that liver tissue has
a complex fractal structure, such as in Fig. 9(c).

APPENDIX B: CALCULATION OF SHEAR
STRESS AND STRAIN

In the rheology community, the geometry used here, which
comprises two parallel plates in mutual rotation (Fig. 2), is
called a plate-plate rheometer. The deformation mode inside it
is simple shear. The amount of shear is not uniform throughout
the sample since it is proportional to the local distance to the
axis of rotation. Although the global action on the rheometer is
torsion, the usual denominations for strain and stress are shear
strain and shear stress.

Torque T applied to the sample, and the torsional angle θ

of the sample, were measured using a plate-plate rheometer
(AR-G2 or AR550; TA Instruments, New Castle, DE). From
these measurements, the conventional shear strain x and
conventional shear stress f were calculated using Eqs. (B1a)
and (B1b), respectively:

f = 1

2

2

πR3
T , (B1a)

x = 1

2

R

d
θ, (B1b)

where d and R are the length and radius of the cylinder
(see Fig. 2), respectively. The mean stress and strain on the
sample (half values of outer stress and strain on the sample)
are referred to in the experimental results because they are
adequate for consideration of the nonlinear properties. R was
20 mm and d was 5 mm in the experimental setup of this study.

Equations (B1a) and (B1b) are valid only when there is
no slip between the sample and the plates. Thus, sandpaper
was attached to the top plate and the measurement table to
prevent sliding. In a rheometer, correction of the instrument
inertia is needed to measure the sample properties. The torque
output of the motor comprises the torque required to overcome
the instrument inertia and the torque deforming the sample.
The torque measurement is influenced by the torque required
to accelerate and decelerate the instrument, the oscillating
motor shaft and the geometry attached to the shaft. The
rheometer used in this study provides an inertia correction
function, in which the rheometer collects the inertia of the
instrument prior to each measurement as a setup calibration
and calculates only stress loaded on the sample using this
collected instrument inertia [74]. The effects of instrument
inertia become negligible via this correction process in the
range of the experimental conditions presented in this article.
The instrument inertia correction does not work accurately in
some conditions, such as high frequency measurements.

APPENDIX C: CALCULATION OF DYNAMIC
VISCOELASTIC TEST

A dynamic viscoelastic test is carried out to measure
the data to determine sample properties that depend on the
frequency, e.g., compliance (or gain) J , phase φ, storage elastic
modulus G′, and loss elastic modulus G′′. If a sinusoidal stress
f (t) = fosin(ωt) is loaded on the sample, a sinusoidal strain
x(t) = x0sin(ωt + φ) that is in phase with the applied strain
will result. The method of performing a dynamic viscoelastic
test is to apply a sinusoidal strain with amplitude xo to a
sample, over a range of frequencies, and to monitor the strain
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with amplitude fo and phase angle φ. The properties of the
material at a certain angular frequency ω are obtained using
the amplitude of the stress f0, the amplitude of the strain xo,
and phase angle φ. Thus, we calculate each value using the
following equations:

G
′ = fo

xo

cos(φ), (C1a)

G
′′ = fo

xo

sin(φ), (C1b)

J = xo

fo

. (C1c)

The data sets of J , φ, G′, and G′′ are collected at several
input angular frequencies ω in the dynamic viscoelastic test.
The data sets of (G′, G′′) at several angular frequencies ω are
used to understand mechanical impedance G∗ in Sec. III A.
The data sets of (J , φ) at several angular frequencies ω are
used to make the Bode diagram in Sec. III B.

APPENDIX D: POWER LAW IN CREEP
TEST WITH HIGH STRESS

The time series data of the creep test exhibited a power
law as described in Sec. III C. Equations (1a) and (16) well fit
the experimental data at several stress values, and the quantity
xc is well identified. In Sec. III D, the exponential nonlinear
model of soft biological tissue is derived from the relationship
between xc and fc from a series of creep tests under several
applied stresses, assuming that Eqs. (1a) and (16) are valid for
a single creep test. On the other hand, Eqs. (1a) and (16) and
the quantity xc are theoretically defined only in the linear range
at a small strain x < xb, but are not defined in the nonlinear
range at large deformations x > xb in the FDEN model defined
by Eqs. (1a) and (16).

This appendix explains that the power law and Eqs. (1a)
and (16) for a single creep test are still useful to grasp the
quantity xc in the nonlinear range x > xb, while the quantity
α becomes unmeasurable in the nonlinear range x > xb.

The following equation (D1) is equal to (1b); the range is
x > xb in all of the following calculations:

tαr
dα

dtα

(
Gxbe

x−xb
xb

) = f. (D1)

Specifically, Eq. (D1) becomes (D2) if (D1) is solved for
the conditions of the creep test. Here, the applied stress is
constant fc:

e
x−xb

xb = fc

G�(1 + α)

1

xb

(
t

tr

)α

. (D2)

Equation (D3) is derived from (D2) through a division
process using reference values xbc and tb in (D4) at x = xb

for dimensionless quantities:

e
x−xb

xb = xc

xb

(
t

tr

)α

, (D3a)

x − xb

xb

= ln

[
xc

xbc

(
t

tb

)α]
, (D3b)

where ln(. . .) is the natural logarithm function. The reference
values have the following relationship: the reference values
are at the boundary position between linear and nonlinear
properties in this case,

xbc = xb

(
tr

tb

)α

. (D4)

The strain x is defined as follows:

x(t) = xb

{
ln

[
xc

xbc

(
t

tb

)α]
+ 1

}

= xb

{
ln

[(
t

tb

)α]
+

[
ln

(
xc

xbc

)
+ 1

]}

= xb

{
ln

[(
t

tb

)α]
+ κ

}
, (D5)

where κ is defined as follows:

κ = ln(xc/xbc) + 1. (D6)

Again, the strain x is defined as follows from (D5):

x(t) = xbκ

{
1

κ
ln

[(
t

tb

)α]
+ 1

}

= xbκ

{
ln

[(
t

tb

) α
κ
]

+ 1

}

= xbκ

{
ln

[(
t

tb

)α′]
+ 1

}
, (D7)

where α′ is defined as follows:

α′ = α

κ
= α

ln(xc/xbc) + 1
. (D8)

Equation (D9) is derived from the log-log transformation
of (D7):

log

(
x

xb

)
= log

{
ln

[(
t

tb

)α′]
+ 1

}
+ log(κ)

= log(t ′ + 1) + log(κ), (D9)

where log(. . .) is the common logarithm. t ′ is defined as t ′ =
α′ ln(t/tb). The first term on the right side in Eq. (D7) becomes
t ′ by approximation of ln(1 + t ′) = t ′ + O(t ′2) around t ′ =
0 using a Taylor series. The condition t ′ � 1 is fulfilled in
the experimental and theoretical conditions presented in this
article. This condition should be checked in the case of a creep
test with larger stress or longer term:

log(t ′ + 1) = 1

log10e
ln(1 + t ′)

≈ 1

log10e
t ′ = 1

log10e
ln

[(
t

tb

)α′]

= log

[(
t

tb

)α′]
. (D10)
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Then, Eqs. (D11) and (D12) are derived using (D9) and
(D10):

log

(
x

xb

)
= α′ log

(
t

tb

)
+ log(κ), (D11)

log

(
x

xc
′

)
= α′ log

(
t

tb

)
, (D12)

where x ′
c is defined as follows:

x ′
c = κxb = xb[ln(xc/xbc) + 1]. (D13)

Thus, the power law and Eq. (18) are still useful in the nonlinear
range of a single creep test. The values of x ′

c and α′ are
identified through parameter identification of the experimental
data, the same as in the experiment with the linear range. x ′

c

is also fulfilled following Eq. (D14) through the expansion
of Eq. (D13). Equation (D14) represents time-independent
properties for the exponential nonlinear model. Thus, the data
from a creep test with high stress, which results in large strain
over xb, are also appropriate for identifying the nonlinear
parameters of the FDEN model (D1):

e
xc

′−xb
xb = xc

xbc

. (D14)

On the other hand, the data from a creep test with high
stress, which results in large strain over xb, are not appropriate
for identifying the parameter α of the FDEN model (1):
α′ = α/[ln (xc/xbc) + 1] is identified through the data fitting
explained in Sec. III D and Appendix G. Typical experimental
results for the relationship between fc and the α in a series of
creep tests are shown in Fig. 5. The identified α with low stress
is near 1

8 , an appropriate value from the dynamic viscoelastic
test, while the identified α with high stress decreases according
to fc.

APPENDIX E: PARAMETER DEPENDENCY

We modeled the nonlinear properties of soft biological
tissue based on these results and considerations, as shown in
Eqs. (E1a) and (E1b). The following equations (E1a) and (E1b)
describe the static equation of the FDEN model, meaning, in
the case of α = 0 and tr = 1, assuming that Eqs. (1a) and (2)
can hold true in a more general situation for position x and
force f , as shown in Sec. III D The equations are the same as
Eqs. (19a) and (20):

Gx = f {x < xb}, (E1a)

Gie
Gnx = f {x > xb}, (E1b)

where x is strain and f is stress. G is linear stiffness, xb is the
boundary strain, Gn is nonlinear stiffness, Gi is the dependent
parameter, and e is Napier’s constant. Each parameter should
fulfill the condition that the exponential curve (E1b) be tangent
to the straight line (E1a) at x = xb. Equations (E2a) and (E2b)
are derived from Eqs. (E1a) and (E1b):

df

dx
= G {x < xb}, (E2a)

df

dx
= Gn(Gi e

Gn x) {x > xb}. (E2b)

FIG. 11. The stress-strain relationship with several Gn in our
model to clarify the meaning of the parameter constraint between Gn

and xb. G was set to 1000 Pa. The line shows stress-strain relationship.
The plot shows boundary point.

The continuity of f at xb may thus be

Gie
Gnxb = Gxb. (E3)

Moreover, the continuity of df/dx at xb should be

Gn(Gie
Gnxb ) = G. (E4)

By plugging the left-hand side of Eq. (E3) into (E4),

Gnxb = 1. (E5)

Then,

xb = 1

Gn

. (E6)

By plugging (E6) into (E4),

GnGie = G. (E7)

Then,

Gi = G

Gne
. (E8)

Each parameter may then fulfill the above relationship,
particularly (E6) and (E8). The stress-strain relationship with
several Gn in our model is described in Fig. 11 to represent
the meaning of the parameter constraint between Gn and
xb. Equations (1b) and (19b) are derived by pulling the
dependency (E6) and (E8) into Eqs. (2) and (20), respectively.

APPENDIX F: EXTENDED KALMAN FILTER (EKF)
FOR DYNAMIC VISCOELASTIC TEST

This appendix shows the methodology used to identify the
parameter described in Sec. III A. The model for the dynamic
viscoelastic test was as follows from Eqs. (11a) and (11b):

log

[
G′(ω)

G′(ωr )

]
= α log

(
ω

ωr

)
, (F1a)

log

[
G′′(ω)

G′′(ωr )

]
= α log

(
ω

ωr

)
, (F1b)

G′(ωr ) = G cos

(
π

2
α

)
, (F1c)

G′′(ωr ) = G sin

(
π

2
α

)
, (F1d)
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where G′, G′′, and ω are variables; and α and G are
parameters.

We obtained the set of G′ and G′′ at each value for angular
frequency ω from the experiment. We identified the parameter
from these data using EKF for system identification (Ref. [75]).
The system identification in EKF is generally described as
follows:

θk+1 = f (θk,ψk), (F2a)

yk = g(θk,ζk), (F2b)

where k = 0,1,2, . . . represents the discrete iteration index
(number of data sets in this case), θ is the n-dimensional
state vector, ψ is the n-dimensional system noise vector, y is
the p-dimensional observation vector, ζ is the p-dimensional
observation noise vector, and f (...) and g(...) are the nonlinear
vector functions. In the theory of state space, (F2a) and (F2b)
are known as the system model (or state model) and the
observation model, respectively.

The parameter vector is regarded as a state vector in EKF
for system identification. Where the state vector (parameter
vector) θ is a constant vector and the observation noise vector
ζ is a Gaussian white noise with zero mean, (F2a) and (F2b)
are represented as

θk+1 = Iθk, (F3a)

yk = h(θk) + ζk, (F3b)

where I is the identity matrix, and h(...) is the nonlinear
vector function. In the case of system identification for the
dynamic viscoelastic test, the state vector (parameter vector)
θ , observation vector y, and the nonlinear vector function h(...)
are particularly regarded as follows in the case of ωr = 1:

θ =
[
α

G

]
, (F4a)

y =
[

log G′
log G′′

]
, (F4b)

h(θ ) =
{

α log ω + log
[
G cos

(
π
2 α

)]
α log ω + log

[
G sin

(
π
2 α

)]
}

. (F4c)

The EKF algorithm [75] using (F4a)–(F4c) was applied to
identify the parameter from the data set. It was not necessary
to set initial values for each parameter θ0, meaning that θ0 was
a zero vector.

APPENDIX G: EXTENDED KALMAN FILTER (EKF)
FOR NONLINEARITY MEASUREMENT

This appendix shows the methodology used to identify
the parameter described in Sec. III D. The model for the
nonlinearity measurement is as follows from Eqs. (19a)
and (22b):

Gxc = fc

{
xc <

1

Gn

}
, (G1a)

Gnxc = ln

(
Gne

G
f

) {
xc >

1

Gn

}
, (G1b)

where fc and xc are variables, G and Gn are parameters, and
e is Napier’s constant. We obtained the set of fc at each strain
xc from the experiment. We identified the parameter from
these series of data sets using EKF for system identification.
The algorithm to identify the parameter is the same as in
Appendix F, particularly Eqs. (F2a)–(F3b). In the case of
system identification for the nonlinearity measurement, the
state vector (parameter vector) θ , observation vector y, and
nonlinear vector function h(...) are regarded as follows:

θ =
[

G

Gn

]
, (G2a)

y =
[

fc

{
xc < 1

Gn

}
ln fc

{
xc > 1

Gn

}
]
, (G2b)

h(θ ) =
[

Gxc

{
xc < 1

Gn

}
Gnxc + ln

(
G

Gne

) {
xc > 1

Gn

}
]
. (G2c)

The EKF algorithm [75] using (G2a)–(G2c) was applied to
identify the parameter from the data set. Each data set affected a
single term of the vector, where the upper term for the vectors
was updated via low strain data, and the lower term for the
vectors was updated via high strain data. Initial values for
each parameter θ0 needed to be explicitly set in the case of the
nonlinearity measurement. Therefore, we first approximated
the parameters to set the initial values of each parameter θ0.
We used only low strain data (three data sets from minimum
strain) for approximation of the parameter G, while we used
only high strain data (three data sets from maximum strain)
for approximation of parameter Gn. These approximations of
the parameters can be identified using LSM: simple linear
regression of Eqs. (G1a) and (G1b).

APPENDIX H: RELAXATION TEST

A model equation of stress in relaxation tests can be
devised as follows. We assumed that Eq. (1a) is valid for a
relaxation test, while nonlinearity was evaluated by a series
of relaxation tests under several applied strains. Specifically,
Eq. (1a) becomes (H1a) if (1a) is solved for the conditions of
the relaxation test. Here, the applied strain is constant xc. Equa-
tion (H1b) is derived from the log-log transformation of (H1a)
through the transformation to dimensionless quantities (H1b):

f = Gxc

�(1 − α)

(
t

tr

)−α

= fc

(
t

tr

)−α

, (H1a)

log

(
f

fc

)
= log

(
t

tr

)−α

= −α log

(
t

tr

)
. (H1b)

Here, f is stress, t is time, xc is constant strain, G is linear
stiffness at each strain, and �(. . .) is the gamma function. fc

is the coefficient determining the stress value as a parameter,
which is defined as follows:

fc = Gxc

�(1 − α)
. (H2)

The LSM algorithm, linear regression, can be used to
identify the parameters of Eq. (H1b) for each sample. We
calculated the other independent parameter G via Eq. (H2).
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The nonlinear properties of samples can be investigated based
on a series of relaxation tests under several applied strains.
Specifically, nonlinearity measures the relationship between
the constant applied strain xc and the stress coefficient fc in
the series of relaxation tests under several strains.

APPENDIX I: INDENTATION TEST

A model equation for an indentation test, the reaction force
measurement during constant velocity strain change, can be
theoretically calculated as follows. It should be noted that the
sensitivity of parameter α from the steady state of reaction
force f is generally low in experiments with soft biological
tissue because the value of the derivative order α was 1

8 from the
experimental results presented in this article. Linear stiffness
G and nonlinear stiffness Gn can thus be identified from
the reaction force on an indentation test, when the value of
parameter α is roughly known. We assumed that Eqs. (1a)
and (2), the FDEN model, are valid for the indentation test.

We collected time series data for force f (t) on the conditions
of the indentation test. Here, the applied strain is x(t) = vot .
Equations (1a)–(2) become identical to static problems such
as (I1a)–(I1c) when the fractional integrated stress f ′ is
considered as follows:

Gx = f ′ {x < 1/Gn}, (I1a)

Gnx = ln

(
Gne

G
f ′

)
{x > 1/Gn}, (I1b)

f ′ = D(−α)f, (I1c)

where D(α) refers to αth-order derivative and D(−α) refers to
the αth-order integral. The numerical fractional integration,
which is necessary in the above calculation, is introduced in
various studies (e.g., [76]). Parameters (G and Gn) of Eqs. (I1a)
and (I1b) can be identified via the same method introduced in
Sec. III D and Appendix G, while we use fractional integrated
stress f ′ on behalf of stress f .
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(Birkhäuser, Basel, 2005), pp. 287–298.

[42] V. E. Tarasov, Int. J. Mod. Phys. B 27, 1330005 (2013).
[43] T. Pritz, J. Sound Vib. 195, 103 (1996).
[44] D. O. Craiem and R. L. Armentano, in Proceedings of the

Annual International Conference of the IEEE for Engineering
in Medicine and Biology Society (IEEE, Piscataway, NJ, 2006),
p. 1098.

[45] H. Schiessel and A. Blumen, Macromolecules 28, 4013 (1995).
[46] M. Caputo and F. Mainardi, Pure Appl. Geophys. 91, 134 (1971).
[47] M. Caputo and F. Mainardi, R. Nuovo Cimento 1, 161 (1971).
[48] M. Caputo, J. Acoust. Soc. Am. 56, 897 (1974).
[49] A. Schmidt and L. Gaul, Nonlinear Dyn. 29, 37 (2002).
[50] C. Friedrich, Rheol. Acta 30, 151 (1991).
[51] W. G. Gloeckle and T. F. Nonnenmacher, Macromolecules 24,

6426 (1991).
[52] N. Heymans and J. C. Bauwens, Rheol. Acta 33, 210 (1994).
[53] M. Tanter, M. Fink, B. Robert, R. Sinkus, and B. Larrat, in 2006

IEEE Ultrasonics Symposium (IEEE, Piscataway, NJ, 2006),
p. 1033.

[54] B. Suki, A. L. Barabási, and K. R. Lutchen, J. Appl. Physiol.
76, 2749 (1994).

[55] D. Craiem and R. L. Magin, Phys. Biol. 7, 13001 (2010).
[56] H. Yuan, E. P. Ingenito, and B. Suki, J. Appl. Physiol. 83, 1420

(1997).
[57] Q. Chen, B. Suki, and K.-N. An, J. Biomech. Eng. 126, 666

(2004).

[58] S. E. Duenwald, R. Vanderby, and R. S. Lakes, Ann. Biomed.
Eng. 37, 1131 (2009).

[59] M. Balland, N. Desprat, D. Icard, S. Féréol, A. Asnacios, J.
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