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Sufficient conditions for the additivity of stall forces generated by multiple filaments or motors
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Molecular motors and cytoskeletal filaments work collectively most of the time under opposing forces. This
opposing force may be due to cargo carried by motors or resistance coming from the cell membrane pressing
against the cytoskeletal filaments. Some recent studies have shown that the collective maximum force (stall force)
generated by multiple cytoskeletal filaments or molecular motors may not always be just a simple sum of the
stall forces of the individual filaments or motors. To understand this excess or deficit in the collective force,
we study a broad class of models of both cytoskeletal filaments and molecular motors. We argue that the stall
force generated by a group of filaments or motors is additive, that is, the stall force of N number of filaments
(motors) is N times the stall force of one filament (motor), when the system is reversible at stall. Conversely,
we show that this additive property typically does not hold true when the system is irreversible at stall. We thus
present a novel and unified understanding of the existing models exhibiting such non-addivity, and generalise
our arguments by developing new models that demonstrate this phenomena. We also propose a quantity similar
to thermodynamic efficiency to easily predict this deviation from stall-force additivity for filament and motor
collectives.

DOI: 10.1103/PhysRevE.95.022406

I. INTRODUCTION

Molecular motors (such as kinesin, dynein and myosin)
and cytoskeletal filaments (such as actin and microtubule)
are abundantly present in eukaryotic cells and are responsible
for important cellular functions. Cytoskeletal filaments give
structural stability to the cell and act as tracks along which
molecular motors move and facilitate intracellular transporta-
tion [1–6]. Many researchers have studied the dynamics
of single filaments and single motors in great detail using
experimental and theoretical tools [7–20]. However, inside
a cell, molecular motors or cytoskeletal filaments work
collectively most of the time to perform their biological
tasks. For example, the dynamics of multiple actin filaments
is responsible for lamellipodial protrusions during crawling
of cells [21,22]. Similarly, microtubules work collectively to
bring about segregation of chromosomes during mitosis [23].
Many dynein motors attach to molecular cargo and generate
force for cellular transportation [24,25], while myosin motors
primarily work together to generate forces in stress fibres
and muscle tissues. Hence, study of such systems, which
are involved in a wide range of biological processes, requires
understanding of the generation of collective force by multiple
cytoskeletal filaments or motors [26–39].

To understand collective force generation by polymerizing
biofilaments, researchers typically resort to in vitro experi-
ments in which biofilaments are polymerised either in the
form of bundles or branched sheets against a barrier, which
resists their motion by producing reaction forces [37,40–44].
One important focus of these studies is a quantity called the
stall force, which is defined as the resisting force at which the
mean growth velocity of the collection of filaments is zero, and
is the maximum pushing force generated by these filaments.

*Corresponding author: minamdar@iitb.ac.in

A number of experiments on force generation by an
assembly of biofilaments have been reported in the literature
[37,40,42–50]. In view of the overall content and objective of
our paper we will focus only on the experiments related to sin-
gle and parallel bundles of growing biofilaments. Experiments
on single actin-filament are relatively rare due to experimental
limitations created by the easy buckling tendency of a single
actin filament. To the best of our knowledge, only one set of
experiments has reported stall force for a single growing actin
filament—a value of ≈1 pN [42]. In another set of experiments
on a few actin filaments growing in parallel, Footer et al. [50]
reported a collective stall force of ≈1 pN, which is very similar
to the load required to stall a single filament. In this experiment,
the interpretation of filament cooperativity while pushing
together against the barrier is, however, complicated by the
fact that individual actin filaments may buckle before reaching
their stall force, and hence, collectively the bundle may be
unable to reach its full potential for force generation. On the
other hand, in similar experiments performed on microtubules,
researchers have found that the growth velocity of the filament
growing against an immobile barrier decreases with increased
resistance – from 1.2 μm per minute at zero load to 0.2 μm per
minute at 4-pN to 5-pN force, which is the putative stall force
in this case [40]. In another experiment based on microtubules,
using optical tweezers, Laan et al. [43] report that stall forces
of 2.7 pN, 5.5 pN, and 8.1 pN are produced by groups of
filaments. They interpreted this as containing one, two and
three filaments, respectively. Hence, they concluded that stall
force scales linearly with the number of filaments though there
could be possible ambiguity in directly counting the number
of filaments in the group.

On the theoretical and computational front, there are a
number of very detailed models for understanding the force-
velocity dynamics of a single biofilament [51–54], as well as
a few that try to model the dynamics of multiple biofilaments
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[26,29–32,55–57]. Some of these theoretical studies have
demonstrated that the stall force of multiple, noninteracting
filaments without ATP-GTP dynamics scales linearly with
the number of filaments [26,29–31,55]. In contrast, a few
other recent papers quite clearly report that inclusion of
ATP-GTP hydrolysis can lead to either enhanced or reduced
cooperativity in the maximum force generated by multiple
growing filaments; the stall forces need not always scale with
the number of filaments [32,57–59]. In other words, the stall
forces of individual filaments are nonadditive in general, that
is, the collective stall force produced by N number of filaments
[denoted by f (N)

s ] is not just a simple sum of individual
stall forces of single filaments [i.e., f (N)

s �= Nf (1)
s ]. It is quite

intriguing as to why tweaking an internal variable (ATP or
GTP) for an individual filament without actually changing
any external interaction between the filaments can lead to this
drastic change in their collective generation of force.

In studies similar to those on the biofilaments, the stall
force for motors is defined by the resisting force at which the
average velocity of the motors is zero. The experiments on
molecular motor force generation mostly involve micro-sized
dielectric particles and optical tweezers, by which a resisting
force is applied on the moving motors, in order to measure their
velocity response as a function of the resisting force [60–71].
We briefly describe, in the following text, a few examples that
are relevant for our current study. A single-molecule study of
kinesin shows that kinesin is a strong molecular motor and
generates maximum force of magnitude ≈5−8 pN [60,65],
whereas the stall force of certain variants of dynein is measured
to be a relatively lower value of ≈1 pN [66]. Dyneins in a
group are, however, reported to generate force collectively,
something that is missing in kinesin, mainly because of its
lack of processivity under larger forces [66].

A single-headed variant of the kinesin family, KIF1A,
which migrates along the microtubule in alternating states
of strong attachment and incomplete detachment, produces
a very small stall force (≈0.1 pN). However, a very recent
experiment of tube-pulling assay on KIF1A motors has
demonstrated extremely strong cooperative force generation
in these motors—≈10−15 single-headed KIF1A motors could
indeed pull out tubes from giant unilamellar vesicles, which
require a force around two orders of magnitude larger than the
arithmetic sum of the individual stall forces [72].

There are a few broad classes of models present in the
literature for understanding the force-velocity relation of both
single molecular motors [10,73,74] as well as for a group
of molecular motors [75–78]. The multiple molecular motor
models describe a variety of different biophysical scenarios
such as motors elastically coupled to each other, motors
elastically coupled to the cargo, tug of war between motors
walking in opposite directions, and self-exclusion interactions
between motors pulling on a membrane tether for processive
as well as nonprocessive motors [33,76–79]. Specifically,
Campàs et al. [33] have shown theoretically that the collective
stall force for multiple motors are nonadditive [f (N)

s �= Nf (1)
s ]

in the presence of attractive or repulsive interactions and
can be manyfold larger. However, in the absence of such
interactions, the stall forces in this model are simply additive.
Also, in a series of recent papers, Casademunt and coworkers
[28,34,79,80], using a “two-state” model [73] for multiple

interacting motors, have demonstrated that the motors can
produce highly enhanced cooperativity in stall force generation
and, in particular, demonstrated this phenomenon for the
KIF1A motor [72].

From the above discussion, it is quite clear that the collec-
tive force generation by motors and biofilaments can indeed
exhibit or has the potential to exhibit highly diverse behavior.
As noted earlier, some studies have shown enhanced or reduced
cooperativity in the collective stall force generation, while
other studies hint towards additivity of stall forces. Hence,
it would be both interesting and important to understand the
conditions under which stall forces become simply additive
and, consequently, get better insight into the circumstances
under which the simple additivity is lost. In this paper,
we develop a general theoretical framework to understand
how enhanced or reduced cooperativity in collective force
generation can appear in systems of multiple cytoskeletal
filaments or motors. We investigate this question by studying
various models for these systems. From our case studies we
conclude, quite generally, that the violation of stall force
additivity stems from the violation of the condition of detailed
balance, that is, departure from thermodynamic reversibility.
On the other hand, stall forces are additive when the system
of filaments or motors are in equilibrium at stall. The main
contribution of this paper is to recognize the hitherto invisible
thread of thermodynamic reversibility linking the phenomenon
of stall force additivity across a variety of models.

II. COLLECTIVE STALL FORCE FOR MULTIPLE
CYTOSKELETAL FILAMENTS AND MOTORS: STALL

FORCES ARE ADDITIVE FOR REVERSIBLE DYNAMICS

Inspired by the growth of cytoskeletal filaments against cell
membranes, theorists have studied various models of filament
dynamics against a constant applied load [26,29,32,51,81,82].
Similarly to the filaments, motors also work against load and
have been modelled in several studies [33–35,76,77]. Many
of these filament and motor models are mathematically very
similar and can be described by a common framework of
biased random walk [see Fig. 1(a) and Fig. 1(b)]. We consider a
collection of rigid filaments nucleating from a fixed wall at left,
while a resisting force f is applied on them via a moving wall at
right. Each filament grows and shrinks by stochastic addition
and removal of subunits of size d [see Fig. 1(a)]. Similarly,
each motor takes a single forward or backward step on a fixed
one-dimensional track (such as a track of microtubule or actin)
of lattice constant d [see Fig. 1(b)]. However, there is a key
difference between the systems of filaments and motors: The
motors cannot overtake each other, maintaining their sequence
on the lattice, and, consequently, the leading motor alone bears
the force f [Fig. 1(b)]. The motors further obey “mutual
exclusion,” that is, each lattice site can be occupied by one
motor only when the site is empty. On the contrary, the filament
tips do overtake each other since the filaments grow in parallel,
and, therefore, any of the filaments can experience the applied
force f [Fig. 1(a)]. In these models, we measure the forces in
the units of kBT /d, where kB is the Boltzmann constant, T is
the temperature, and d is the subunit size (or lattice size). We
take kBT /d = 1 without losing generality. In the absence of
any force, we denote the polymerization rate (forward-hopping
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FIG. 1. Biased random walk model for filaments and motors:
(a) Multiple (N > 1) filaments against a wall (see Ref. [29] for a
detailed study of this model). Polymerization and depolymerization
rates are u and w, when the filaments are away from wall (hence
force free). Note that when more than one filament touches the
wall simultaneously, the depolymerization rate becomes independent
of the force (w), as a single depolymerization event cannot cause
any wall movement. (b) Multiple motors moving on a track. Note
that only the leading motor bears the force f , while the trailing
motors are experiencing force through hard core interaction. (c) Two
filaments at the collective stall force f (2)

s undergoing simple processes
of polymerization and depolymerization. (d) Two motors diffusing on
a tilted free-energy landscape. The force is acting only on the leading
motor, and the energy landscape of the leading motor changes with
the application of force. Due to hard-core interaction, a larger force
[>f (1)

s ] is required to stall the system of two motors. It is like moving
uphill, with the assistance of a trailing motor, which rectifies the
average backward motion of the leader [86].

rate) and depolymerization rate (backward-hopping rate) for
filaments (motors) as u and w, respectively. In the presence of
a resisting force f , the polymerization rates (forward-hopping
rate) decreases, and the depolymerization rate (backward-
hopping rate) increases according to the following rules:
u(f ) = ue−f δ and w(f ) = wef (1−δ). Here the parameter δ ∈
[0,1] is commonly known as force distribution factor [29,83].

In the context of the models mentioned earlier, we can
argue that the system is reversible at stall. By definition, at
the stall force, the mean velocity of the system is zero, which
implies that the overall monomer flux, in and out of the filament
assembly, is zero. Since the monomer flux is zero, it is logical to
believe that the system is reversible at stall. Strictly speaking,
the system shows reversibility at stall only if it is bounded in
length. Unbounded systems will be freely diffusive at stall,
which is clearly an irreversible phenomenon. In fact, our class
of systems (filament or motor collectives) have finite sizes
for all practical purposes. In the case of motors, they can be
thought to diffuse on a tilted energy landscape [see Fig. 1(d)],
which results in the biased random walk. This bias can be
created by chemical potential that is linked with the ATP
hydrolysis [84], which is irreversible. However, in the context
of these models, the role of the ATP chemical potential is
just to create a tilt in the energy landscape. Thus, as far as

the translational movement of the motors against an applied
force is concerned, we can conceptually think of the system
to be in thermodynamic reversibility at stall with respect to
the translational degree of freedom—the chemical coordinate
is simply orthogonal to the translation coordinate. This seems
quite analogous to the case of noninteracting active Brownian
particles, which exert pressure on the confining walls similar to
an ideal gas in equilibrium but with a renormalized temperature
due to the free energy consuming activity [85]. Nevertheless,
these arguments cannot be claimed to be true for every model
for motors or filaments. In fact, in the subsequent sections, we
show that for most models, the arguments advanced here break
down and the systems are not reversible at stall in general,
except for certain choices of the parameters.

Based on these arguments, if one assumes that the system
is reversible at stall, the tools of statistical mechanics can be
applied to calculate the stall forces. Here we show that the stall
forces are additive for multiple filaments in the simplest model,
where only polymerization and depolymerization processes
are involved [see Fig. 1(c)]. We first consider the dynamics of
a single filament under the stall force f = f (1)

s applied via the
right wall. Let the wall position be x in terms of the subunit
size [see Fig. 1(c)]. Using equilibrium statistical mechanics,
we can write the probability distribution of the wall position
P (x) as

P (x) = 1

Z
e−βf

(1)
s xeβεx = 1

Z
e−β(f (1)

s −ε)x, (1)

where Z is the partition function and ε = ln(u/w) is the free
energy gained per subunit through polymerization. Note that
the term e−βf

(1)
s x appears as we have a Gibbs ensemble in

one dimension with fixed external compressive force [f (1)
s ].

However, this distribution P (x) should be independent of x,
as the stall condition can be reached at any position x. As
per Eq. (1), this implies that f (1)

s = ε = ln(u/w). This same
expression has been obtained in earlier theories from a detailed
kinetic calculation [29]. Next, we consider a two-filament
system subjected to their stall force f (2)

s as shown in Fig. 1(c).
Let the tip position of the trailing filament be x1, which is
between 0 and the wall position x. The probability distribution
of the wall position, if the system is in thermodynamic
reversible state, is

P (x) = 1

Z
e−βf

(2)
s xeβεx

(
2

x∑
x1=0

eβεx1 − eβεx

)

∼ e
−β

(
f

(2)
s −2ε

)
x
, for large x. (2)

A factor of 2 appears on the right-hand side, since there could
be two equally likely situations—either the top filament or
the bottom filament can be the leader [see Fig. 1(c)]. Again,
P (x) is expected to be independent of x, implying that f (2)

s =
2ε = 2f (1)

s . Also, see Appendix A for explicit form of Eq. (2)
and justification for large x approximation. This argument can
be easily extended to N > 2, and thus f (N)

s = Nf (1)
s for this

simple model. Some arguments, based on detailed balance
criterion, have also been given in Refs. [26] and [30] to
show similar result of f (N)

s ∝ N for their respective models
on cytoskeletal filaments. However, we demonstrate that a
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simple calculation based on elementary statistical mechanics,
for essentially kinetic processes, leads to the same conclusion.

We now develop similar arguments to show the additivity of
stall forces for multiple motors. The forward- and backward-
hopping processes for motors can be viewed as random walks
on a tilted free-energy landscape [see Fig. 1(d)]. In this
case, x and x1 should be interpreted as the positions of the
leading and the trailing motors, respectively, for a two-motor
system. The free energy “released” per unit step by going
downhill on the free-energy landscape is ε (equivalent to the
polymerization energy). For a single motor under stall force,
we can write the same equation as before [Eq. (1)] for the
probability distribution of the leading motor’s position, P (x),
by recognizing the system to be reversible at stall. However, for
two motors at stall, the probability distribution of the leader’s
position differs from the previous case of the filaments, since
motors cannot overtake each other. The distribution of the
leader’s position is

P (x) = 1

Z
e−βf

(2)
s xeβεx

(
x−1∑
x1=0

eβεx1

)

∼ e
−β

(
f

(2)
s −2ε

)
x
, for large x. (3)

Again, using the argument that P (x) should be independent of
x, we get back the force additivity: f (2)

s = 2ε = 2f (1)
s .

In summary, we show that the stall forces are additive
for the simple models considered here. This demonstration
hinges on the recognition that the systems are reversible at
stall, which may not be true in many biological situations. In
fact, we show in the next sections that there are many classes
of models for which the reversibility description is simply
not feasible, and, consequently, more complex models have
interesting implications.

III. STALL FORCES ARE NONADDITIVE FOR
BIOLOGICALLY RELEVANT IRREVERSIBLE MODELS

In this section, we present several case studies to show that
the force inequality [f (N)

s �= Nf (1)
s ] is true in general for stall

dynamics departing from reversibility; however, for certain
combinations of kinetic rates the relationship f (N)

s = Nf (1)
s

can be retrieved. We begin by analyzing various models of
cytoskeletal filaments.

A. A random hydrolysis model for cytoskeletal filaments

In cytoskeletal filaments (such as microtubules and actin
filaments), subunits are typically bound to ATP or GTP
molecules. When the subunits are connected to the filaments,
the ATP or GTP molecules release phosphate and convert
to ADP or GDP in a process known as ATP or GTP
hydrolysis [3,87]. The ADP- or GDP-bound monomers have
much higher depolymerization rates compared to ATP- or
GTP-bond monomers [17,88]. Due to this heterogeneity, the
cytoskeletal filaments exhibit interesting properties such as
“dynamic instability” [89]. The dynamics of the cytoskeletal
filaments have been theoretically studied by many researchers
using the “random hydrolysis” model [90–94]. Here, we
focus on the simplified model of this process as discussed
in Refs. [32,92], where we neglect complexities related to

(a) (b)

(c) (d)

FIG. 2. (a) Random hydrolysis model with three filaments, where
individual monomer switches from T to D unidirectionally and ran-
domly. Different processes are shown by arrows. k0 = 3.2 μM−1 s−1,
c = 100 μM, wT = 24 s−1, and r = 0.2 s−1. (b) �(2) [red (dark
gray) curve] and α [blue light (gray) curve] versus wD . Note that
both α and �(2) are zero only at wT = wD and they are highly
correlated in sign. (c) The fluxes per filament (defined in the text),
at stall, for T and D monomers as a function of the filament
number N for wD = 290 s−1(α > 0). (d) The collective stall force
per filament [f (N)

s /N ] against N , the number of filaments. For α > 0,
wD = 290 s−1 and for α < 0, wD = 5 s−1.

biofilaments such as structural details, mechanical flexibility,
possible interplay between mechanical forces and hydrolysis
events and the possible multistage nature of the hydrolysis
process [17,87,90,95,96]. As shown in Fig. 2(a), we consider
multiple filaments undergoing random hydrolysis and growing
against a wall held by a constant opposing force f . In the
model, each monomer can be in two states: T (ATP or
GTP-bound) and D (ADP or GDP-bound). Only T monomers
bind to the filaments with a rate u(f ) = uef (next to the wall)
or u (away from the wall). The rate u is proportional to the
concentration (c) of T monomers and is defined as u = k0c.
The depolymerization occurs with a rate wT if the tip monomer
is T, and wD if it is D. For simplicity, we assume that there is
no force dependence on the off-rates wT and wD (i.e., δ = 1).
Hydrolysis (T-to-D conversion) happens randomly on any T
subunit in space with a rate r . Note that the conversion T → D
is irreversible, as it is not balanced by a reverse conversion.
The exact analytical result for the stall force f (N)

s is not known
for such a detailed model. Instead, we numerically simulate
the model using the Gillespie algorithm [97] (see Appendix B)
with experimentally known rates [17,87,88] for microtubules
and actin filaments.

Before proceeding to discuss the issue of stall force
additivity, we define a parameter, the “force deviation”:

�(N) = f (N)
s − Nf (1)

s . (4)

This parameter represents the excess or deficit of the collective
stall force generated by N filaments, as compared to N times
the force generated by a single filament. So the deviation
�(N) �= 0 implies the violation of force equality, f (N)

s = Nf (1)
s .
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As noted before, the random hydrolysis model is an irre-
versible model by construction. To understand the implications
of this irreversible nature, we first look at the energetics
associated with the polymerization-depolymerization pro-
cesses. A growing filament clearly performs work against an
applied load f through polymerization. The work done for
addition of one subunit to the filament is simply f d, where
we can take subunit-size d = 1 without losing any generality.
At the stall force f = f (1)

s , the filament delivers the maximum
work Wmax

poly = f (1)
s . The free-energy input to the filament in

order to do this work is provided by polymerisation and can
be written as Fpoly = ln(u/wT ) per subunit addition. Note
that D monomers do not polymerize, and hence there is no
contribution in Fpoly due to D monomers. Finally, we define
the following quantity for a single filament:

α = Fpoly − Wmax
poly = ln(u/wT ) − f (1)

s . (5)

The quantity α signifies how different the maximum work
produced per filament is, as compared to the free-energy input.
Hence, α is analogous to the thermodynamic efficiency of
the system [98]. In Fig. 2(b) we plot the deviation �(2) and
the efficiency α for two microtubules against the dissociation
rate wD of D monomers. Interestingly, �(2) and α are
correlated in the numerical sign. This gives us a hint that
the violation of force additivity has something to do with the
imbalance between the work produced and the free-energy
input (i.e., the departure from reversibility). To appreciate this
interconnection between �(2) and α, we proceed to investigate
the particle fluxes of the T and D monomers.

We calculate the particle fluxes when the N -filament system
is at stall. In the simulations [97] we separately keep track of
the numbers of T and D monomers binding (or unbinding) at
a filament tip in an N -filament system. The fluxes are then
calculated over a time window. The flux for T monomers
per filament (JT ) is defined as the net change of T monomer
numbers at any one filament tip divided by the size of the
time window. Similarly, we also calculate the flux per filament
for D monomers (JD). In Fig. 2(c), we show these fluxes at
stall. Although we have JT + JD = 0 (which is expected at
stall), individually the fluxes per filament (both JT and JD) are
nonzero, signifying the irreversible nature of the dynamics. An
important point to note is that the fluxes per filament, at stall,
decrease with the number of filaments, N , and tend to saturate.
From this observation, we are tempted to make a hypothesis
that an irreversible system with a large number of filaments is
closer to reversibility in comparison to a single-filament system
(see Appendix C for a crude entropy production argument for
this hypothesis).

With this hypothesis in hand, we now attempt to explain
why the numerical signs of �(2) and α are correlated [Fig. 2(b)].
We first consider the case α > 0, when a single filament
performs less work than the free energy provided by the
polymerization [see Eq. (5)]. In this case, some energy
is dissipated by the filament due to the internal T → D
transitions. As per our hypothesis, if the two-filament system
is closer to reversibility as compared to a single filament, the
two-filament system should extract more work by increasing
the stall force per filament. To check this, in Fig. 2(d), we
show the stall force per filament (i.e., the maximum work
extracted per filament), f (N)

s /N as a function of the filament

number N . The stall force per filament indeed increases
with N for α > 0 and saturates near the net free-energy
input [ln(u/wT )]. In other words, as the number of filaments
increases, the collective stall force per filament gets closer to
the “reversible” value of ln(u/wT ). This increase in stall force
per filament makes f (2)

s /2 > f (1)
s and in return gives positive

�(2). Thus, the α > 0 case correlates with �(2) > 0. Similar
arguments can be given for α < 0 [see Fig. 2(d)], where a
single filament performs more work than the energy provided
by polymerization. To bring the system closer to reversibility,
the two-filament system decreases the stall force per filament
[f (N)

s /N < f (1)
s ]. Hence, �(2) is negative if α < 0.

An interesting point to note in Fig. 2(b) is that both
�(2) and α are zero exactly at wT = wD . This shows that
T → D switching (hydrolysis) is necessary to produce the
phenomenon of nonadditivity of stall forces. It is to be noted
that the hydrolysis is always an irreversible process as it is
unidirectional. However, the condition wT = wD effectively
corresponds to absence of switching, since dynamically there
remains no distinction between T and D subunits. The fila-
ments cannot “sense” their distinct presence as far as the force
generation is concerned. Yet, the condition wT = wD does not
imply a true reversibility until we set the T → D switching
rate to zero. Another way to possibly achieve reversibility at
stall is to incorporate the reverse switching (D → T) and allow
the polymerization of D subunits. Although these additions are
biologically unrealistic, we nevertheless study such a model
in the next section to explore the relevance of irreversible
dynamics for nonadditivity of the stall forces.

B. A generalized random hydrolysis model for filaments

We make the random hydrolysis model (discussed in
Sec. III A) more general and symmetric by allowing (i) D
→ T conversion and (ii) addition of both D and T monomers
to the filaments. In this model [see Fig. 3(a)], both T and D
subunits can bind to a filament with constant rates uT and
uD , respectively. When the filaments come in contact with
the wall [see Fig. 3(a)], the polymerization rates decrease to
uT (f ) = uT e−f and uD(f ) = uDe−f in the presence of the
force f (using the load distribution factor δ = 1 for simplicity).
The depolymerization occurs with a rate wT if the tip monomer
is T or wD if it is D. Any randomly chosen subunit inside a
filament can convert either from T to D (with rate kT D) or from
D to T (with rate kDT ).

Within the general version of the random hydrolysis model,
we now proceed to show that the two-way switching (T → D,
and D → T) in general produces irreversible dynamics that is
embodied in the violation of the condition of detailed balance
for the kinetic rates. For a single filament, as shown in Fig. 3(b),
we consider a loop of dynamically connected configurations.
The product of clockwise and counterclockwise rates are
uT kT DwD and uDkDT wT , respectively. For the condition
of detailed balance, that is, reversibility, to be reached at
steady state, the two products must be equal according to
the Kolmogorov’s criterion [99,100] (or the Wegschieder
condition [101]), which leads to

uT

wT

kT D

kDT

wD

uD

= 1. (6)

022406-5



BAMETA, DAS, DAS, PADINHATEERI, AND INAMDAR PHYSICAL REVIEW E 95, 022406 (2017)

(a) (b) (c)

FIG. 3. (a) Schematic diagram of a generalized random hydrolysis model with two-way switching (both T → D, and D → T). Different
processes (shown in arrows) are discussed in the text. (b) Schematic depiction of a connected loop in the configuration space of a single
filament, within the model. (c) Deviation �(2) versus uT [red (dark gray) curve], and α versus uT [blue (light gray) curve], for the generalized
random hydrolysis model. The parameters are wT = 2 s−1, kT D = 0.3 s−1, kDT = 0.4 s−1, uD = 3 s−1, and wD = 1 s−1.

If we fix the parameters wT = 2 s−1, kT D = 0.3 s−1, kDT =
0.4 s−1, uD = 3 s−1, and wD = 1 s−1, then we would have
uT = 8 s−1 from the above reversibility condition [Eq. (6)].
Though this criterion is written in terms of force-free rates,
it is clear that using the modified rates in the presence of
the resisting force would not change the condition in Eq. (6).
We now plot the deviation �(2) = f (2)

s − 2f (1)
s versus uT in

Fig. 3(c); see the red (dark gray) curve (data from stochastic
simulation). The plot quite interestingly shows that �(2) =
0 only at uT = 8 s−1; otherwise it is nonzero. This clearly
indicates that the phenomenon of nonadditivity of stall forces
is tied to the departure of the system from reversibility. This
can be compared with the arguments given in Sec. II, where
it is shown that the filament models involving no switching
exhibit reversibility at stall, and, consequently, the relationship
f (N)

s = Nf (1)
s holds without any restriction.

We can further relate the effect of irreversibility on the
nonadditivity of the force with the imbalance between the
free-energy input and maximum work output (as discussed
in Sec. III A). Because, in the present model, the filaments
can grow by adding D or T monomers, the free-energy
input to the system should depend on polymerization energies
corresponding to both T and D monomers. Consequently, the
partition function for a single filament is eεT + eεD (using
kBT = 1), where εT and εD are polymerization energies
provided by T and D monomers, respectively. Hence, the

free-energy input to the filament is Fpoly = ln[eεT + eεD ] =
ln[(uT /wT ) + (uD/wD)]; and the maximum work done by the
filament is simply f (1)

s (using subunit size d = 1). Following
previous Sec. III A, we again define an efficiency-like param-
eter for the current model as below

α = Fpoly − Wmax
poly = ln[(uT /wT ) + (uD/wD)] − f (1)

s . (7)

We see in Fig. 3(c) that both α and �(2) are correlated in
numerical sign, and they are nonzero everywhere except for a
single point where the system is reversible at stall [according
to Eq. (6)]. With this understanding of the connection between
the irreversible dynamics and nonadditivity of stall forces, we
study another model for filaments [32] in the next section and
show that the same ideas can be carried forward.

C. A two-state model for filaments

In the literature [19,32], there exists a model which
incorporates the detailed process of hydrolysis in a more
coarse-grained way. In this model [Fig. 4(a)], each filament can
switch between two chemical states 1 and 2, with switching
rates k12 (from 1 to 2) and k21 (from 2 to 1). In the states
1 and 2, the filament has distinct depolymerization rates w1

and w2, respectively, and polymerization rates of u1 and u2,
respectively [see Fig. 4(a)]. If a filament bears the load (i.e.,
touches the wall), then its polymerization rate is modified to

(a) (b) (c)

FIG. 4. (a) Schematic diagram of single-filament two-state model with switching between states 1 [blue (light gray)] and 2 [red (dark
gray)]. Various processes are shown by arrows and corresponding rates, as discussed in the text. (b) Schematic depiction of a connected loop
in the configuration space of single-filament two-state model. The configurations are denoted by ordered pairs, whose first element is the
instantaneous length and second element is the chemical state (1 or 2). (c) �(2) [red (dark gray) curve] and α [blue (light gray) curve] as a
function of u2 for the two-state model. Parameters are k12 = 0.5 s−1, k21 = 0.5 s−1, w1 = 0.1 s−1, u1 = 1 s−1, w2 = 0.8 s−1. Data obtained
using analytical expression of f (1)

s and f (2)
s taken from Ref. [32].
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ui(f ) = uie−f (i = 1,2). For simplicity, we assume that the
depolymerization rates are force independent.

For the above two-state model, we first explicitly show that
at stall the dynamics is irreversible. As shown in Fig. 4(b),
we consider a loop of connected configurations for a single
filament characterized by its length and state. In this case,
Kolmogorov’s criterion reduces to

u1k12w2k21 = k12u2k21w1

=⇒ u1

w1
= u2

w2
. (8)

Following the procedure involving microscopic master equa-
tions, as described in Ref. [32], we analytically obtain the
single-filament and two-filament stall forces [f (1)

s , f (2)
s ]. In

Fig. 4(c), we plot �(2) against u2 [red (dark gray) curve]
with fixed w1 = 0.1 s−1, u1 = 1 s−1, and w2 = 0.8 s−1. We
find that �(2) �= 0 for all u2, except for u2 = 8 s−1 [the value
corresponding to the equality in Eq. (8)]. This shows that
the nonadditivity of stall forces is tied to the departure from
reversibility.

It is to be noted that in the two-state model, ln(ui/wi) is
the polymerization free energy in state i = (1,2). Hence, if Pi

is the probability of finding a filament in a state i, then at any
instant the amount of free energy that is transferred from the
bath of monomers to the filament by addition of monomers
of type 1 or 2 is Fpoly = P1 ln(u1/w1) + P2 ln(u2/w2). On the
other hand, the maximum amount of work done by a filament
against the applied force is Wmax = f (1)

s (monomer size being
d = 1). Therefore, as defined in the previous sections, we can
again define an efficiency parameter as

α = Fpoly − Wmax = [P1 ln(u1/w1) + P2 ln(u2/w2)] − f (1)
s ,

(9)

where P1 = k21/(k12 + k21) and P2 = k12/(k12 + k21). These
probabilities follow from the fact that the detailed balance
relation P1k12 = P2k21 holds at the steady state for a single
filament, as intuitively evident from the Fig. 4(a) (also see
Ref. [32]), along with the normalization condition P1 + P2 =
1. In Fig. 4(c), we plot α versus u2 [blue (light gray) curve].
We see that �(2) is closely coupled to α in numerical sign and
both are nonzero except at the point where the reversibility
condition [Eq. (8)] is satisfied.

The effect of nonadditivity of stall forces is not specific
to cytoskeletal filaments. Even systems of multiple molecular
motors show such a behavior [33,72]. In the ensuing sections,
we explore the connection between the nonadditivity of the
force with the irreversible dynamics in the system of motors.

D. Model of interacting motors by Campàs et al.

A model of multiple interacting motors pushing against a
load has been recently proposed by Campàs et al. [33]. In this
model [Fig. 5(a)], motors walk along a one-dimensional lattice
(lattice spacing d = 1) and move by a single step forward (rate
u) or backward (rate w). There is hard-core interaction between
the motors. The leading motor alone bears the load, and hence
its hopping rates are modified to u(f ) = ue−fδ , and w(f ) =
wef(1−δ), where δ is the force distribution factor. The hopping
rates also change due to nearest-neighbor interactions—if a

(a) (b)

(c)
(d)

FIG. 5. (a) Schematic diagram of the motor model proposed by
Campàs et al. [33], where multiple interacting motors push against
a cargo with a constant force f acting against their motion. Various
processes are shown by arrows and discussed in the text. (b) Schematic
depiction of a closed loop of dynamically connected configurations
for the model shown in (a). (c) Deviation �(2) versus ū within
the model of Campàs et al. (data obtained from the exact formula
given in Ref. [33]). Parameters are specified in the text. We took the
force distribution factor δ = 1. (d) Motors walking on a free-energy
landscape [33]. The effect of nearest-neighbor interactions is shown
schematically.

motor is adjacent to another one, then its forward and backward
hopping rates become ū and w̄, respectively [see Fig. 5(a)].

From analytical calculations and numerical simulations, the
authors have found that the stall forces are not necessarily
additive. We show here that the nonadditivity is a manifestation
of the irreversible nature of the dynamics. To show this we
apply the Kolmogorov criterion by making a closed loop of
connected configurations as shown in Fig. 5(b). By equating
the clockwise and counterclockwise products of rates along
the loop, we have

uūww = w̄uuw

=⇒ u

w
= ū

w̄
. (10)

Exact analytical expressions of the single-motor stall
force f (1)

s = ln(u/w), and the two-motor stall force f (2)
s =

ln[(uū/ww̄) + (u/w) − (ū/w̄)] are derived in Ref. [33]. If
we put the equality of Eq. (10) in the expression of f (2)

s ,
we clearly see that the relationship f (2)

s = 2f (1)
s follows. We

further plot [Fig. 5(c)] �(2) = f (2)
s − 2f (1)

s versus ū, with fixed
u = 20 s−1, w = 5 s−1, and w̄ = 1 s−1. In this case, ū = 4 s−1

corresponds to reversible dynamics [Eq. (10)], and we see that
except for ū = 4 s−1, �(2) �= 0 everywhere. This corroborates
our hypothesis that the additivity of stall forces is closely
linked with the underlying reversibility of the system, a point
not recognized in Ref. [33].

We can also obtain the condition of reversibility [Eq. (10)]
from a simple thermodynamic argument by considering the
hopping processes of the motors on a free-energy landscape
[see Fig. 5(d)]. Due to the nearest-neighbour interactions,
the shape of the free-energy landscape gets altered when the
motors are adjacent to each other. An attractive interaction
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(a) (b) (c)

FIG. 6. Multiple step size motor model: (a) Schematic diagram of the motors moving with two distinct step sizes. The kinetic processes
(shown in arrows) are explained in the text. (b) A closed loop of connected configurations for the model with one motor. (c) Deviation �(2)

versus u2 [red (dark gray) curve] and α versus u2 [blue (light gray) curve]. The parameters are u1 = 80 s−1, w1 = 8 s−1, and w2 = 1 s−1.

deepens the energy wells by an amount eint [dotted blue
(light gray) curve in Fig. 5(d)] and makes it hard for the
particles to leave the position. This reduces the forward- and
backward-hopping rates. On the other hand, the repulsive
interaction makes the potential wells shallower [dotted red
(dark gray) curve in Fig. 5(d)], which makes it easy for the
particles to hop forward or backward. In this case, hopping
rates increase from the original values. When the motors are
adjacent to each other, following Fig. 5(d), the hopping rates
are given by

u

w̄
= eε−eint , (11)

ū

w
= eε+eint . (12)

For a motor which is away from the other one, eint = 0, and
we further have

u

w
= eε. (13)

By rearranging Eqs. (11), (12), and (13), we get back the same
condition, u

w
= ū

w̄
, as in Eq. (10), which is a reflection of the

reversible dynamics at stall.

E. A motor model with multiple step sizes

It was found [14,62] recently that dynein motors on a
microtubule can take multiple step sizes, predominantly 24-nm
and 32-nm steps. This inspired us to cast a new model of
motors walking with two distinct step sizes [see Fig. 6(a)]. A
motor at a lattice site i can hop to any of the sites i + 1 (with
rate u1), i + 2 (with rate u2), i − 1 (with rate w1), or i − 2
(with rate w2). The leading motor alone bears the applied
force f and its forward rates are modified to u1(f ) = u1e−f

and u2(f ) = u2e−2f , while the backward rates are assumed
to be force independent. Unlike the model in the previous
section (Sec. III D), there is no explicit attractive or repulsive
interaction between the motors.

Proceeding in a similar way as described in Sec. III B, we
first derive the condition for reversibility by considering a
closed loop of connected configurations as shown in Fig. 6(b).
Following the Kolmogorov criterion, we get

u2
1w2 = u2w

2
1

=⇒ u2

w2
=

(
u1

w1

)2

. (14)

If we take u1 = 80 s−1, w1 = 8 s−1, and w2 = 1 s−1, then
u2 = 100 s−1 is the value corresponding to the reversible
condition [see Eq. (14)]. In Fig. 6(c), �(2) versus u2 is plotted
from our simulation results [red (dark gray) curve], where we
see that indeed �(2) = 0 only for u2 = 100 s−1. Thus, one
can again associate the force inequality f (N)

s �= Nf (1)
s to the

violation of the detailed balance condition.
Just like the models of filaments discussed in the previous

sections (Secs. III A, III B, and III C), we can show that the
effect of force additivity for motors is related to the underlying
energetic imbalance. The motor model with multiple step
sizes looks conceptually similar to the generalized random
hydrolysis model (see Sec. III B). At any instant, a filament can
grow by adding T or D monomers in the generalized random
hydrolysis model; whereas in the current model a motor can
move forward (or backward) by taking steps of sizes d or 2d.
These steps of size d and 2d involve different amounts of work
done by a single motor at stall [f (1)

s d and f (1)
s 2d, respectively].

By contrast, addition of a D or T monomer to a single filament
leads to the extraction of the same amount of work [f (1)

s d].
Hence, for the definition of the efficiency parameter, α, we
choose to take into account the energy imbalance that results
from a single step of size d. For a single motor taking a step of
unit lattice size, we can write the free energy supplied by ATP
molecules as F = ln(u1/w1) and the maximum work done as
Wmax = f (1)

s (considering the lattice spacing d = 1). Thus, we
can define an efficiency-like quantity as

α = F − Wmax = ln(u1/w1) − f (1)
s . (15)

We do not claim that this is a unique definition of α for the
system. One may certainly come up with some other definition
of α, for example,

α = 1

2

[
ln

u2

w2
− 2f (1)

s

]
, (16)

to quantify the excess or deficit of energy supply to the
system. Note that both the definitions of α [Eqs. (15) and
(16)] essentially capture the energy imbalance per unit step.

We plot α [from Eq. (15)] and �(2) versus u2 in Fig. 6(c) and
see that both α and �(2) are indeed correlated in numerical sign.
Moreover, both of them are zero only when the reversibility
condition [Eq. (14)] is satisfied. The same finding can be
derived using the other definition of α, that is, using Eq. (16)
instead of Eq. (15) (data not shown). This further strengthens
our point that nonadditivity of stall forces is a manifestation
of underlying irreversible stall dynamics.
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IV. DISCUSSION AND CONCLUSION

Collective force generation by filaments or motors has
been theoretically studied by many researchers using various
models in specific contexts [26,29,31–34,55,57,78,102,103].
However, a broad picture explaining the cooperative effects
in stall (maximum) force generation is still missing. In this
paper we have provided a theoretical framework to understand
and predict the cooperative effects in the maximum force
generation by multiple motors or filaments for a broad class
of models. It is now appreciated, at least theoretically, that the
stall force of individual cytoskeletal filaments or molecular
motors, when they push together against some obstacle, is not
additive in general [32,33,58]. In this paper we have provided
several pointers to show that reversibility at stall provides
sufficient conditions for the additivity of stall forces generated
by multiple filaments and, hence, nonadditivity of the stall
forces [f (N)

s �= Nf (1)
s ] is a manifestation of the underlying

irreversible nature of the dynamics at stall. However, stall force
additivity does not guarantee full force-velocity curve collapse,
i.e., speed of N motors (filaments) under a load f is not guar-
anteed to coincide with that of a single motor (filament) under a
load f/N ; this fact [VN (f ) �= V1(f/N)] is demonstrated even
for simple models satisfying the Kolmogorov criterion [29,33].

Our study suggests that if the Kolmogrov criterion for
kinetic rates is satisfied, then one does not need a detailed
calculation to obtain the stall force of multiple filaments
or motors. The same result can be obtained from a simple
equilibrium statistical mechanics calculation. Moreover, even
if the Kolmogrov criterion for kinetic rates is not satisfied for
a system, our efficiency parameter α qualitatively predicts that
the cooperative effects in the stall force for multiple filaments
(or motors) is either enhanced or decreased as one increases the
number of filaments (or motors). For a class of models (discrete
models) discussed in this paper, we clearly see a correlation be-
tween the numerical signs of α and the force deviation �(2). We
would like to point out that the Kolmogorov or Wegschieder
criterion for detailed balance has been used earlier in the
context of multiple growing filaments [30] to describe the
linear scaling of the stall force with the number of filaments.
We, however, used the Kolmogorov criterion to systematically
probe a range of models and derive the conditions that must
be obeyed by their respective kinetic rates if the systems
are expected to be reversible at stall. More importantly, the
conceptual advantage gained by couching this problem in the
language of thermodynamic reversibility is that, if any similar
system is not reversible at stall, then it is not at all guaranteed
that the stall forces will be additive with the system size
(number); in fact, nonadditivity is the more likely outcome.

To illustrate the above point further, we take a concrete
example of a general two-state motor model from the existing
literature [33,34,73,79,80] (Fig. 7), which demonstrated the
stall force nonadditivity f (N)

s �= Nf (1)
s . Our analysis indicates

the same conclusion with very high likelihood without any
detailed simulation or theoretical calculations. We identify that
the violation of detailed balance in the transition rates between
the states is a requirement for the spontaneous motion in this
two-state Brownian ratchet model [see Fig. 7(a)]. As a result,
even for a single motor at stall, although the mean velocity
flux of the motor is zero, the individual velocity fluxes in state
1 and state 2 (with potentials U1 and U2, respectively) for the

(a)

(b) (c)

FIG. 7. Schematic of the (a) continuous [73] and (b) discrete
two-state Brownian ratchet model [104,105]. (a) A spontaneous
motion is expected when the ratio of transition rates ω1(x)

ω2(x) is far
from the reversible value given by the detailed balance condition.
(b) Discrete version of the two-state ratchet model with effective
transition rates −→ω A(x), ωA(x), ωB (x), and ←−ω B (x). (c) Energy
landscape corresponding to discrete two-state model.

motor are not independently zero. In fact, only by observing the
energy landscape one can say that, at stall, the mean particle
flux in state-1 and state-2 would be positive and negative,
respectively. This is because the mean particle flux in state-2
is zero in the absence of any resisting force [flat potential,
see Fig. 7(a)] and would become negative with the application
of a resisting force. To make the mean flux of the overall
system zero, the effective mean flux in state-1 has to be positive
under stall condition. This irreversibility at stall for one motor
manifests itself in the form of nonadditivity of stall forces in the
presence of multiple motors, even though the only interaction
between them is self-exclusion [Fig. 7(a)] [33,79,80]. How-
ever, some caution needs to be exercised in making general
conclusions about irreversible models. For example, motors
can attain stall force additivity in the two-state model under
sufficiently large noise intensities or for sufficiently long-range
interactions among motors, in which case a mean-field (MF)
description becomes admissible [28]. In a different limit, motor
in this two-state model can also show stall force additivity
when noise is negligible in state-1 and the motor can hop
to state-2 only from the bottom of potential-1 [28]. Such
examples demonstrate that stall force additivity [�(N) = 0]
is certain for reversible systems (α = 0); however, the reverse,
i.e., where the system should be reversible for stall force addi-
tivity, is not necessarily true but greatly plausible. Hence, we
reiterate that reversibility at stall is sufficient but not necessary
condition for stall force additivity for motors (filaments).

Interestingly, a discrete version of this two-state model
[104,105] always shows additivity of stall forces for multiple
motors with only self-inclusion interactions [see Fig. 7(b)].
This results from the fact that this discrete model for a
single motor can easily be mapped to a biased random walk
with only one track [84]—the motors effectively move on a
tiled energy landscape, ε = ln ωB

−→ω A

ωA
←−ω B

(see Fig. 7), which, as
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argued in Sec. II, indicates that the motor can be interpreted
to be reversible at stall. We can generalize the observations
noted above and propose that the stall behavior of sterically
interacting, processive motors greatly depends on the topology
of the mechanochemical migration path of the motors. Con-
sequently, we generally propose that motor models analogous
to the ones pioneered by Kolomeisky and Fisher [9,84] with
a single track for motor migration will show additivity of
stall force for multiple, sterically interacting motors. On the
other hand, the Brownian models with multiple tracks [73]
demonstrably exhibit nonadditivity of stall forces for multiple,
even just sterically interacting motors [79,80]. To the best
of our knowledge, the general conceptual framework that
compares and contrasts the behavior of these two major classes
of molecular motor models has not been provided before and
is also one of the main contributions of this paper.

There is another interesting way of interpreting the afore-
mentioned link between network topology of the biochemical
network of motors (filaments) and the stall force additivity. It
is known that correlation between the mechanical and internal
states of different motors is instrumental in developing stall
force cooperativity for multiple two-state Brownian ratchet
motors [28,80]. We can extend this idea more generally by
recognizing that the correlations between the internal states
of multiple filaments (e.g., D/T) and motors (e.g., two-state)
may decide the topology of their mechanochemical network on
the one hand and influence the additivity of their stall force on
the other. Consequently, these correlations may provide poten-
tially a deeper cause of the relation between network topology
and stall force additivity. Of course, this hypothesis of the role
of correlations in a completely general situation is currently
more of an analogy, and a systematic study is in order to explore
the connection between the general thermodynamic reversibil-
ity picture used in this paper and the correlation picture demon-
strated earlier for two-state Brownian ratchet motors [28].

To summarize, collective force generation in biofilaments
and molecular motors typically involve multistep, complex
internal processes and a variety of interactions between the
individual entities as well as the source of the resisting force.
In this paper we, however, have demonstrated that, even with
very simple internal dynamics and also in the absence of
any attractive or repulsive interactions between individual
components, if a system of molecular motors or filaments is not
reversible at stall we can expect nonadditivity in their collective
force generation. To establish this result with reasonable cer-
tainty, we have analyzed, multiple seemingly disparate models,
which nevertheless exhibit a common theme of an irreversible
dynamics at stall leading to this cooperativity. The formalism
developed in this paper should provide a general thermo-
dynamics based framework with which to perform primary
interpretation of experimental and theoretical results relating
to collective force generation in biofilaments and molecular
motors before examining the system-related specifics.
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APPENDIX A

Large x approximation

The full expression for p(x) for the model shown in Fig. 1(c)
is

p(x) = 1

Z

eβx(2ε−f
(2)
s )(1 + eβε − 2e−βεx)

(eβε − 1)
. (A1)

In Eq. (2), we eliminate the term 2e−βεx , citing large x and
reduce the expression for p(x) to be proportional to

p(x) ∼ eβx(2ε−f
(2)
s ). (A2)

Please note, however, that for all practical purposes, x need
to be just a few monomer units for 2e−βεx to be negligible
when compared to to remainder (1 + eβε). For example, when
βε = 1,2, and 3 the relative error involved

err = 2e−βεx

1 + eβεx
× 100 (A3)

is less than 1% for x = 4,2, and 1, respectively. Thus, for
all practical purposes, large x required for Eq. (2) is actually
quite small, meaning that the expression is valid for almost
x > 0. Also, since we need a somewhat “large” system to
implement thermodynamics, the “approximation” to obtain
Eq. (2) is reasonable. Moreover, from an implementation
perspective, the independence of stall force on x is reflected
in the independence of stall force on initial length of the
filament in the simulation.

APPENDIX B

Simulation method

We have simulated our models using kinetic Monte Carlo
algorithm also known as the Gillespie algorithm [97,106,107]
for the calculation of stall force of analytically unsolvable
models. Now we elaborate the exact method we have used
to simulate “generalized random hydrolysis model” for n = 3
microtubule filaments. We start time evolution of the model
system from a fixed initial length of l0 = 2000 monomer at
t = 0 for all the microtubules. To obtain the time at which
the next event will occur, we sum all possible event rates,
a0, and generate a random number p between 0 and 1. Now
τ = 1

a0
ln( 1

p
) is the time of the next event. To determine which

event k will occur at time τ , we generate another random
number p2 between 0 and 1 and find k, which satisfies the
condition

∑k−1
i=1 ai < a0p2 <

∑k
i=1 ai . Now we repeat this

processes until our system reaches a steady state. For the
n = 3 microtubule, we have taken time to reach steady state
as t = 1000 s. Now, at this point, we reset our time to zero and
start monitoring the position of largest microtubule filament
with time. We plot this time evolution data and from the
slope of the plot we get the velocity of the tip of largest
filament. We perform this simulation for various forces and
obtain corresponding velocity of the barrier. We then draw the
force velocity curve. The point at which this force velocity
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curve cuts the velocity axis is the stall force. To further verify
the stall force, we calculate particle flux of the monomers
for that force. For the calculation of flux, we just mark one
filament and observe the number of monomers being added
to that filament (+1) and removed from that filament (−1).
Now we divide this count of monomers by the time window
for which this bookkeeping has been done. If this flux is close
to zero (<10−5), then we take that point as the stall force.

APPENDIX C

Connection between subunit flux and entropy production for
multiple biofilaments at stall described using the random

hydrolysis model of section III A

In the following text, we provide a simple, and perhaps
crude, connection between the subunit flux JT (N ) per filament,
presented in Fig. 2(c) for the random hydrolysis model of
Sec. III A, and the corresponding coarse-grained entropy
production ṡ(N ) per filament for N filament at stall.

Entropy production per filament is given by [73,104]:

ṡ = vf + r�μ, (C1)

where f , v, �μ, and r are the external force, mean velocity,
chemical potential for the subunit exchange, and subunit
exchange flux, respectively. At stall condition, v = 0, and,

hence, the entropy production is induced only by subunit
exchange flux. For the simple T-D random hydrolysis model
described in Sec. III A, the effective subunit fluxes (per
filament) are JT and JD , respectively. Moreover, at stall,
since the total material influx, on average, into the system
of filaments is zero, JT = −JD = J . Since, in this model, the
only subunit on rate is U for the T subunits, the chemical
potentials corresponding to T and D influx can simplistically
be written as

�μT = ln
U

wT

and

�μD = ln
U

wD

. (C2)

Using Eqs. (C1) and (C2), the entropy production at stall
condition can now be rewritten as

ṡ(N ) = JT (N )�μT + JD(N )�μD

= j (N ) ln
wD

wT

. (C3)

Thus, a very simple argument proposes that entropy production
per filament at stall condition is proportionate to the subunit
flux per filament in the system of multiple filaments.
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