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Cable equation for general geometry
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The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed
to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect
predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables
with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons
appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated
dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable
equation for a general cable geometry. This generalized equation depends on geometric quantities such as the
curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first
fundamental form of the cable can be simplified and the generalized cable equation depends on neither the
curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a
particular variable circular cross section and zero curvature. For this case we show that when the cross section of
the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation
as a diffusion equation with a source term generated by the cable geometry. This source term depends on the
cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their
numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes,
its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that
the voltage can be affected by geometrical inhomogeneities on the cable.
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I. INTRODUCTION

Understanding how the brain works is relevant for different
medical and technological applications. In this respect it
is central to know the electrical brain activity. The basic
unit in the brain is the neuron, which transmits electrical
signals through axons and receives electrical signals through
dendrites. Thus, it is important to understand the electrical
behavior of dendrites and axons. Axons and dendrites can
be described as cables with special properties. It is worth
mentioning that the first model for an electrical cable was
proposed by Lord Kelvin in the telegraph problem context.
Inspired by the Lord Kelvin’s work, different authors have
proposed models to describe dendrites and axons. For example,
Rall proposed that a dendrite can be taken as a cable with
a circular cross section and constant diameter d0 where the
voltage V (x,t) satisfies the cable equation [1–4]

cM

∂V (x,t)

∂t
= d0

4rL

∂2V (x,t)

∂x2
− iion, (1)

where cM denotes the specific membrane capacitance, rL

denotes the longitudinal resistance, and iion is the ionic current
per unit area into and out of the cable. In the passive cable case,
namely when iion = V/rM, with rM the specific membrane
resistance, Eq. (1) is exactly solved [3–5].
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The cable equation has been useful to explain different
phenomena in dendrites and axons [3–5]. However, there are
axons and dendrites with different geometry, in particular
axons and dendrites with a variable radius, and the cable
equation only describes cylindrical cables with a constant
radius. Furthermore, there are phenomena where the geom-
etry of the axons and dendrites is relevant. For example,
axons with a nonconstant radius are hallmark features of
some neurodegenerative diseases. Actually, discrete swellings
along the axons appear in neurodegenerative diseases such
as Alzheimers, Parkinsons, human immunodeficiency virus
(HIV)-associated dementia, and multiple sclerosis [6–8].
Remarkably, in extreme cases, the electrical signal is deleted
in the swelling of the axon. Additionally, theoretical and
experimental studies show that dendritic geometry determines
the efficacy of voltage propagation [9,10]. Another example
of dendrites with nontrivial geometry is given by spiny
dendrites which exhibit anomalous diffusion [11]. In addition,
dendrites with varying diameter are found in synaptic contacts,
retina amacrine cells, the cerebellar dentate nucleus, and the
lateral vestibular nucleus, as well as cortical pyramidal and
olfactory bulb cells [12–14]. Furthermore, recent theoretical
studies emphasize the spatial variability of dendritic calcium
dynamics due to local changes in a dendrite diameter [15].
For these reasons, it is important to study cables with general
geometry. Some extensions of the cable model can be seen
in Refs. [16–18].

In this paper, using the Frenet-Serret frame, we propose
a cable with general geometry and construct a generalized
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cable equation for the voltage in it. This generalized equation
depends on geometric quantities as curvature and torsion of
the cable. For the general case, this new equation is very
complicated. Nevertheless, we show that when the cable
has a constant circular cross section the generalized cable
equation depends on neither the curvature nor the torsion of
the cable. In fact, in this last case the new cable equation
is equivalent to the cable equation for a straight cylindrical
cable. Moreover, we find an exact solution for an ideal cable
with a particular variable circular cross section and zero
curvature. In this case, we show that when radius increases
the voltage decreases. Inspired in this ideal case, we rewrite
the generalized cable equation as a diffusion equation with a
source term. In this diffusion equation the source term and
the diffusion coefficient are generated by the cable geometry.
In addition, we provide numerical solutions to different cable
with swelling. The numerical solutions show that when the
radius of the cable has notable changes its voltage is smaller
than the voltage in the cylindrical cable. Furthermore, the
numerical solutions show that the voltage can be affected by
geometrical inhomogeneities on the cable. These numerical
results are consistent with the behavior of the voltage in focal
axonal swellings [6].

This paper is organized as follows: In Sec. II we propose
a cable with a general geometry; in Sec. III we propose a
generalized cable equation; in Sec. IV we study a cable with a
circular cross section; in Sec. V we study a particular cable with
a variable radius; in Sec. VI we study some general properties
of the generalized cable equation; and, in Sec. VII, we provide
numerical solutions to the cable equation. Finally, in Sec. VIII
a summary is given.

II. CABLE GEOMETRY

It is well known that a three-dimensional curve �γ can be
reparametrized with different parameters and its geometric
properties are invariant under reparametrizations. For example,
the arc length of the curve �γ is given by

s =
∫ x

0

√
d �γ (ζ )

dζ

d �γ (ζ )

dζ
dζ, (2)

which is invariant under reparametrization on ζ. Notably, the
arc length parameter (2) is a friendly parameter to study the
geometric properties of a tridimensional curve. For instance,
using the arc length parameter (2) we can construct the vectors
of the Frenet-Serret frame [19]

d �γ (s)

ds
= T̂ , N̂ =

dT̂
ds∣∣∣ dT̂
ds

∣∣∣ , B̂ = T̂ × N̂, (3)

where T̂ is the unit vector tangent, N̂ is the normal
unit vector, and B̂ is the binormal unit vector to the
curve.

Furthermore, using the arc length and the Frenet-Serret
frame, the Frenet-Serret formulas can be obtained as fol-
lows [19]:

dT̂

ds
= κN̂,

dN̂

ds
= −κT̂ + τ B̂,

dB̂

ds
= −τN̂, (4)

FIG. 1. Cable with general geometry. The vectors T̂ ,N̂,B̂ are
shown in two different points on the curve �γ

where κ and τ are the curvature and torsion of the curve �γ ,

respectively.
We can employ the Frenet-Serret frame to construct a cable

model. Actually, we can propose a general cable as the region
bounded by the following surface:

��(θ,s) = �γ (s) + f1(θ,s)N̂ (s) + f2(θ,s)B̂(s), (5)

where θ is an angular variable. Notice that employing the
angular coordinate θ, the functions f1(θ,s),f2(θ,s), and the
vectors N̂ (s),B̂(s), we are constructing the cable over the curve
�γ (s). For example, a cable with a circular cross section with
radius R(s) can be parameterized with the functions

f1(θ,s) = R(s) cos θ, f2(θ,s) = R(s) sin θ. (6)

In Fig. 1 we can see a representation of the surface (5).
Some geometric quantities as the area of a surface can

be written in terms of the first fundamental form, which is
constructed with the inner product on the tangent space of a
surface [19]. In the case of the surface (5) we have

g =
(

E F

F G

)
, (7)

where the first form coefficients are

E =
∣∣∣∣∣∂

��(θ,s)

∂s

∣∣∣∣∣
2

= (1 − κf1)2 +
(

∂f1

∂s
− τf2

)2

+
(

∂f2

∂s
+ τf1

)2

, (8)

G =
∣∣∣∣∣∂

��(θ,s)

∂θ

∣∣∣∣∣
2

=
(

∂f1

∂θ

)2

+
(

∂f2

∂θ

)2

, (9)

F = ∂ ��(θ,s)

∂s
· ∂ ��(s,θ )

∂θ
=

(
∂f1

∂s
− τf2

)
∂f1

∂θ

+
(

∂f2

∂s
+ τf1

)
∂f2

∂θ
. (10)

Using the first fundamental form, an area element of the cable
surface (5) can be written as

	A =
[∫ 2π

0
dθ

√
det g(θ,s)

]
	s, (11)
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where

det g(θ,s) =
[(

∂f1

∂s

∂f2

∂θ
− ∂f2

∂s

∂f1

∂θ

)
− τ

2

∂

∂θ

(
f 2

1 + f 2
2

)]2

+ (1 − κf1)2

[(
∂f1

∂θ

)2

+
(

∂f2

∂θ

)2
]
. (12)

Notice that the area element (11) depends on the curvature κ

and the torsion τ of the curve �γ .

In particular, when the cable has a circular cross section
with radius R(s), namely when the cable is reparametrized
with the functions (6), the area element of cable surface (5) is
given by

	A = R(s)	s

∫ 2π

0
dθ

√
(1 − κ(s)R(s) cos θ )2 +

[
dR(s)

ds

]2

,

(13)

while the cable cross-sectional area is

a(s) = πR2(s). (14)

We can see that the area element (13) does not depend on the
torsion τ of the curve �γ .

Now, the Gaussian curvature characterizes the curvature of
a surface [19]. In particular, if the cable (5) has a circular cross
section with a constant radius R0, then the Gaussian curvature
of the surface of this cable is given by

K = − κ(s) cos θ

R0[1 − κ(s)R0 cos θ ]
. (15)

Notice that this quantity is singular when κ(s)R0 � 1. Because
of the surfaces of the axons or dendrites reported are smooth
surfaces, we can suppose that the Gaussian curvature of the
surfaces of axons or dendrites does not have singularities.
Notice that this hypothesis implies the inequality κ(s)R0 < 1.

In addition, let us remember that the curvature κ(s) at a point
P of the curve �γ (s) is defined as the inverse of the radius of the
osculating circle at P, see Ref. [20]. Then, if at this point P

the cable radius is R(s), then the radius of the osculating circle
must be larger than R(s). Thus, at the point P the curvature
κ(s) must be smaller than R−1(s) and the following inequality:

κ(s)R(s) < 1 (16)

is satisfied. In this paper we suppose that the inequality (16) is
always satisfied.

Furthermore, notice that when R(s) = R0 = const the area
element (13) is given by

	A = 2πR0	s (17)

and it depends on neither the torsion τ nor the curvature κ.

In the next section we will propose a cable equation when
a cable is described by (5).

III. CABLE EQUATION

In order to propose a cable equation to a cable with the
geometry given by the equation (5), we break the curve �γ (s)
into n pieces. Each piece has a surface area 	Ai and a cross-
sectional area ai (i = 0,1,2 · · · n).

Now, we consider a current flow Ilong along the cable. Then,
if V (s,t) is the membrane potential and RL is the resistance of
the cable, from the Ohm’s law, then we have

V (s + 	s,t) − V (s,t) = −Ilong(s,t)RL. (18)

In addition, due to the fact that the resistance to a cable with a
cross-sectional area a(s) is [21],

RL = rL	s

a(s)
, (19)

where rL is the specific intracellular resistivity, from the Ohm’s
law (18) we obtain

Ilong = −a(s)

rL

[
V (s + 	s,t) − V (s,t)

	s

]

≈ −a(s)

rL

∂V (s,t)

∂s
. (20)

Furthermore, if CM is the membrane capacitance, then we get

Qcap = V CM, (21)

which implies

Icap = dQ

dt
= CM

∂V (s,t)

∂t
. (22)

Observe that the capacitance for the cable surface can be taken
as

CM = 	A(s)cM, (23)

where cM is the specific membrane capacitance. Thus, the
equation (22) can be written as

Icap = 	A(s)cM

∂V (s,t)

∂t
. (24)

Moreover, the total ionic current that flows across the mem-
brane is

Iion = (	A)iion, (25)

where iion is the current per unit area into and out of the cable.
Hence, the change in cable current is given by

Icap + Iion = −Ilong(s + 	s,t) + Ilong(s,t), (26)

which implies

	A(s)cM

∂V (s,t)

∂t
+ (	A)iion

≈ a(s + 	s)

rL

∂V (s + 	s,t)

∂s
− a(s)

rL

∂V (s,t)

∂s
,

and then

∂V (s,t)

∂t
+ iion

cM

≈ a(s + 	s) ∂V (s+	s,t)
∂s

− a(s) ∂V (s,t)
∂s

rL	A(s)cM

. (27)

Because the cable surface area is given by Eq. (11), we obtain

∂V (s,t)

∂t
+ iion

cM

≈ 1

rLcM

∫
du

√
det g(u,s)

×
[

a(s + 	s) ∂V (s+	s,t)
∂s

− a(s) ∂V (s,t)
∂s

	s

]
.
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Thus, at the limit 	s → 0, we arrive at

∂V (s,t)

∂t
= 1

rLcM

∫ 2π

0 dθ
√

det g(θ,s)

∂

∂s

[
a(s)

∂V (s,t)

∂s

]

− iion

cM

. (28)

This equation is the cable equation when the cable geometry
is given by (5) and it depends on geometric quantities as the
curvature κ and torsion τ of the cable.

In the general case, iion depends on the voltage and Eq. (28)
is a nonlinear differential equation. However, in the passive
cable model we can take

iion = V (s,t)

rM

. (29)

Therefore, the cable equation for the passive cable model with
the geometry given by (5) is

∂V (s,t)

∂t
= 1

rLcM

∫ 2π

0 dθ
√

det g(θ,s)

∂

∂s

[
a(s)

∂V (s,t)

∂s

]

− V (s,t)

rMcM

. (30)

For an infinite cable, the voltage has to satisfy the Dirichlet
boundary condition, while for a finite cable the voltage has to
satisfy the Neumann boundary condition [3].

In the next section we will study some exactly solvable
cases of Eq. (30).

IV. CIRCULAR CROSS SECTION

A cable with a deformed circular cross section where the
radius depends on the angle θ , namely R = R(θ,s), can be
modeled with the surface (5), where

f1(θ,s) = R(θ,s) cos θ, f2(θ,s) = R(θ,s) sin θ. (31)

In this case the cross-sectional area is given by

a(s) = 1

2

∫ 2π

0
R2(θ,s)dθ, (32)

in addition we obtain

√
det g(θ,s) =

(
R2(θ,s)

[
∂R(θ,s)

∂s
− τ

∂R(θ,s)

∂θ

]2

+ (1 − κ(s)R(θ,s) cos θ )2

×
{

R2(θ,s) +
[
∂R(θ,s)

∂θ

]2
}) 1

2

. (33)

For this general cable geometry, to find solutions of the
cable equation (30) is a difficult task. However, for some
cases this equation can be simplified. For instance, when the
cable has a circular cross section, namely when R(θ,s) =
R(s), the function (33) does not depend on the torsion of
the cable τ . Hence, in this case the cable equation (30)

becomes

∂V (s,t)

∂t

= π ∂
∂s

[
R2(s) ∂V (s,t)

∂s

]
rLcMR(s)

∫ 2π

0 dθ

√
(1 − κ(s)R(s) cos θ )2 + [

dR(s)
ds

]2

− V (s,t)

rMcM

. (34)

Notice that if the sectional area is constant, that is, R(s) =
R0 = const, Eq. (34) is given by

∂V (s,t)

∂t
= R0

2cMrL

∂2V (s,t)

∂s2
− V (s,t)

rMcM

. (35)

Remarkably, this last equation depends on neither the curvature
nor the torsion of the cable. Furthermore, Eq. (35) is equivalent
to the cable equation for a straight cylindrical cable (1).
Observe that Eq. (35) depends on the arc length parameter (2)
instead of the laboratory frame coordinate x. This shows that
the natural variables for the voltage are given by geometric
quantities of the cable.

For an infinite cable, the solution of Eq. (35) is

V (s,t) = V0l0

√
rLcM

2πR0t
e
− rLcM s2

2R0 t e
− t

rM cM , (36)

where V0 is a constant with voltage dimensions and l0 is a
constant with length dimensions. Notice that in this case the
initial condition

V (s,0) = V0l0δ(s) (37)

is satisfied, where δ(s) is the Dirac δ function. Moreover, using
the laboratory frame coordinate x and Eq. (2), the voltage (36)
can be written as

V (x,t) = V0l0

√
rLcM

2πR0t
e
−

rLcM

[∫ x
0

√
d �γ (ζ )
dζ

· d �γ (ζ )
dζ

dζ

]2

2R0 t e
− t

rM cM .

Thus, if a cable has a constant radius R0, the voltage in cable
depends on neither the curvature nor the torsion. Furthermore,
in this case voltage does not differ from the voltage for the
straight cylindrical cable with the same radius.

Figure 2 shows the cable equation solution for a cylindrical
cable.

In the following sections we will study cables with a
variable radius.

V. AN EXACT SOLUTION WITH A VARIABLE RADIUS

Cables with a nonconstant radius are important for different
reasons. For example, discrete swellings along the axons
appear in neurodegenerative diseases such as Alzheimers,
Parkinsons, HIV-associated dementia, and multiple sclerosis.
In particular, in Parkinsons disease, there are reported axons
with a diameter of approximately 1 μm with a swelling with
diameter of approximately 5 μm, see Ref. [22]. In addition,
in multiple sclerosis, there are reported axons with a diameter
of approximately 4 μm with a swelling with a diameter of
approximately 60 μm, see Ref. [23]. In Alzheimers disease
there are reported axons with a diameter of approximately
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FIG. 2. Voltage for the cylindric cable. Parameter values
used for simulations correspond to realistic dendritic param-
eters as in Ref. [14]: cM = 1 mF/cm2, rM = 3000 � cm2, rL =
100 � cm, R0 = 10−4 cm. The initial condition is given by (47).

1.5 μm with a swelling train, where the swelling diameter
varies between 4 μm and 10 μm, see Refs. [24–26]. For
HIV-associated dementia, there are reported axons with a
diameter of approximately 6 μm and swellings with a diameter
of approximately 43 μm, see Refs. [27–31]. Other sizes of the
axonal swellings can be see in Refs. [7,32].

When the radius R(θ,s) is not a constant, Eq. (34) is
very complicated. However, some ideal cases can help us to
understand the general case. In this section, we study an ideal
case which does not represent a realistic axon or dendrite, but it
will help us to understand the generalized cable equation (30).

If the cable curvature vanishes and the radius is

R(s) = R0 cosh

(
s

R0

)
, (38)

then Eq. (34) becomes

∂V (s,t)

∂t
= R0

2rLcM

∂2V (s,t)

∂s2
+ 1

rLcM

sinh
(

s
R0

)
cosh

(
s

R0

) ∂V (s,t)

∂s

− V (s,t)

rMcM

,

which is solved by the voltage

V (s,t) = V0l
2
0

R(s)

√
rLcM

2πR0t
e
− rLcM s2

2R0 t e
−t( 1

rM cM
+ 1

R0rLcM
)
. (39)

Notice that when the radius (38) increases, the voltage (39)
decreases.

In Fig. 3 we can see the voltage (39).

VI. GENERAL PROPERTIES

Studying the ideal cable (38) we learned that when the time
increases the voltage (39) decreases. In addition, this voltage
depends on R−1(s), namely this voltage depends on [

√
a(s)]−1,

where a(s) is the cable cross-sectional area. Then, inspired in
the ideal case (39), in order to study Eq. (30), we propose the
following voltage

V (s,t) = (s,t)√
a(s)

. (40)

Thus, Eq. (30) implies

∂(s,t)

∂t
= D(s)

∂2(s,t)

∂s2
+ ρ(s,t), (41)

where

D(s) = a(s)

rLcM

∫ 2π

0 dθ
√

det g(θ,s)
,

ρ(s,t) =
√

a(s)

rLcM

∫ 2π

0 dθ
√

det g(θ,s)

{
1

4

[
da(s)

ds

]2 1

a
3
2

− 1

2a
1
2 (s)

d2a(s)

ds2
− rL

∫ 2π

0 dθ
√

det g(θ,s)

rM

√
a(s)

}
(s,t).

Notice that Eq. (41) can be interpreted as a diffusion equation
with a source, in this equation the coefficient diffusion and the
source term are generated by the cable geometry.

Now, we can see that if we take

(s,t) = e−Etψ(s), (42)

where E is a constant with (time)−1 dimensions, Eq. (41)
becomes

−∂2ψ(s)

∂s2
+ U (s)ψ(s) = 0, (43)

where

U (s) = −
[

da(s)
ds

]2

4a2(s)
+ 1

2

d2a(s)
ds2

a(s)

− rLcM

(
E − 1

rMcM

) ∫ 2π

0 dθ
√

det g(θ,s)

a(s)
. (44)

FIG. 3. (a) Cable with radius variable (38). (b) Voltage (39). Parameter values used for simulations correspond to realistic dendritic
parameters as in Ref. [14]: cM = 1 mF/cm2, rM = 3000 � cm2, rL = 100 � cm, R0 = 10−4 cm, V0 = 1 mV, l0 = 1 cm.
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If E = 0, then Eq. (43) is the equilibrium description
of the diffusion equation (41). Moreover, in some cases
the Fokker-Planck equation and the diffusion equation can
be rewritten as a Schrödinger equation [33]. In this respect, no-
tice that Eq. (43) can be seen as a Schrödinger equation where
U (s) is an effective potential, which is generated by the cable
geometry.

In particular, when the radius of the cable is a constant the
effective potential is the constant

U (s) = U0 = −2rLcM

R0

(
E − 1

rMcM

)
. (45)

When the radius is not a constant, the function ψ(s) is
affected by the effective potential (44). For example, if the
cable has a circular cross section with radius R(s), then the
effective potential is

U (s) = 1

R(s)

{
1

2

d2R(s)

ds2
−

(
E − 1

rMcM

)
rLcM

π

×
∫ 2π

0
dθ

√
(1 − κ(s)R(s) cos θ )2 +

[
dR(s)

ds

]2}
.

(46)

From this last equation we can see that if the derivatives of
the radius R(s) are small quantities, then the radius can be
approximated by a constant and the effective potential can be
approximated by a constant, too. In this case, the voltage in
the cable is similar to the cylindrical cable. Moreover, observe
that the condition (16) implies that [1 − κ(s)R(s) cos θ ]2 is a
small quantity. Then, when ( dR

ds
)2 is a large quantity and [1 −

κ(s)R(s) cos θ ]2 � ( dR
ds

)2, the effective potential (46) depends
on neither the curvature nor the torsion. Thus, in this last case,
cables with similar swelling have a similar voltage.

When the cable has a deformed circular cross section with
radius R = R(θ,s), we should introduce Eqs. (32) and (33)
into the effective potential (44). In this case we can see that
the effective potential is affected by derivatives of the radius
respect to the angle θ. Then, geometrical inhomogeneities on
a cable might be affect the voltage.

In the next section we will provide numerical solution for
cable with different geometries.

VII. NUMERICAL SOLUTIONS

In this section the differential equation (30) is solved by using
the second-order finite-differences method for both spatial
coordinate and temporal evolution. The choice of mesh size
was made with the usual procedure. First, we begin with 1024
points along the s axis and 50 points in the time. The meshes
for the s direction and for the time were refined several times.
We stop when no differences in solutions are obtained in two
successive refinements. The numbers of spatial and temporal
points used in the simulation are shown in Table I.

The system is solved using the Gauss-Seidel iterative
method, with a tolerance of 10−10. Moreover, for the initial

TABLE I. Numbers of points, ns and nt , and number of times of
the refinement.

Refinement ns nt

First time 1024 50
Second time 2048 80
Third time 4096 100

condition we used a Gaussian shape,

V (s,0) = A√
2πσ

e
− s2

2σ2 , (47)

where A = 0.05 mV cm
1
2 and σ = 100 	s. In addition, we

impose the Neumann boundary conditions [3]

∂V (s0,t)

∂s
= ∂V (sns

,t)

∂s
= 0.

A. Cable with sinusoidal swelling

Now we study a cable with curvature κ = 0 and with the
radius

R(s) = R0(1 + α1 sin α2s). (48)

In Fig. 4(a) we can see a cable with this geometry. Notice that
in this case we should take α1 < 1. Furthermore, in order to
obtain a realistic cable geometry, we should take α2 < 1 cm−1.

Then, in this case, the derivatives of radius of the cable are
small quantities. In fact, for this cable the effective potential is

FIG. 4. (a) Cable with geometry (48). (b) Cable with geome-
try (50). (c) Maximum voltage for a cable with radius (50) at time
t = 1000 s vs the parameter α3. The voltage changes only if α3 > 50,
a values for nonrealistic cable geometries with swellings. Parameter
values used for simulations correspond to realistic dendritic pa-
rameters as in Ref. [14]: cM = 1 mF/cm2, rM = 3000 � cm2, rL =
100 � cm, R0 = 10−4 cm. The initial condition is given by (47).
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given by

U (s) = − 1

1 + α1 sin α2s

(
1

2
α1α

2
2 sin α2s

+ 2

R0

(
E − 1

rMcM

)
rLcM

√
1 + R2

0α
2
1α

2
2 cos2 α2s

)
.

(49)

Notice that for realistic cable geometry the inequality
α1α2 � 1 cm−1 is satisfied and the effective potential is a
small quantity. Then, in this case, the voltage in the cable is
similar to voltage in the cylindrical cable.

A similar result is obtained when the radius of the cable is
given by

R(s) = R0(1 + α3 sin2 α4s). (50)

In Fig. 4(b) we can see a cable with this geometry.
Notice that in this case α3 can be bigger than 1, and for a

realistic cable geometry the condition α3α4 � 1 cm−1 should
be satisfied. It can be shown that in this case the effective
potential (46) is a small quantity and then the voltage in the
cable also does not diffe from the voltage for the cylindrical
cable.

In Fig. 4(c), we plot the maximum voltage as a function of
α3 for two different values of α4. We can see that the voltage to
cable with a realistic geometry does not differ from the voltage
for a cylindrical cable.

B. Cable with Gaussian swelling

Now, we study a cable with the radius

R(s) = R0[1 + α3e
−α5(s−α6)2

]. (51)

In Fig. 5(a) can see a cable with this geometry. The
numerical solution to the voltage can be seen in Fig. 5(b). In
this figure we can see that the voltage decreases faster than the
voltage to the cylindrical cable. Notice that for this geometry
when the height of the swelling (51) increases the voltage of
the cable decreases. In fact, for a big α3 parameter the voltage
can be blocked.

C. Cable with Gaussian swellings

In this section we study the cable with the following radius:

R(s) = R0[1 + α3e
−α5s

2 + α3e
−α5(s−α6)2

+α3e
−α5(s−2α6)2 + α3e

−α5(s−3α6)2
]. (52)

FIG. 5. (a) Cable with geometry (51). (b) Voltage for the cable with a Gaussian swelling, radius (51). (c) Voltage vs t in s = 0 with
different values for α3. (d) Voltage vs s at time t = 1000 s for different values of α3. Parameter values used for simulations correspond to
realistic dendritic parameters as in Ref. [14]: cM = 1 mF/cm2, rM = 3000 � cm2, rL = 100 � cm, R0 = 10−4 cm. The initial condition is
given by (47).
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FIG. 6. (a) Cable with geometry (52). (b) Voltage for the cable with a Gaussian train swellings, radius (52). (c) Voltage vs t in s = 0
with different values for α3. (d) Voltage vs s at time t = 1000 s for different values of α3. Parameter values used for simulations correspond
to realistic dendritic parameters as in Ref. [14]: cM = 1 mF/cm2, rM = 3000 � cm2, rL = 100 � cm, R0 = 10−4 cm. The initial condition is
given by (47).

A cable with this geometry can be seen in Fig. 6(a) and
the numerical solution to the voltage in this cable can be
seen in Fig. 6(b). In this case we can see that the voltage
decreases faster than the voltage to the cylindrical cable.
Moreover, notice that for this geometry when the height of
the swelling (52) increases the voltage of the cable decreases.
Observe that the voltage in this cable decreases more than the
voltage in the cable with radius (51). Actually, if α3 is a big
parameter, then the voltage can be blocked.

D. Amorphous swelling

In the literature there are reported axons with amorphous
swelling [6]. For an amorphous cable we can propose the
following radius:

R(θ,s) = R0[1 + α3e
−α5(s−α6)2 + α7 sin θ cos α8s]. (53)

A cable with this geometry can be seen in Fig. 7(a) and the
numerical solution for the voltage in this cable can be seen
in Figs. 7(b)–7(d). In this case we can see that the voltage
decreases faster than the voltage to the cylindrical cable. In
addition, observe that the voltage in this cable decreases more
than the voltage in the cable with radius (51). Thus, geometric
inhomogeneities in a cable can change its voltage in it.

Axons with swellings are hallmark features of some
neurodegenerative diseases such as Alzheimers, Parkinsons,
HIV-associated dementia, and multiple sclerosis [6–8]. The
numerical results of this section indicate that when the cable
geometry is important to the voltage propagation. These
results show that when the derivatives of the cable radius
are slowly changing functions, namely when ( dR

ds
)2 � [1 −

κ(s)R(s) cos θ ]2 and d2R(s)
ds2 � rL

rM
, the voltage is similar to

voltage in a straight cylindrical cable. However, when these
derivatives change significantly the voltage cable is reduced
and, in a extreme case, it can be blocked. Moreover, these
numerical results show that geometric inhomogeneities in a
cable can affect the voltage.

VIII. SUMMARY

In this paper, using the Frenet-Serret frame, we proposed
a cable with general geometry and construct a generalized
cable equation to the voltage in it. This generalized equation
depends on geometric quantities as curvature and torsion of the
cable. For the general case, this equation is very complicated to
obtain exact solutions. However, when the cable has a constant
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FIG. 7. (a) Cable with geometry (53). (b) Voltage for the cable with the radius (53). (c) Voltage vs t in s = 0 with different values for α3.
(d) Voltage vs s at time t = 1000 s for different values of α3. Parameter values used for simulations correspond to realistic dendritic parameters
as in Ref. [14]: cM = 1 mF/cm2, rM = 3000 � cm2, rL = 100 � cm, R0 = 10−4 cm. The initial condition is given by (47).

circular cross section, we showed that the equation depends on
neither the curvature nor the torsion of the cable. In fact, in this
last case the new equation is equivalent to the cable equation
for a straight cylindrical cable, where the voltage depends on
the arc length parameter. This shows that the natural variables
for the voltage are given by the cable geometric quantities.
Additionally, we found an exact solution for an ideal cable
with a particular nonconstant circular cross section and zero
curvature. In this last case, we show that when the radius
increases, the voltage decreases. Inspired in this ideal case, we
rewrote the generalized cable equation as a diffusion equation
with a source term. In this diffusion equation the source
term and the diffusion coefficient are generated by the cable
geometry. Furthermore, we provided numerical solutions to
the new cable equation to different cable with swelling. These
solutions show that when the derivatives of the cable radius are
slowly changing functions the voltage is similar to voltage in
a straight cylindrical cable. However, when these derivatives
change significantly the voltage cable is reduced and, in a

extreme case, it can be blocked. Moreover, these numerical
results show that geometric inhomogeneities in a cable can
change its voltage in it. The results of this paper might help
us to understand the behavior of the voltage in focal axonal
swellings which appear in some neurodegenerative diseases
such as Alzheimers, Parkinsons, HIV-associated dementia, and
multiple sclerosis [6].

In this work we did not study the active case, but we can
argue that when the cable has a constant circular cross section
the active case does not differ from the usual active cylindrical
cable. In a future work we will study the active cable case and
some important cable geometries, for instance, the spiny cable
geometry.
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