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Analysis of spontaneous oscillations for a three-state power-stroke model
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Our study considers the mechanism of the spontaneous oscillations of molecular motors that are driven by the
power stroke principle by applying linear stability analysis around the stationary solution. By representing the
coupling equation of microscopic molecular motor dynamics and mesoscopic sarcomeric dynamics by a rank-1
updated matrix system, we derived the analytical representations of the eigenmodes of the Jacobian matrix that
cause the oscillation. Based on these analytical representations, we successfully derived the essential conditions
for the oscillation in terms of the rate constants of the power stroke and the reversal stroke transitions of the
molecular motor. Unlike the two-state model, in which the dependence of the detachment rates on the motor
coordinates or the applied forces on the motors plays a key role for the oscillation, our three-state power stroke
model demonstrates that the dependence of the rate constants of the power and reversal strokes on the strains in
the elastic elements in the motor molecules plays a key role, where these rate constants are rationally determined
from the free energy available for the power stroke, the stiffness of the elastic element in the molecular motor, and
the working stroke size. By applying the experimentally confirmed values to the free energy, the stiffness, and
the working stroke size, our numerical model reproduces well the experimentally observed oscillatory behavior.
Furthermore, our analysis shows that two eigenmodes with real positive eigenvalues characterize the oscillatory
behavior, where the eigenmode with the larger eigenvalue indicates the transient of the system of the quick
sarcomeric lengthening induced by the collective reversal strokes, and the smaller eigenvalue correlates with the
speed of sarcomeric shortening, which is much slower than lengthening. Applying the perturbation analyses with
primal physical parameters, we find that these two real eigenvalues occur on two branches derived from a merge
point of a pair of complex-conjugate eigenvalues generated by Hopf bifurcation.
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I. INTRODUCTION

The movement of skeletal and cardiac muscles is funda-
mentally regulated by the transients of intracellular calcium
concentration, which is triggered by the electrical stimulation
of cells. A spontaneous oscillation is the oscillatory behavior
of a single myofibril (sarcomere) generated without such
transients of calcium concentration. Spontaneous oscillation is
an interesting research topic not only for insect flight muscles
of asynchronous type [1] but also cardiac muscles because such
a phenomenon has been experimentally observed in specific
conditions [2,3]. These facts suggest that the mechanism of
muscle relaxation in a spontaneous oscillation may also serve
for the quick relaxation in regulated heartbeats because the
fall of blood pressure is fast for a healthy heartbeat despite
the slow decline of intracellular calcium concentration [4].
Such quick relaxation is important to enable the quick blood
filling to the ventricles during the diastolic phase. Thus,
seeking the sources of oscillation is an important issue, even
for the muscles whose state transition from contraction to
relaxation is regulated by calcium signals. In typical numerical
modeling, sarcomere movement is represented by the change
of sarcomere length from its unloaded state, where a certain
elasticity is assumed for this length displacement [5]. The
contraction force acting on the sarcomere is given by the
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sum of forces generated by the myosin molecules that pull
the actin filaments connected to the Z-disk located at the
sarcomere edge. Thus, one-dimensional models [4–9] have
been adopted to analyze sarcomere movement, where the
sarcomere length displacement is the mesoscopic variable.
Microscopic variables consist of a number of functions
{pS(x)}, where each function pS represents the probability
density with respect to a domain variable x in the specific state
S of the molecular motors. In such a situation, a number of
models that produce oscillations have been proposed [10–13].
For example, Jülicher et al. [10] showed that a simple two-state
(consisting of the nonbinding and binding states) molecular
motor model is capable of reproducing an oscillation, and
they developed the criteria of oscillation based on linear
stability analysis at its stationary solution. In their model,
the domain variable x is the periodically iterated coordinate
along a polar filament used to represent a periodic potential
function that generates the pulling force for the attached
molecular motors. Furthermore, the two-state model has been
successfully applied to explain more complicated phenomena,
such as spontaneous waves in muscle fibers [11], subharmonic
oscillations in an in vitro actomyosin system [12], and the
chaotic behavior of sarcomere [13]. However, because the
contraction forces should be generated by the power strokes
of the binding myosin molecules [14–17], it is necessary to
study the mechanism of spontaneous oscillations in relation
to the power stroke principle if this principle is closely related
to the oscillation mechanism.
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FIG. 1. (a) The numerical three-state power stroke model and
(b) the half sarcomere model. At the transitions between the binding
states (XBpreR, XBpostR), the strain of the elastic element is changed by
stroke size s (nm), and the rate constants of these transitions depend
on the strain. x0 is the natural length of the elastic element.

In our model [Fig. 1(a)], we assume that the pulling
forces are given by the strain (x) of the elastic arms in the
myosin molecules binding to the actin filament, and this strain
increases by the working stroke size s in the forward transition
from the prestroke state to the poststroke state (power stroke),
whereas it decreases by s in the backward transition from the
poststroke state to the prestroke state (reversal stroke). The
rate constant of the forward (f ) and backward (b) transitions
between the pre- and poststroke states, with strains x and x + s,
respectively, is determined as it follows from the relationship
given by the statistical equilibrium:

f (x)

b(x)
= exp

(−�E(x)

kT

)
, (1)

where �E(x) is the difference between the total energy at the
poststroke state and that at the prestroke state:

�E(x) = Epos + 1
2kM (x + s)2 − Epre − 1

2kMx2, (2)

where we assume linear elasticity with the spring constant
kM (=2.8 pN/nm) [14] for the strain in the elastic myosin
arm. Epre and Epos are free energies in the myosin head at the
pre- and poststroke states, respectively. k and T denote the
Boltzmann constant and absolute temperature, respectively.
We simulate the contraction in body temperature; therefore, we
assume kT = 4.28 pN nm. This molecular model is coupled
with the sarcomeric movement described by the shortening
displacement variable z [Fig. 1(b)] from the unloaded sar-
comere length. For the individual binding myosin, its strain
x is changed by −dz/dt per unit time; therefore, sarcomere
shortening results in the shift of density given by

δpS(t,x) = dz

dt

∂pS

∂x
(t,x)δt. (3)

In this way, the change of mesoscopic variable z shifts the
density in the molecular state, thereby affecting the state
transitions between the pre- and poststroke states. Addition-
ally, the changes of the state transitions vary the pulling
forces of the binding myosin molecules in turn. We show

that this coupling of mesoscopic sarcomeric movement and
microscopic molecular state transitions can be regarded as the
rank-1 update of the matrix system that represents only the
state transition under the isometric condition. Based on this
matrix representation, we derive an analytical representation of
the eigenmodes that cause instability at the stationary solution.
This analytical representation of the unstable eigenmode
includes the rate constants of the transitions between the three
states in a relatively simple manner. Therefore, we can discuss
the causes of the oscillation from various views, not only
of the power stroke parameters but also the attachment and
detachment parameters.

In the two-state model, the causes of oscillations are closely
related to the detachment rates that depend either on the
motor coordinate along the filament [10,12] or the force
applied to the motor molecule [13]. For these two cases of the
two-state model, an adenosine triphosphate (ATP) molecule
is consumed at any detachment. In particular, for the latter
case, the increase of the detachment rate with the increase
of the applied force is not energetically preferable because the
strain energy preserved in the elastic element is discarded after
it consumes one ATP molecule. By contrast, there are two
reaction pathways of detachment from the poststroke state
in the three-state model. One is the direct transition to the
nonbinding state in which one ATP molecule is consumed, and
the other is the detachment via the prestroke state mediated by
the reversal stoke, where the ATP molecule is not consumed.
We show that quick relaxation in spontaneous oscillations
is induced by the collective detachments given by the latter
pathway, where no ATP molecules are consumed. Although
the second pathway may be interpreted as the load dependent
detachment in the two-stroke model, discriminating between
the two pathways is essential when one wants to evaluate
energy consumption. For example, one of our objectives in
this work is to refine our molecular model when it is applied
in beating heart simulations [4] through the benchmarking
of the spontaneous oscillation found by Shintani et al. [3] for
neonatal cardiomyocytes. For the case of applying such a heart
simulator in medical applications, one of the great concerns of
doctors is energy consumption. Thus, discriminating between
the two detachments is necessary.

II. SARCOMERE MODEL

We consider the half-sarcomere model composed of the
half thick (myosin) filaments and thin (actin) filaments, as
shown in Fig. 1(b). The myosin filaments are fixed at one end
to a wall, and the actin filaments are connected to the Z-disk
at the opposite end. We assume that the wall and Z-disk are
connected by the elastic components, with a spring constant kZ

per one actin filament that represents the sarcomeric stiffness.
The position of the Z-disk is indicated by z, where the positive
direction of z corresponds to the shortening of the sarcomere.
As shown in Fig. 1(a), we assume that the myosin molecule
has three conformations composed of one nonbinding state
(PXB) and two binding states (the prestroke state XBpreR and
the poststroke state XBpostR). Each binding myosin head pulls
the actin filament with force kMx determined by strain x in
its elastic arm. In the transition from XBpreR to XBpostR (the
forward transition), the strain is assumed to be elongated by
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working stroke size s by the power stroke, whereas in the
transition from XBpostR to XBpreR (the backward transition),
the strain is assumed to be shortened by working stroke size
s by the reversal stroke. In our mathematical analysis, we
assume that the rate constants of these forward and backward
transitions are given by functions f and b of strain x at XBpreR,
respectively. Although we assume that the detachment rate
constants d and g are also given as functions of strain x in
the mathematical analysis, we adopt constants for them in our
numerical tests in this paper. The attachment rate constant a

is assumed to be a constant. However, the initial strain at the
attachment follows the Boltzmann distribution as shown later
in this section. We assume that there is a sufficiently large
number of filaments so that the densities in the binding states
can be approximated by the smooth functions ppre and ppos for
XBpreR and XBpostR, respectively.

Under these assumptions, the transition at the nonbinding
state PXB is given as follows:

dPpxb

dt
=

∫ +∞

−∞
d(x)ppre(t,x)dx

+
∫ +∞

−∞
g(x)ppos(t,x + s)dx − aPpxb, (4)

where Ppxb denotes the concentration of myosin molecules in
PXB. Hereafter, the integral region will always be [−∞, + ∞].
Therefore, we will omit the integration range. The transitions
of binding states XBpreR and XBpostR with strains x and x + s,
respectively, are given as follows:

∂ppre

∂t
(t,x) = dz

dt
(t)

∂ppre

∂x
(t,x) + aPpxby0(x)

− d(x)ppre(t,x) − f (x)ppre(t,x)

+ b(x)ppos(t,x + s) (5)

∂ppos

∂t
(t,x) = dz

dt
(t)

∂ppos

∂x
(t,x + s) − g(x)ppos(t,x + s)

+ f (x)ppre(t,x) − b(x)ppos(t,x + s). (6)

We assume that the densities are normalized so that the sum
of Ppxb and integrals of ppre and ppos are equal to 1. At the
attachment, the initial arm strain is assumed to be given by
density y0, which is determined by the Boltzmann distribution
defined by the strain energy of the myosin arm:

y0(x) =
√

kM

2πkT
exp

(−kMx2

2kT

)
. (7)

The first terms on the right-hand sides of Eqs. (5) and (6)
represent the shifts of densities caused by filament sliding, as
shown in Eq. (3), where dz/dt is the shortening velocity of
the half sarcomere. The rate constants f and b of the forward
and backward transitions are assumed to be given as functions
of strain x:

f (x) = rxb exp

(
Epre+kMx2/2−Ec−kM (x+s/2)2/2

kT

)
, (8)

b(x) = rxb exp

(
Epos+kM (x+s)2/2−Ec−kM (x+s/2)2/2

kT

)
,

(9)
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FIG. 2. The strain-dependent rate constants for the forward and
backward transitions with (a) the normal scale and (b) log scale
representations. The forward and backward rate constants f (x) and
b(x) are plotted for the two cases with working stroke sizes s =
8.5 nm (thick lines) and s = 7 nm (thin lines). These rate constants
are shown with respect to strain x at the prestroke state. The other
parameters are set as rxb = 105 (1/s), Epre = 0.7EATP, Ec = 1.1Epre,
and Epos = 0.

where Epre (=0.7EATP) and Epos (=0) denote the free en-
ergies in the myosin head in the states XBpreR and XBpostR,
respectively. We assume that 70% of the ATP hydrolysis
energy (EATP) is consumed at the power stroke. Ec is the
free energy at the potential barrier that separates the two states
XBpreR and XBpostR. We assume that this barrier exists at the
center of power-stroke distance s. We adopt EATP = 22.5 kT =
96.34 pN nm throughout this paper, which corresponds to
58 kJ/mol measured by Saupe et al. [18]. For the numerical
stability of the explicit Euler scheme applied in our numerical
simulations, if the maximum of f (x) and b(x) exceeds the limit
rmax [=106 (1/s)] for given strain x, the maximum is reduced
to rmax without changing the ratio f (x) : b(x). Note that the
rate constants in Eqs. (8) and (9) fulfill the thermal equilibrium
condition given in Eq. (1). Although there are other approaches
to define f and b that fulfill the equilibrium condition, we
adopt the above definition because the Kramers-Smoluchovski
approximation [19] suggests that the transition rate from state
A to state B must be defined from the energy difference
between the state of departure A and the barrier between A and
B. In Fig. 2, these strain-dependent rate constants are shown
for the two cases with different working stroke sizes (s = 8.5
and 7 nm) with respect to strain x at prestroke state XBpreR. For
the case of s = 8.5 nm, the fluctuation zone, where both the
forward and backward rate constants take values of the same
order of magnitude, is located around x = −1.5 nm, whereas
it is located around x = 0 nm in the case of s = 7 nm. The
rate constants at the fluctuation zone for s = 8.5 nm are much
larger than those for s = 7 nm. We selected the working stroke
size s = 7 nm only for a comparison with s = 8.5 nm, which
is close to the value s = 8 nm experimentally measured by
Kaya and Higuchi [14].

To obtain the numerical results in this paper, the densities
ppre(t,x) and ppos(t,x + s) were discretized on the finite strain
space [−3s,3s] of x with spatial spacing �x = s/100. For the
computation of the first derivatives ∂ppre/∂x and ∂ppos/∂x,
the third-order upwind scheme was adopted for stability,
especially at the rapid stretching area. For the components
of ppre and ppos outside [−2s,2s], a large detachment rate
equal to rmax was imposed because we assumed that these
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myosins with extremely large strains detach immediately. For
time marching, the explicit Euler scheme was used with time
step size �t = 10−9 s.

As we show later in the paper, spontaneous oscillatory
behavior similar to that observed by Shintani et al. [3] is
reproduced well with s = 8.5 nm, whereas s = 7 nm seems to
be too small to produce oscillations. In this paper, we analyze
a coupled system of the above state transition model and
sarcomeric movement governed by an equation of motion:

γ
dz

dt
(t) = nMkM

(∫
xppre(t,x)dx

+
∫

(x + s)ppos(t,x + s)dx

)
− kZz(t), (10)

where γ is the viscosity coefficient per one actin filament in the
half-sarcomere model imposed for filament sliding, nM (=80)
is the number of myosin molecules that can attach one actin
filament, and kZ denotes the spring constant per one actin
filament. Note that kZ represents passive sarcomeric stiffness,
where the word “passive” means that this stiffness is measured
in the relaxation state.

We combine the density functions at time t into one vector
as follows:

p(t) =
⎡
⎣{p̂pre}

{p̂pos}
Ppxb

⎤
⎦(t), (11)

where the brackets {} denote the vector representing the density
functions at time t , and the carets indicate these functions are
defined for strain x at prestroke state XBpreR as follows:

p̂pre(x) ≡ ppre(t,x), (12)

p̂pos(x) ≡ ppos(t,x + s). (13)

Note that the strain for poststroke density function p̂pos is given
by x + s, where x is the strain at the prestroke state and s is the
working stroke size. Under the above definitions, Eqs. (4)–(6),
together with Eq. (10), are represented as

d p
dt

(t) = dz

dt
(t)C p(t) − A p(t), (14)

dz

dt
(t) = 1

γ
[kM B p(t) − kZz(t)], (15)

where the operator A represents the state transitions given as

A ≡
⎡
⎣〈f + d〉 〈−b〉 −a{y0}

〈−f 〉 〈b + g〉 {0}
−{d}T −{g}T a

⎤
⎦, (16)

where the brackets denote the operators defined by

(〈c〉{p̂})(x) ≡ c(x)p̂(x), ∀ x, (17)

({c}P )(x) ≡ Pc(x), ∀ x, (18)

{c}T {p̂} ≡
∫

c(x)p̂(x)dx (19)

for any function c of strain x at the prestroke state, any scalar P ,
and any density function p̂. Note that the following equations

hold for any functions c1 and c2, and these equations allow us
to compute multiplications of these operators as usual scalar
variables:

〈c1〉〈c2〉 = 〈c1c2〉, (20)

〈c1〉{c2} = 〈c1c2〉{1} = {c1c2}, (21)

{c1}T 〈c2〉 = {1}T 〈c1c2〉 = {c1c2}T . (22)

The operator B provides the integration of strains per one actin
filament for a given density:

B p ≡ nM

(∫
xp̂pre(x)dx +

∫
(x + s)p̂pos(x)dx

)
,

∀ p =
⎡
⎣{p̂pre}

{p̂pos}
Ppxb

⎤
⎦. (23)

The operator C is the first-order spatial derivative acting on
the two density functions defined by

C p ≡

⎡
⎢⎣{ dp̂pre

dx
}

{ dp̂pos

dx
}

0

⎤
⎥⎦, ∀ p =

⎡
⎣{p̂pre}

{p̂pos}
Ppxb

⎤
⎦. (24)

By applying Eq. (20), it can be shown that the kernel of the
operator A is one-dimensional space spanned by the basis
vector:

p0 ≡
⎡
⎣{p̂pre,0}

{p̂pos,0}
Ppxb,0

⎤
⎦ (25)

with

Ppxb,0 = 1

a
∫

v(x)+f (x)
e(x) y0(x)dx + 1

, (26)

p̂pre,0(x) = ppre,0(x) = Ppxb,0
av(x)

e(x)
y0(x), (27)

p̂pos,0(x) = ppos,0(x + s) = Ppxb,0
af (x)

e(x)
y0(x), (28)

where the functions u, v, and e are defined by

u(x) ≡ f (x) + d(x), (29)

v(x) ≡ b(x) + g(x), (30)

e(x) ≡ u(x)v(x) − f (x)b(x). (31)

The proof is provided in Appendix A.
This kernel vector corresponds to the stationary densities in

the isometric contraction condition that correspond to dz/dt =
0, as shown later in this section. In Fig. 3, these stationary
densities are shown with the coefficients multiplied to initial
density y0 in Eqs. (27) and (28) for the two working stroke sizes
s = 8.5 and 7 nm. In the case of s = 8.5 nm [Fig. 3(a)], the
majority of initial density y0 represented as the alternate long
and short dashed lines in the top panel is deleted by coefficient
function cpos(x) = Ppxb,0af (x)/e(x) represented by the dashed
line, except for the left edge around x = −2 nm in forming
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FIG. 3. The coefficients multiplied by y0 (alternate short and long
dashed lines) and the resultant stationary densities for XBpreR (solid
lines) and XBpostR (broken lines) in the lower panels with working
stroke sizes (a) s = 8.5 nm and (b) s = 7 nm (b). Here, cpre(x) =
Ppxb,0av(x)/e(x) and cpos(x) = Ppxb,0af (x)/e(x). The parameters
are given as a = 500, d = 5000, g = 100, rxb = 105 (1/s), Epre =
0.7EATP, Ec = 1.1Epre, and Epos = 0.

poststroke density ppos,0. In the case of s = 7 nm [Fig. 3(b)],
45% of myosin molecules are in the poststroke state XBpostR,
whereas only 4% are in the prestroke state XBpreR. In this case,
the fluctuation between the pre- and poststroke states is quite
small compared with the case of s = 8.5 nm.

In addition to the property of its kernel vector, the operator
A has the following properties when the density functions
are discretized by a finite number of intervals, and thereby
the operator is represented by a finite-dimensional matrix. The
diagonal components of A are positive and all the off-diagonals
are nonpositive. Furthermore, the column sums of A are
equal to zero. Thus, the transpose of A is a diagonally
dominant matrix whose row sums are equal to zero. This
also implies that the image of A is composed of the vectors
whose component sum is equal to zero. From the Gershgorin
circle theorem [20], we observe that the real parts of the
nonzero eigenvalues of A other than the kernel vector are
positive. The sums of the components of the eigenvectors
of these nonzero eigenvalues are zero. Thus, the solution of
Eq. (14) with fixed z values (dz/dt = 0) converges to p0
for any initial density whose integral is equal to 1. This also
implies that p(t) ≡ p0 with z(t) ≡ z0 = kM B p0/kz satisfies
Eqs. (14) and (15) simultaneously. Therefore, there is also a
unique stationary solution for the coupled system. If the system
provides an autonomous oscillation, this stationary solution
must be unstable. Thus, we analyze the Jacobian matrix at this
stationary solution to seek the conditions for the oscillations.

III. DERIVATION OF THE JACOBIAN MATRIX
AT THE STATIONARY SOLUTION

To compute the Jacobian matrix at the stationary solution,
we substitute dz/dt given in Eq. (15) into Eq. (14), which
results in the following equivalent representation of the

coupled system:[
d p
dt

(t)
dz
dt

(t)

]
=

[−A p(t)
0

]
+ 1

γ
[kM B p(t) − kzz(t)]

[
C p(t)

1

]
.

(32)

Equation (32) can be further deformed as the rank-1 update of
the original state transition matrix as follows:[

d p
dt

(t)
dz
dt

(t)

]
=

([−A 0
0 0

]
+ 1

γ

[
C p(t)

1

]
⊗

[
kM BT

−kZ

])[
p(t)
z(t)

]
.

(33)

Here, the tensor product of two vectors a and b implies that
a ⊗ b ≡ abT . The rank-1 update term (the second term) on
the right-hand side of Eq. (33) has the following mechanical
meaning: The row vector on the right-hand side corresponds to
the operator that measures the velocity deviation generated by
the mechanical disequilibrium of current state p(t) and z(t),
while the column vector represents the shift of densities caused
by the unit sliding speed.

From the fact that kM B p0 − kZz0 = 0, the derivative of
the right-hand side of Eq. (32) with respect to p and z at the
stationary solution { p0,z0} is given as

δ

[
1
γ

(kM B p − kzz)C p − A p
1
γ

(kM B p − kzz)

]
p0,z0

=
([−A 0

0 0

]
+ 1

γ

[
C p0

1

]
⊗

[
kM BT

−kZ

])[
δp

δz

]
. (34)

We refer to the coefficient matrix on the right-hand side of
Eq. (34) as the Jacobian matrix K 0. This matrix is regarded as
the rank-1 update of the matrix that represents only the state
transitions in the isometric contraction as follows:

K 0 =
[−A 0

0 0

]
+ 1

γ

[
C p0

1

]
⊗

[
kM BT

−kZ

]
. (35)

If a spontaneous oscillation is generated, there must be some
eigenvalues with positive real parts in the Jacobian matrix
K 0. Because the matrix −A has a one-dimensional kernel and
the real parts of its other eigenvalues are negative, the rank-1
update term changes this stability in oscillatory cases.

IV. ANALYSIS FOR CONDITIONS OF OSCILLATION
USING THE JACOBIAN MATRIX

The condition of having eigenvalues with positive real parts
can be identified based on the following theorem.

Theorem 1. A complex number λ with a positive real part
is an eigenvalue of K 0 if and only if the following equation
holds:

λkM B(A + λI)−1C p0 − λγ − kZ = 0. (36)

Proof. From Eq. (35), we observe that [ pλ

1 ] is the eigenvector
of K 0 with eigenvalue λ if and only if the following equations
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hold:

(A + λI) pλ = λC p0, (37)

1

γ
(kM B pλ − kZ) = λ. (38)

From the assumption, A + λI is invertible. By substituting pλ

obtained from Eq. (37) into Eq. (38), we obtain Eq. (36). �
We restrict our consideration to only the positive real

eigenvalues instead of considering the right half-plane in the
Gauss plane. We introduce a function that will be used to
measure the potential of a spontaneous oscillation as

K(λ) ≡ λkM B(A + λI)−1C p0 − λγ, λ > 0. (39)

If the function K(λ) is positive for a certain positive real
number λ, then Eq. (36) is satisfied with kZ = K(λ) > 0, and
pλ in Eq. (37) is the corresponding eigenvector. To analyze
the property of the function K(λ), we introduce the scaled
eigenvector given by

qλ ≡ 1

λ
pλ = (A + λI)−1C p0, λ > 0. (40)

The densities in the pre- and poststroke states corresponding
to qλ can be explicitly represented by the rate constants as
follows:

Theorem 2. Let qpre,λ and qpos,λ be the density functions
corresponding to the pre- and poststroke components of qλ

in Eq. (40), respectively. Additionally, let Qpxb,λ be the scalar
corresponding to the PXB component of qλ. Then, the PXB

component is given by

Qpxb,λ

= −
∫ (

f (x)+v(x)+λ

hλ(x)
dppre,0

dx
(x) + b(x)+u(x)+λ

hλ(x)
dppos,0

dx
(x + s)

)
dx

1 + a
∫

f (x)+v(x)+λ

hλ(x) y0(x)dx
,

(41)

and the density function parts are given by

qpre,λ(x) = v(x) + λ

hλ(x)

dppre,0

dx
(x) + b(x)

hλ(x)

dppos,0

dx
(x + s)

+ aQpxb,λ

v(x) + λ

hλ(x)
y0(x), (42)

qpos,λ(x + s) = f (x)

hλ(x)

dppre,0

dx
(x) + u(x) + λ

hλ(x)

dppos,0

dx
(x + s)

+ aQpxb,λ

f (x)

hλ(x)
y0(x), (43)

where the function hλ is defined by

hλ(x) = [u(x) + λ][v(x) + λ] − f (x)b(x). (44)

The proof of this theorem is given by applying Eqs. (20)–
(22), as shown in Appendix B.

From Eqs. (41)–(43), we observe that limλ→+∞ B(A +
λI)−1C p0 = 0, and B(A + λI)−1C p0 converges to a finite
value for λ → +0. Thus, we observe that K(λ) ≈ −γ λ for
sufficiently large λ, and K(λ) converges to zero for λ → +0.
Therefore, if the maximum of K (Kmax) is positive, there are
at least two real positive eigenvalues that fulfill Eq. (36) for a

λ

K(λ)

FIG. 4. The contour of function K(λ) for various working stroke
sizes s. Only the region where K takes a positive value is contoured.
The typical working stroke size (s = 8.5 nm) is indicated by the
dashed line. The other lines indicate s = 9 nm (solid) and s = 8 nm
(alternate long and short dashed line). The parameters are given as
a = 500, d = 5000, g = 100, rxb = 105 (1/s), Epre = 0.7EATP, Ec =
1.1Epre, and Epos = 0. The spring constant of the myosin arm is
kM = 2.8 pN/nm and the viscosity per one actin filament is γ =
10−5 pN s/nm.

given kZ < Kmax. To evaluate Kmax for a realistic sarcomere
model, we have to determine an appropriate value of the
viscosity coefficient γ for the myofibrils. Because the equation
of motion in Eq. (10) is given per one actin filament in the
half-sarcomere, the corresponding macroscopic viscosity η is
given by

η (N s/m2) = γ (pN s/nm)10−12 (N/pN) SL0
2 (nm)

SA0 (nm2)10−18 (m2/nm2)

≈ 106γ (pN s/nm). (45)

We inserted SL0/2 = 103 nm as the half-sarcomere length,
and SA0 = 103 nm2 as the cross-sectional area per one actin
filament. In this paper, we apply the macroscopic value η =
10 N s/m2 [21]. This corresponds to the microscopic value
γ = 10−5 pN s/nm.

In Fig. 4, the contour of K(λ) is shown for working stroke
size s from 6 to 14 nm, where only the positive region of K

is contoured, and the logarithmic scale is applied for λ. Here,
K is evaluated by numerically integrating the functions given
in Eqs. (42) and (43). If the horizontal line corresponding to
the given working stroke size s intersects with the contoured
region, at least the half-sarcomere system shows oscillatory
behavior for sarcomere stiffness kZ smaller than the maximum
of K(λ) on the horizontal line. The landscape of K indicates
that there are two positive eigenvalues for a given kZ . The
smaller positive eigenvalue increases and the larger eigenvalue
decreases as sarcomere stiffness kZ increases. The increase of
the smaller positive eigenvalue is also observed for the change
of the working stroke size s. That is, the smaller positive
eigenvalue increases as the working stroke size increases
from s = 8.5 nm for fixed sarcomere stiffness kZ . Because
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FIG. 5. The oscillatory behavior. (a) The time courses of −z for
the working stroke sizes s = 8, 8.5, and 9 nm. (b) The contours
of densities ppre (top panel) and ppos (bottom panel) for the pre-
and poststroke states, respectively (b) in the case of s = 8.5 nm.
The averaged strains are drawn with white broken lines. The time
courses of Ppxb and the currents of the detachments from XBpreR and
XBpostR are shown in the top panel. The parameters related to the rate
constants are given as a = 500, d = 5000, g = 100, rxb = 105 (1/s),
Epre = 0.7EATP, Ec = 1.1Epre, and Epos = 0. The spring constant of
the myosin arm is kM = 2.8 pN/nm, and the viscosity per one actin
filament is γ = 10−5 pN s/nm. These numerical results were obtained
by applying the explicit Euler scheme.

parameter kZ indicates the spring constant per one actin
filament in the half-sarcomere, the following equation defines
the relationship with the macroscopic Young’s modulus E of
the myofibril fiber:

E (N/m2) = kZ (pN/nm)10−12 (N/pN) SL0
2 (nm)

SA0 (nm2)10−18 (m2/nm2)

≈ 106kZ (pN/nm). (46)

Because De Winkel et al. [24] estimated Young’s modulus of
the skeletal muscle fiber in a relaxed state as approximately
E = 3 × 106 N/m2, we apply kZ = 3 pN/nm. In Fig. 5(a),
the time courses of −z obtained by the numerical time
integrations are shown for the three working strong sizes
around s = 8.5 nm, which is close to the value experimentally
estimated by Kaya et al. [14]. Shintani et al. [3] observed
5–10 % of the total sarcomere length as the amplitude with
7–9 Hz frequency for the rat neonatal cardiomyocytes. Because
the half-sarcomere length is approximately 1000 nm, the
oscillation produced by our numerical model with the working
stroke size around s = 8.5 nm reproduced this experimental
phenomenon well, as shown in Fig. 5(a). For these three
cases, the smaller positive eigenvalues are 3.7, 3.5, and 4.4
(1/s) for the working stroke sizes s = 8, 8.5, and 9 (nm),
respectively, whereas the larger positive eigenvalues are 1310,
3172, and 5910 (1/s), respectively. Because the eigenvalue of
K 0 corresponds to the value of (dz/dt)/(z − z0) according to
the last row in Eq. (33), its magnitude represents the strain
rates. Therefore, the smaller positive eigenmode may induce
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FIG. 6. The enlarged views of the density contours in the time
interval [0.2595,0.2615] around the rapid stretching area in the case
of s = 8.5 nm. The time courses of the −z value (top panel: solid
line) and the distance from the stationary density (top panel: broken
line) are shown together with the contours of the densities ppre (middle
panel) and ppos (bottom panel). These numerical results were obtained
by applying the explicit Euler scheme. The regions surrounded by the
broken lines correspond to the turning points approaching and leaving
the stationary solution by the larger positive eigenmode (left) and the
smaller positive eigenmode (right), respectively. These eigenmodes
were obtained analytically from Eqs. (42) and (43). The parameters
related to the rate constants are given as a = 500, d = 5000, g =
100, rxb = 105 (1/s), Epre = 0.7EATP, Ec = 1.1Epre, and Epos = 0.
The spring constant of the myosin arm is kM = 2.8 pN/nm and the
viscosity per one actin filament is γ = 10−5 pN s/nm.

the slow decline of −z (slow shortening of the sarcomere),
whereas the larger positive eigenmode may induce the fast
rise of −z (quick lengthening of the sarcomere). In Fig. 5(b),
the contours of the time course of the densities obtained by the
numerical time integrations for the pre- and poststroke states
are shown in the case of s = 8.5 nm. The steep rise of the −z

value that corresponds to the rapid stretching of the sarcomere
is caused by the collective reversal strokes from XBpostR. As
shown by the broken line for XBpostR, the sudden increase of
the average strain is observed at the beginning of the collective
disappearance from the poststroke state. Once the sarcomere
starts to stretch after achieving its maximal contraction force,
the chain reaction of the reversal strokes is induced. Because
a relatively large detachment rate constant [d = 5000 (1/s)]
is provided from XBpreR compared with the attachment rate
constant [a = 500 (1/s)] to XBpreR and the detachment rate
constant [g = 100 (1/s)] from XBpostR, the collective reversal
strokes result in the collective detachments through XBpreR.
This is clearly observed in the peaks of the detachment current
from XBpreR to PXB shown in the top panel of Fig. 5(b).

To view more details around the rapid stretching area,
the enlarged images of the density contours are shown with
the positive eigenmodes on both sides in Fig. 6. We can
observe that these eigenmodes capture the changes of densities
in the time intervals surrounded by the broken lines well, where
the density approaches the stationary density and leaves it. The
distance between the obtained density p and the stationary
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density p0 is measured as follows:

‖ p − p0‖2 = (Ppxb − Ppxb,0)2 +
∫

(ppre − ppre,0)2dx

+
∫

(ppos − ppos,0)2dx. (47)

Regarding the larger positive eigenvalue λL, the eigenmodes
shown in the figure result from multiplying the original
eigenmodes given in Eqs. (42) and (43) by −1, whose z

components are 1 because the z value is decreasing in the time
interval in the broken line (a). The progress of the contours in
the broken line (a) match the profiles of the eigenmodes shown
on the left well. Thus, the larger eigenmodes form unstable
densities before rapid stretching. Conversely, the progress of
the contours in the time interval surrounded by broken line
(b) are more consistent with the smaller eigenmodes shown
on the right. Therefore, the smaller eigenmodes seem to
induce contractions of the sarcomere that are much slower
than stretching.

V. FACTORS DETERMINING OSCILLATORY BEHAVIOR

It is not a simple task to provide physical interpretations
of the contributions of the three terms in Eqs. (42) and (43)
regarding making the function K positive. However, it may
be important to evaluate the significance of the contributions
of these terms. The first two terms come from the spatial
derivative of the stationary densities; thus, they are related
somehow to the density shift caused by filament sliding. We
analyze the contributions of these three terms by decomposing
K into six terms according to Eqs. (42) and (43):

K = Kpre,dpre + Kpre,dpos + Kpre,y0 + Kpos,dpre

+Kpos,dpos + Kpos,y0 − γ λ, (48)

with

Kpre,dpre(λ) ≡ λkM

∫
x

v(x) + λ

hλ(x)

dppre,0

dx
(x)dx,

Kpre,dpos(λ) ≡ λkM

∫
x

b(x)

hλ(x)

dppos,0

dx
(x + s)dx,

Kpre,y0(λ) ≡ λkMaQpxb

∫
x

v(x) + λ

hλ(x)
y0(x)dx,

Kpos,dpre(λ) ≡ λkM

∫
(x + s)

f (x)

hλ(x)

dppre,0

dx
(x)dx,

Kpos,dpos(λ) ≡ λkM

∫
(x + s)

u(x) + λ

hλ(x)

dppos,0

dx
(x + s)dx,

Kpos,y0(λ) ≡ λkMaQpxb

∫
(x + s)

f (x)

hλ(x)
y0(x)dx.

In Table I, the above six components are evaluated for the
two positive eigenvalues that fulfill K(λ) = kZ = 3 pN/nm
in the cases of the three working stroke sizes s = 8, 8.5,
and 9 nm. For the smaller eigenvalues, the contribution of
Kpos,dpos is always significant. For the comparison with the
nonoscillatory case of working stroke size s = 7 nm, the six
components for λ corresponding to the smaller eigenvalue
in the case of s = 8.5 nm are shown in the last column. In
this case, although Kpos,dpos is of the same magnitude as in

TABLE I. The six components of the function K(λ). For the
working stroke sizes s = 8, 8.5, and 9 nm, the component values at
the positive two eigenvalues that fulfill K(λ) = kZ = 3 pN/nm are
shown. The case of s = 7 nm is also shown for comparison with
s = 8.5 nm. The terms that make the most significant contribution
are underlined. The parameters related to the rate constants are given
as a = 500, d = 5000, g = 100, rxb = 105 (1/s), Epre = 0.7EATP,
Ec = 1.1Epre, and Epos = 0. The spring constant of the myosin arm
is kM = 2.8 pN/nm and the viscosity per one actin filament is γ =
10−5 pN s/nm.

Kpre,∗ (pN/nm) Kpos,∗ (pN/nm)

s (nm) λ (1/s) dpre dpos y0 dpre dpos y0

8 3.66 −0.008 0.026 −0.011 0.23 4.19 −1.43
1310 −2.31 1.95 −0.105 9.61 −4.67 −1.47

8.5 3.48 −0.010 0.025 −0.006 0.17 3.55 −0.73
3172 −5.10 2.95 −0.035 9.64 −4.16 −0.26

9 4.40 −0.014 0.026 −0.003 0.15 3.21 −0.37
5910 −8.17 3.25 −0.010 8.24 −0.20 −0.05

7 3.48 −0.005 0.008 −0.012 0.25 1.64 −1.87

the case of s = 8.5 nm, the strong negative value of Kpos,y0

makes the sum less than zero. Note that the values of Qpxb

are −7.0e − 4 for s = 8.5 nm and −5.3e − 4 for s = 7 nm.
Thus, the large difference between these two cases comes from
the coefficient function f/hλ on [−2,0], as shown in Fig. 3
for λ = 0. The term Kpos,y0 corresponds to the contribution
of the transition from PXB to XBpostR through XBpreR. If this
transition is energetically too easy, the negative contribution
of this term on K prevents the oscillation.

To observe how the positive values are determined for
Kpos,dpre(λ) and Kpos,dpos(λ), which make significant con-
tributions to the larger and smaller positive eigenvalues,
respectively, we show their coefficient functions λf (x)/hλ(x)
and λ[u(x) + λ]/hλ(x), and the derivatives dppre,0/dx and
dppos,0/dx separately, with their products in Fig. 7 in the case
of s = 8.5 nm. Regarding Kpos,dpre(λ), most of the positive part
of dppre,0/dx is cut off by the coefficient function λf (x)/hλ(x)
for smaller λ. However, this cutoff is relaxed as λ increases.
Regarding Kpos,dpos(λ), the negative part of dppos,0/dx is cut
off by the coefficient function for smaller λ. This makes the
resultant product nearly a positive function. However, this
cutoff is weakened as λ increases. In this way, the significance
of the contribution changes according to the magnitude of λ.

VI. BALANCE OF DETACHMENT RATE CONSTANTS
AT THE PRE- AND POSTSTROKE STATES

Thus far, we have studied three-state models in which
the detachment rate constant at the prestroke state is much
larger than that at the poststroke state. The magnitude of
these rate constants and the balance between them do not
conflict with the experimental observation made by Capitanio
et al. [22]. By contrast, Erdmann et al. [23] applied a similar
three-state model to each molecular motor in a small ensemble,
in which the detachment rate constant d at XBpreR is set to
2 (1/s), which is much smaller than our value 5000 (1/s),
and the detachment rate constant g at XBpostR is given by a
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FIG. 7. The derivative dppre,0/dx and λf/hλ (a, top panel) and
their products (a, bottom panel) for the smaller and larger positive
eigenvalues, and the derivative dppos,0/dx and λ(u + λ)/hλ (b, top
panel) and their products (b, bottom panel) for the smaller (solid line)
and larger (broken line) positive eigenvalues. The parameters related
to the rate constants are given as a = 500, d = 5000, g = 100, rxb =
105 (1/s), Epre = 0.7EATP, Ec = 1.1Epre, and Epos = 0. The spring
constant of the myosin arm is kM = 2.8 pN/nm and the viscosity per
one actin filament is γ = 10−5 pN s/nm.

load-dependent function:

g̃(x) = k0
20 exp[−kM(x + s)/F0], (49)

with k0
20 = 80 (1/s) and F0 = 12.6 pN. This definition of

the rate constant prevents the detachment for the myosins
that produce a positive contraction force and facilitates the
detachment for the myosins that produce a negative force.
Therefore, the efficiency is improved by applying this type
of load-dependent detachment rate. Because Erdmann et al.
adopted the so-called parallel cluster model (PCM), in which
all molecular motors in the same state have a common
strain in their elastic elements, the ensemble is different from
our sarcomere model. Therefore, we cannot expect similar
behavior. Nevertheless, it may be interesting to observe what
happens in our model when a parameter set similar to their
model is applied. Because their original value of d is too
small to produce oscillations with our sarcomere model, we
adopted d = 20 (1/s). The results are shown in Fig. 8. For
comparison, the results obtained by resetting a and d to our
original values are shown in the insets. In our model, when a

is smaller than k0
20, the quick contractions [the sharp fall of −z

in Fig. 8(a)] trigger oscillations. These quick contractions are
produced by the collective power strokes, and these forward
transitions are clearly captured by the eigenmode of the
larger positive eigenvalue λL (=3873) shown in Fig. 8(b).
Unlike the case with the original rate constants at XBpreR

shown in the inset, a prominent change is observed for the
components of XBpreR (the broken lines). This can be explained
by considering Eq. (42) because the coefficient of dppre,0/dx

increases with the decrease of d. By contrast, the change at
XBpreR is inconspicuous in the original case because of the
fast detachment. Regarding the original rate constant case
at XBpreR, although the time course of −z changes with the
introduction of the load-dependent detachment rate, the basic
mechanism of the oscillation in the power-stroke model is the
same; that is, the oscillation is triggered by quick relaxation
due to the collective reversal strokes.
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FIG. 8. Oscillatory behavior for the small detachment rate con-
stant d = 20 from XBpreR, where the force-dependent detachment
rate g from XBpostR is adopted. (a) The time courses of −z.
(b) The eigenmode pλ = λqλ for the larger positive eigenvalue λL =
3659. The other parameters are given as a = 40, rxb = 105 (1/s),
Epre = 0.7EATP, Ec = 1.1Epre, and Epos = 0. The spring constant of
the myosin arm is kM = 2.8 pN/nm and the viscosity per one actin
filament is γ = 10−5 pN s/nm. For comparison, the results, where
only a and d are reset to the original values (a = 500, d = 5000), are
shown in the insets.

VII. RELEVANCE OF HOPF BIFURCATION

Previous studies [10–12] that analyzed the two-state model
interpreted the onset of spontaneous oscillations as Hopf
bifurcation, in which a pair of complex-conjugate eigenvalues
cross the imaginary axis, and the frequency of the oscillations
to linear order is given by the magnitude of the imaginary part

0 1000 2000 3000 4000 5000

-2000

0

2000

4000

6000

0 20 40 60 80 1000

500

1000

0.5 1 1.5 2

-40

-20

0

20

40

1 10 100 1000

-1000

0

1000

(a)  (b)

(d)  g

g

(c)  d(=10a)

d

FIG. 9. The eigenvalue perturbations from the two real positive
eigenvalues. The real and imaginary parts of the eigenvalues are
shown by the solid and broken lines, respectively. (a) The viscosity
coefficient γ is perturbed from 10−5 to 2 pN s/nm. (b) The spring
constant kZ per one actin filament for the sarcomeric stiffness is
perturbed from 1 to 100 pN/nm. (c) The detachment rate constant d

from PXB is perturbed from 5000 to 1 (1/s), where the attachment rate
constant to PXB is given as a = 0.1d . The logarithmic scale is applied
for d . (d) The detachment rate constant g from XBpostR is perturbed
from 100 to 5000 (1/s). The parameters other than the perturbed
parameter are given as a = 500, d = 5000, g = 100, rxb = 105 (1/s),
Epre = 0.7EATP, Ec = 1.1Epre, Epos = 0, kM = 2.8 pN/nm, and γ =
10−5 pN s/nm. The vertical alternating long and dashed lines indicate
the onset of Hopf bifurcations. The arrows indicate the parameter
values adopted in our model.
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FIG. 10. The change of time courses of −z for the various
sarcomeric stiffness kZ (a) from the onset of Hopf bifurcation to
the merge point to one real eigenvalue, and (b) after branching into
two real eigenvalues.

of these eigenvalues. However, in our case, we have observed
that there are two real positive eigenvalues, where the larger
eigenvalue is associated with quick relaxation and the smaller
eigenvalue is associated with slow contraction. To illustrate
this difference, we perform a perturbation analysis of the
eigenvalues with respect to the primal physical parameters,
as shown in Fig. 9. These results indicate that the onset of
instability is actually Hopf bifurcation in our case as well.
However, our system provides the oscillation in the parameter
region at a great distance from the onset. In this region, the
pair of two conjugate eigenvalues starting from the onset merge
into a real positive eigenvalue, and then the two eigenvalues
branch into the real axis (zero imaginary part) as they approach
our parameter region. In this analysis, all the eigenvalues of
the discretized Jacobian in Eq. (35) are computed by applying
the LAPACK eigenvalue routine DGEEV [25], and the nearest
eigenvalues to those in the previous step are selected during the
perturbation process. In all the cases, there are no other eigen-
values in the right half-plane other than those that are plotted.

We observe how the wave form (time course of −z) changes
from the onset of Hopf bifurcation to the branching of the
two real positive eigenvalues for one case. Figure 10 shows
the change of wave form for the perturbation of sarcomeric
stiffness kZ . As stiffness kZ decreases from the onset to
the merge point, the rise of −z gradually becomes sharper
than the fall. Additionally, this change is accompanied by an
increase of the amplitude [Fig. 10(a)]. After the merge into
one real eigenvalue, the rise becomes even sharper with the
rapid increase of the larger positive eigenvalue [Fig. 10(b)].
Additionally, the frequency decreases with the decrease of the
smaller eigenvalue.

VIII. CONCLUSION

In this paper, the coupling of the state transitions of a
molecular motor and sarcomeric movement was represented as
the rank-1 update of the state transition matrix that corresponds
to the isometric contraction. Based on this representation, the
oscillatory behaviors of the three-state power-stroke model
were analyzed using eigenmode analysis of the Jacobian
matrix given by linearization at the stationary solution. We
derived the condition (Theorem 1) that must be fulfilled
by the eigenvalues of the Jacobian matrix. The observa-
tions made regarding the analytical representation of the

eigenmodes (Theorem 2) and the criterion given by function K

demonstrated the essence of the oscillations generated by the
balance between the rate constants of the power stroke and the
reversal stroke. The analysis through function K suggested
that there were two eigenmodes of the Jacobian matrix that
induced oscillatory behavior. The oscillations with physical
parameters in the physiological ranges seem to be given by two
eigenmodes with real positive eigenvalues, which are situated
far away from a pair of conjugate imaginary eigenvalues that
correspond to the onset of Hopf bifurcation. The magnitude
of the smaller positive eigenvalue seems to be strongly related
to the frequency of the oscillation, whereas the larger positive
eigenmode seems to induce an unstable density before rapidly
stretching with the collective reversal strokes that nearly cause
the population to disappear in the poststroke state.

Because our study is based on linearization at the stationary
solution, our analysis is effectively limited to the description of
instabilities for small deviations from the stationary solution;
that is, we cannot explain the regular periodicity with current
theory. Thus, a more complete understanding of the oscillatory
behavior may require more advanced approaches beyond
linearization. Several details of the actual system are simplified
in our three-state model. Our model does not cover all the
known molecular states in the actomyosin ATPase cycle [26].
The three-dimensional geometry of the sarcomere (overlaps
of the two filaments, the positions of the binding sites along
the actin filament, and the myosin heads along the myosin
filament) are not taken into account. Thus, we have to refine
our model from this point of view in our future work.
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APPENDIX A: COMPUTATION OF THE KERNEL
VECTOR OF A

Once Ppxb,0 is determined, the density functions are given
as

[{p̂pre,0}
{p̂pos,0}

]
=

[ 〈u〉 −〈b〉
−〈f 〉 〈v〉

]−1[
aPpxb,0{y0}

0

]

=
[〈v/e〉 〈b/e〉
〈f/e〉 〈u/e〉

][
aPpxb,0{y0}

0

]

= aPpxb,0

[〈v/e〉{y0}
〈f/e〉{y0}

]
. (A1)
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Because p0 is normalized, we have

aPpxb,0

∫
[v(x) + f (x)]y0(x)

e(x)
dx + Ppxb,0 = 1. (A2)

This determines Ppxb,0. Because the 2 × 2 matrix in Eq. (A1)
is regular, it is obvious that the kernel of A is one-dimensional
space spanned by p0.

APPENDIX B: COMPUTATION OF THE EIGENMODE

The proof of Theorem 2 is based on the following formula
that provides the inverse of an arbitrary block 2 × 2 matrix:[

α β

γ ω

]−1

=
[
α−1 + α−1βσ−1γα−1 −α−1βσ−1

−σ−1γα−1 σ−1

]
,

(B1)

where σ is the Schur complement matrix given by

σ = ω − γα−1β. (B2)

We apply Eq. (B1) to the following matrix:

A + λI =
⎡
⎣〈u + λ〉 −〈b〉 −a{y0}

−〈f 〉 〈v + λ〉 {0}
−{d}T −{g}T a + λ

⎤
⎦ (B3)

with

α =
[ 〈û〉 −〈b〉
−〈f 〉 〈v̂〉

]
, β =

[−a{y0}
{0}

]
,

γ = [−{d} − {g}], ω = a + λ,

where û = u + λ and v̂ = v + λ. By substituting the inverse
of α given by

α−1 =
[〈v̂/hλ〉 〈b/hλ〉
〈f/hλ〉 〈û/hλ〉

]
(B4)

into Eqs. (B1) and (B2), we obtain

(A + λI)−1 =
[
α̃ β̃

γ̃ ω̃

]
(B5)

with

α̃ =
[〈

v̂
hλ

〉 〈
b
hλ

〉
〈

f

hλ

〉 〈
û
hλ

〉
]

+ aσ−1

⎡
⎣

〈
v̂
hλ

〉{y0}
{

dv̂+gf

hλ

}T 〈
v̂
hλ

〉{y0}
{

db+gû

hλ

}T

〈
f

hλ

〉{y0}
{

dv̂+gf

hλ

}T 〈
f

hλ

〉{y0}
{

db+gû

hλ

}T

⎤
⎦,

β̃ = aσ−1

[{
v̂
hλ

y0
}

{
f

hλ
y0

}
]
,

γ̃ = σ−1

[{
dv̂ + gf

hλ

}T {
db + gû

hλ

}T
]
,

ω̃ = σ−1,

where the Schur complement is given by

σ = a + λ − a

{
dv̂ + gf

hλ

}T

{y0}. (B6)

From the fact that

{1}T {y0} =
∫

y0(x)dx = 1, (B7)

and the equality

dv̂ + gf − hλ = −λ(f + v̂), (B8)

the Schur complement in Eq. (B6) can be further deformed as

σ = λ − a

{
dv̂ + gf

hλ

− 1

}T

{y0}

= λ − a{1}T
〈
dv̂ + gf − hλ

hλ

〉
{y0}

= λ

(
1 + a

{
f + v̂

hλ

}T

{y0}
)

. (B9)

From the equality

db + gû − hλ = −λ(b + û) (B10)

and Eqs. (B7) and (B8), we also obtain

1

λ
{y0}

{
dv̂ + gf

hλ

− 1

}T

= −{y0}
{

f + v̂

hλ

}
, (B11)

1

λ
{y0}

{
db + gû

hλ

− 1

}T

= −{y0}
{

b + û

hλ

}
. (B12)

Therefore, for operator {y} corresponding to any function y

whose integral is equal to zero,

{1}T {y} = 0, (B13)

we have

σ−1{y0}
{

dv̂ + gf

hλ

}T

{y} = − {y0}{(f + v̂)/hλ}T {y}
1 + a{(f + v̂)/hλ}T {y0}

= −
∫

f +v̂

hλ
y dx

1 + a
∫

f +v̂

hλ
y0dx

{y0}, (B14)

σ−1{y0}
{

db + gû

hλ

}T

{y} = − {y0}{(b + û)/hλ}T {y}
1 + a{(f + v̂)/hλ}T {y0}

= −
∫

b+û
hλ

y dx

1 + a
∫

f +v̂

hλ
y0dx

{y0}. (B15)

The derivatives dppre,0/dx and dppos,0/dx fulfill Eq. (B13).
Thus, by applying Eqs. (B14) and (B15) in the multiplication
of α̃ to these derivatives, we obtain Theorem 2.
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