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Multifractality in individual honeybee behavior hints at colony-specific social cascades:
Reanalysis of radio-frequency identification data from five different colonies
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Honeybees (Apis mellifera) exhibit complex coordination and interaction across multiple behaviors such as
swarming. This coordination among honeybees in the same colony is remarkably similar to the concept of
informational cascades. The multifractal geometry of cascades suggests that multifractal measures of individual
honeybee activity might carry signatures of these colony-wide coordinations. The present work reanalyzes time
stamps of entrances to and exits from the hive captured by radio-frequency identification (RFID) sensors reading
RFID tags on individual bees. Indeed, both multifractal spectrum width for individual bees’ inter-reading interval
series and differences of those widths from surrogates significantly predicted not just whether the individual
bee’s hive had a mesh enclosure but also predicted the specific membership of individual bees in one of five
colonies. The significant effects of multifractality in matching honeybee activity to type of colony and, further,
matching individual honeybees to their exact home colony suggests that multifractality quantifies key features
of the colony-wide interactions across many scales. This relevance of multifractality to predicting colony type
or colony membership adds additional credence to the cascade metaphor for colony organization. Perhaps,
multifractality provides a new tool for exploring the relationship between individual organisms and larger, more
complex social behaviors.
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I. INTRODUCTION

Honeybees (Apis mellifera) typify a classic challenge posed
by a variety of social biological systems [1]. Namely, their
swarms and colonies exhibit a collective behavior suggesting
coordination and integration across many scales of space and
time despite the relative autonomy, individual specialization
and role switching of constituent honeybees [2]. Honeybees are
one of several social biological systems that have so far frus-
trated attempts to clearly delineate a distinction between single
organisms and groups of organisms [3]. Indeed, the honeybee
colony exhibits so much large-scale integrity and responsivity
that it has invited the description as a “superorganism” [4].
This coordination at many scales leads us to consider the role
of cascade processes in the organization of honeybee colonies.
We use multifractal analysis of individual honeybee activity
as a means to demonstrate that both sources of multifractality,
that is, equivalently, both entailments of cascade processes
reveal the specific imprint of colony membership on individual
honeybee activity. The multifractal dynamics of individual
honeybee activity will emerge as a strong predictor of which
of five colonies each individual honeybee belongs to.

II. SWARM COORDINATION: DECISION-MAKING
AS A CASCADE

Swarm behavior reflects a remarkably flexible and dis-
tributed decision-making process that capitalizes on a decen-
tralized organization but also on aggregation of information
[5]. For instance, when a honeybee colony begins to outgrow its
hive, scouts spread out widely to explore a vast range of options
for the location of a new hive. Scouts return and share their
information in terms of waggle dances that encourage other
scouts to inspect new candidate areas. There do not appear
to be social pressures acting on the honeybees through which
one honeybee might influence another or conform to a group’s

preference. Rather, the honeybees arrive independently at their
preference for a candidate site and explicitly vote, potentially
with a waggle dance to second the original scouts’ choices.
Interestingly, swarm decision-making appears to depend on a
minimum quorum of positive votes for a location and does
not wait for unanimous endorsement. Hence, each scout may
express her preference, but then the swarm will begin to act
once members sense a quorum—the means of which quorum
sensing remain controversial.

A. Multifractal evidence in honeybee movements consistent
with cascade processes

This swarm-mediated sharing of information and executing
a proposed plan reflects a sort of informational cascade in
which coordination and interdependence rests on the rich
diversity of relatively autonomous constituents [6]. This char-
acterization of honeybee colonies and swarms as cascadelike
is consistent with known aspects of honeybee-movement
dynamics. For instance, the mathematical class of formalisms
known as cascades can give rise specifically to power-law (i.e.,
fractal) scaling of probability distributions [7,8] and more
generically to multifractal distributions best described by a
variety of power laws [9–12]. Honeybee-movement dynamics
exhibits at least two qualitatively different types of power-law
forms: Levy statistics and long-range temporal correlations
(also known as correlated random walks) [13,14].

B. Three sources of multifractality: Heavy-tailed Levy-like
distributions, long-range linear correlations, and long-range
correlations arising from nonlinear interactions across time

Levy statistics and long-term temporal correlations are
two ostensibly separable mathematical expressions of fractal
patterning: Levy statistics manifest in inverse power-law
distributions—as well as Levy-like statistics that have heavy-
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tailed distributions resembling inverse power laws [15]—in
which probability diverges according to a negative power-law
exponent between −1 and −3, and long-range temporal
correlations often appear formalized in terms of fractionally
integrated Gaussian noise [16]. Long-range correlations are
in this case purely linear. It is certainly possible for one
to occur in the absence of the other: Levy statistics may
reflect the random, uncorrelated sequence of unrelated and
occasionally extreme events [17], and long-range temporal
correlations in Gaussian distributions will by definition fail
to show heavy-tailed distributions. However, it is possible for
developing distributions to blend heavy tails and long-range
temporal statistics [16] or to transition between these extremes
[12], and these hybrids are the simplest way to generate or
to explain multifractal distributions. Further, long-range tem-
poral correlations may lead inevitably to Levy statistics, but
it remains unclear whether long-range temporal correlations
explains the appearance of Levy statistics in honeybees [18].

However, there is a specific entailment of cascade processes
presenting another possible source of multifractal distribu-
tions, namely, nonlinear interactions across time. An important
distinction to make is that long-range linear temporal correla-
tions typically associated with fractionally integrated Gaussian
noise are a limiting case: fractionally integrated Gaussian noise
is a specifically linear specification of monofractal temporal
sequence. Here we are interested in long-range nonlinear
correlations, i.e., temporal correlations insofar as they reflect
the nonlinear phase relationships entailed by cascades [19–33].
Proper diagnosis of nonlinear interactions across time requires
multifractal analysis [34]. Previous evidence of heavy tails
in honeybee movements has also included monofractal fluc-
tuation analysis and Fourier-based power-spectral analyses
[13,14]. Both of these latter analyses are strictly monofractal
analyses [35]. Perhaps one reason that temporal correlations
have not accounted for Levy statistics in honeybee movements
is that monofractal analysis is strictly linear and so not
sufficiently generic to speak conclusively to the long-range
correlations due to cascade-generated nonlinear interactions
across time.

III. MULTIFRACTAL ANALYSIS TO IDENTIFY THE TWO
CASCADE-DRIVEN PROPERTIES OF SPECIFIC COLONY

Essentially, heavy-tailed distributions and long-range cor-
relations due to nonlinear interactions across time scale
are two separately diagnosable mathematical entailments of
a cascade model for the superorganismic coordination of
decision-making. The present article does not seek to explain
heavy-tailed statistics, but rather it will use multifractal
analysis to quantify the colony-specific signature that cascade
processes might impress upon the activity of individual
honeybees. Because multifractal analysis is sensitive to both
heavy-tailed distribution and to long-range correlations due
to nonlinear interactions across time [36,37], multifractal
analysis is uniquely suited to the task of quantifying both
the degree of heavy-tailedness and the strength of long-range
correlations due to nonlinear interactions across time.

At first glance, this double duty that we propose for
multifractal analysis might seem to conflate the two separate
entailments of cascade processes that the literature has sought

to articulate as mathematically different—if blendable and
ultimately related. However, using multifractal analysis in
conjunction with surrogate data allows a subtle dissociation of
the two types of multifractality: (1) multifractality due to heavy
tails and (2) multifractality due to long-range correlations (i.e.,
nonlinear interactions across time scales). Surrogate data are
simulated reconstructions of original observed data used, in
nonlinear-dynamics research, to stand in for the null hypothesis
that our observed data arise from strictly linear stochastic
processes. For instance, whereas nonlinear phase relation-
ships producing long-term correlations and whereas original
sequence can be important for nonlinear stochastic processes,
surrogate data embody the original data’s linear properties
(i.e., the original mean, variance, and autocorrelation) but in
an arrangement that destroys any of the original sequence that
might follow from nonlinearity [38,39]. Specifically, multi-
fractal analysis estimates a multifractal spectrum whose width
indicates the range of exponents (also known as “singularity
strengths”) for estimable power-law relationships across time
scales. (Note: power laws are described as “singular” because
of their scale-invariant property.) The width of the original
series’ multifractal spectrum wMF is an ambiguous reflection
of both the heaviness of tails in the series’ distribution and the
long-range correlations due to nonlinear interactions across
time. Surrogate data can help to dissociate these two sources of
multifractality with the application of multifractal analysis to
surrogate series designed to preserve only the linear properties
of the original series (i.e., mean, variance, and autocorrelation
function). If there are long-range correlations due to nonlinear
interactions across time in the original series, however, then
there should be a significant difference of the original series’
multifractal spectrum width from the multifractal spectrum
widths for the surrogate series’. Hence, we can use a t-
statistic comparing original spectrum width to surrogates’
spectrum widths as a standardized difference statistic tMF to
quantify the degree of long-range correlations due to nonlinear
interactions across scale. Taken together, both heavy-tailed
distributions and long-range correlations due to nonlinear
interactions across scales might together explain the subtle
mixture of interdependence and individuality that makes the
superorganism of the honeybee colony at once so robust but
also so flexible as to challenge straightforward summary and
delineation [5].

A. Exploring whether multifractal properties wMF and tMF

for individual honeybees help indicate colony membership

We use wMF and tMF together in the same regression models
to test whether these descriptions of individual honeybee
behavior in fact predict colony membership. That is, rather
than simply look for group effects on individual honeybees’
movement patterns, we approach the potentially more chal-
lenging issue of beginning from the individual honeybee—free
and indifferent to social conformity as it is—and attempt
to read the multifractality of its activity for clues as to
its colony membership. Neuroscientific evidence has already
inspired mathematical modeling of neuronal coding within a
single honeybee’s nervous system that might contribute to the
heavy-tailed distribution and long-range linear autocorrelation
of honeybee-movement dynamics [40]. Hence, left to their own

022402-2



MULTIFRACTALITY IN INDIVIDUAL HONEYBEE . . . PHYSICAL REVIEW E 95, 022402 (2017)

individual devices, there may be enough multifractal diversity
in a single honeybee’s neural dynamics to generate heavy-
tailed distributions—that is, enough multifractal structure
at the neural level to specify heavy-tail-driven multifractal
behavior at the scale of their eventual trajectories. However,
the evidence of swarm behaviors such as quorum sensing
entails a degree of interaction across scales of time and
space that should translate as well to some echo of similar
multifractality in honeybees of the same colony driven by long-
range correlations due to nonlinear interactions across time.
In a similar way that Gutierrez and Cabrera [40] presumed to
“decode” experimental neuronal data for multifractal evidence
of the corresponding heavy-tailed movement pattern, we now
aim to decode experimental honeybee-movement data for
multifractal evidence of colony membership.

B. Hypotheses

We show that both measures of cascade processes will
serve as statistical signatures of colony-wide coordination
that leave an imprint on individual honeybee behavior and
that allow statistically assigning any given honeybee to its
proper colony. Given that the degree of multifractality driven
by heavy-tailed contributions might reflect the separate neural
dynamics of individual honeybees, the strength of long-range
correlations due to nonlinear interactions across time, i.e.,
tMF, should emerge more clearly in a prediction of specific
colony membership than it might serve a coarser distinction
among colonies. In what follows, we present reanalysis of
honeybee-movement data based strictly on time stamps logged
when honeybees occupied a specific location within each of
five colonies. We can draw a coarser distinction regarding
whether the colony had or did not have an exterior-mesh
enclosure surrounding the hive: two colonies had this enclosure
and the other three did not. The tMF of individual honeybee
activity might predict the relatively generic presence or
absence of a mesh enclosure in a logistic regression of
this presence-absence dichotomous variable. A multinomial
regression predicting the subtler distinction of membership
in any of the five specific colonies brings into relief more
robust contributions of both wMF and tMF. In sum, long-range
correlations due to nonlinear interactions across time tMF

of honeybee movements never fail to predict some aspects
of colony membership [40], but multifractality ωMF encodes
specific colony membership. These findings hold as well in the
concurrent presence of various more straightforward estimates
of magnitude from skewed distributions (e.g., mean, median,
and maximum; first and third quartiles; whether for all values
or only for values in the tail).

C. Description of the honeybee-movement dataset

The present work is a reanalysis of data originally reported
elsewhere on logging time stamps of individual honeybees’
exits from and entries to their colonies using radio-frequency
identification (RFID) [41]. Experimenters augmented each
colony’s hive with a walkway to the hive’s entrance. This
walkway contained two RFID readers: one closer to the hive
and one closer to the aperture of the walkway.

This reanalysis deals only with RFID time stamps for
each honeybee. Despite the idealized possibility of inferring
direction of flight, the RFID readers did not necessarily
detect all honeybees at all times, and the walkway was also
spacious enough to allow honeybees to reverse course. The
present analysis simply deals with the time stamps irrespective
of reader designation. This omission of reader designation
essentially collapses the meaning of the RFID data to time
stamps when the honeybee is in a region centered at the
midpoint between the two readers. We only considered the
time stamps in terms of the resulting interval series.

As the subsequent details on data analysis may illustrate,
these data were not collected originally for multifractal
analysis and are not ideal for these purposes. However, we
approached this dataset as a means to test the robustness of
the above logic regarding cascade coordination and specificity
of multifractal properties to cascade structure. We did not
test for multifractal structure in any series with fewer than
20 intervals. A common concern is “finite-size effects” on
multifractal analysis, meaning that short series can produce
spurious multifractal results, yielding an artifactually larger
than zero multifractal spectrum width [32,33,42]. For the
remainder of the series longer than 20 intervals, there was
no finite-size effect on multifractal spectrum width. That is to
say, there was no significant relationship between the number
of intervals and the multifractal spectrum width—except in
interaction terms indicating that a greater number of intervals
diminished the effects of heavy-tailed distributional properties.
The short samples and strong dilution of the sample with zero
values should have made the test of multifractal indicators
where we could generate nonzero estimates extremely unlikely
to find a positive result. The presence of positive results in spite
of the limitations of this dataset warrants further consideration.

IV. METHOD

A. Data collection

Tenczar et al. [41] attached RFID tags to 163 and 391
individual honeybees in each of two “experimental” colonies,
colony 1 and colony 2, each bounded by a mesh enclosure
(6 m wide × 20 m long × 3 m high; with total populations of
921 and 1051, respectively), as well as to 102, 119, and 369
individual honeybees in each of three “open” colonies, colony
3, colony 4, and colony 5 (with total populations of roughly
958, 932, and 979, respectively). The two former experimental
colonies had mesh enclosures receiving ad libitum pollen,
water, and 50% sucrose solution placed in feeders near the
colony and replenished every day. Details of data collection
can be found in [41]. Figure 1 shows four example series of
intervals between RFID readings for four example honeybees.

B. Data analysis

1. Descriptive statistics

Data analysis involved first generating descriptive statistics
on the skewed distributions of inter-reading intervals for each
individual tagged honeybee (Fig. 2). Unsigned interval series
are amenable to multifractal analysis [43,44]. Series length
varied from 21 intervals at the minimum to 2246 intervals at
the maximum, with first quartile, median, and third quartiles of
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FIG. 1. Four example plots of RFID-reading interval series from four example honeybees. Original series lengths varied, but these plots
depict only 100 successive intervals from each so as to show examples of the same length. All series depicted passed the augmented Dickey-Fuller
test for stationarity, with nonstationarity rejected at p < 0.05.

150, 243, and 393, respectively. For quantifying magnitude of
the entire distribution, we used median, mean, and maximum
inter-reading intervals (IMedian, IMean, and IMax, respectively).
For quantifying the magnitude of only large intervals, we
classified intervals as those greater than 30 000 s as long trips
(LTs), and we used the median and mean of these intervals
longer than 30 000 (ILTMedian and ILTMean, respectively). We
did not use the maximum of these LT intervals because they

were equivalent with the maximum of the entire distribution
of intervals.

To generate a rough measure of temporal structure across
the series of intervals, we computed the time intervals
between each LT interval and computed descriptive statistics
on these intervals-between-large-intervals: median, mean, and
maximum of inter-LT intervals (BMedian, BMean, and BMax,
respectively).

FIG. 2. Example plot of RFID-reading time stamp series for an individual honeybee (left panel) and of inter-reading intervals series for the
same honeybee (right panel). Arrows indicate the location on the right panel’s vertical axis of the median, mean, and maximum inter-reading
interval (IMedian, IMean, and IMax, respectively), as well as the median, mean, and maximum “long-trip” inter-reading interval (ILTMedian,ILTMean,
and ILTMax, respectively) describing the distribution of intervals above the 30 000-s cutoff shown by the dashed horizontal line. The left panel also
includes brackets to indicate the intervals B between these long-trip intervals, specifically the median, the maximum, and, in the gray-shaded
box inset, the mean (BMedian, BMean, and BMax, respectively). To aid comparison, both panels show the 22nd and 23rd values of B (i.e., 85 708
and 83 884 seconds apart) on the RFID-reading domain (left panel) and on the inter-reading interval domain (right panel).
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2. Multifractal analysis

We used Chhabra and Jensen’s (CJ) [45] canonical “direct”
algorithm for calculating the multifractal spectrum width
wMF that samples measurement series u(t) at progressively
larger scales. For each q, each estimated α(q) appears in the
multifractal spectrum only when negative Shannon entropy
of mass μ(q,L) scales with L according to the Hausdorff
dimension f (q), where

f [α(q)] = − lim
Nj →∞

∑Nj

i=1 μij (q,Lj ) ln[μij (q,Lj )]

ln Nj

,

f [α(q)] = lim
Lj →0

∑Nj

i=1 μij (q,Lj ) ln[μij (q,Lj )]

ln Lj

, (1)

and where the mass-weighted bin proportion scales with L as

α(q) = − lim
Nj →∞

∑Nj

i=1 μij (q,Lj ) ln[Pij (Lj )]

ln Nj

,

α(q) = lim
Lj →0

∑Nj

i=1 μij (q,Lj ) ln[Pij (Lj )]

ln Lj

. (2)

For −10 � q � 10, and including only linear relationships
with correlation coefficient r > 0.995 for Eqs. (1) and (2),
the downward-opening curve (α(q),f(q)) is the multifractal
spectrum. αmax-αmin is the multifractal spectrum width wMF

according to the CJ algorithm. We used the CJ algorithm for
these short series because, unlike other multifractal methods
that use detrending, we were not certain that the short series
would support the stable estimations of linear or polynomial
trends or that the resulting residuals left over would be reliable
estimates for fractal analysis. The CJ method relies only on
local means and so does not require as much on the stability
of linear or polynomial change.

(a) Calculating tMF from comparison to iterated amplitude
adjusted Fourier-transform (IAAFT) surrogates. 50 surrogates
were produced according to the IAAFT procedure [39,46–48]
for each original inter-reading interval series, using 1000
iterations. This IAAFT procedure generates surrogate data
that preserves the linear properties of mean and variance by
maintaining the original values of the series, and it preserves
the autocorrelation while destroying any nonlinear phase
relationship implicit in the original sequence. The first step
of this procedure for any given series is to submit it to the
Fourier transform that calculates, for every series, an amplitude
spectrum expressing the size of oscillations over a wide range
of frequencies and a phase spectrum that indicates the order in
which these oscillations at each frequency first appear in the
time series. Hence, the amplitude spectrum encodes informa-
tion about the average temporal structure across many different
time scales, corresponding to the autocorrelation function
which was the third property of a linear stochastic process.
The phase spectrum encodes sequence information which is a
distinguishing feature only for stochastic processes of the non-
linear type. The IAAFT procedure thus stores the amplitude
spectrum of the original series and it randomizes the phase
spectrum to destroy any original sequence. Next, the IAAFT
procedure computes an inverse-Fourier transform using the
original preserved amplitude spectrum and the randomized
phase spectrum. The inverse-Fourier procedure will project the

preserved amplitude spectrum and randomized phase spectrum
into a real-numbered series, but this projection is not necessar-
ily distributed with the same mean and variance of the original
series. To overcome this limitation, the IAAFT procedure con-
cludes each iteration with an “amplitude-adjustment” step that
rank orders the values of the inverse-Fourier series and replaces
each value with rank-matched values of the original series.
This amplitude-adjustment step concludes a single iteration,
and IAAFT involves multiple iterations because amplitude
adjustment will change small deviations in the amplitude
spectrum of the resulting surrogate. Repeated iterations help
to repeatedly inject the original series amplitude spectrum
into the surrogate, strengthening the ability of the surrogate to
represent the linear feature of the autocorrelation function. We
calculated tMF as the difference [wMF − ( 1

50 )
∑50

i=1 wSurr(i))]
divided by the standard error of wSurr. Hence, positive or nega-
tive tMF indicated wider or narrower, respectively, spectra than
surrogates. We evaluated significance at the p < 0.05 level.

(b) Criteria for setting zero values. We submitted all series
of inter-reading intervals of length greater than 20 intervals to
multifractal analysis. For those inter-reading interval series of
length 20 intervals or shorter, we automatically set wMF and tMF

to zero. For those inter-reading interval series of length greater
than 20 intervals that did not reveal any linear relationship for
Eqs. (1) and (2), we automatically set these variables to “NaN”
(not a number). Subsequent modeling converted NaNs to zeros
without any change in the results.

3. Logistic regression

Logistic regression is a standard method for modeling the
odds of a dichotomous (i.e., two-valued, noncontinuous) out-
come in terms of a product of independent predictors. For any
dichotomous outcome variable y, the individual probability
pi an individual i experiencing or exhibiting a dichotomous
property or event 0 or 1 in the set of possible values for y

is approximable by the average probability across the sample.
We can express any proportion pi in terms of odds pi/(1 − pi),
and the logarithms of these odds are amenable to linearized
regression. Hence, logistic regression models a dichotomous y

in terms of n predictors x1,x2,x3, . . . ,xn−2,xn−1, xn as follows:

ln

(
pi

1 − pi

)
= β0 + β1x1 + β2x2 + β3x3 + · · ·

+β(n−2)x(n−2) + β(n−1)x(n−1) + βnxn + ε,

(3)

where β0 and β1,β2,β3, . . . ,βn−2,βn−1, βn are constants
indicating the intercept (i.e., the proportion of outcome y when
the predictors all equal zero) and the weights on contributions
of predictors x1,x2,x3, . . . ,xn−2,xn−1, xn, respectively. The
size and sign of the coefficients β1,β2,β3, . . . ,βn−2,βn−1, βn

indicate the strength and direction of the effect of
x1,x2,x3, . . . ,xn−2,xn−1, xn, respectively, on the logarithmic
odds of y. Exponentiating β1,β2,β3, . . . ,βn−2,βn−1, βn pro-
duces odds ratios indicating how many times a unit increase
of x1,x2,x3, . . . ,xn−2,xn−1, xn increases the odds of y [49].

4. Multinomial regression

Multinomial regression generalizes logistic regression to
suit modeling a categorical variable z with k > 2 values.
Whereas logistic regression allows regressing y on a set of
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predictors in one equation, multinomial regression treats a
kth value of z as a baseline and models k − 1 equations of
similar form to Eq. (4) that model the logarithmic odds that

each j th individual case embodies property or event 1,2, . . . ,
k − 2,k − 1 and not baseline property or event k. Hence, the
regression equations are as follows:

ln

(
p1j

pkj

)
= β10 + β11x11 + β12x12 + β13x13 + · · · + β1(n−2)x1(n−2) + β1(n−1)x1(n−1) + β1nx1n + ε1,

ln

(
p2j

pkj

)
= β20 + β21x21 + β22x22 + β23x23 + · · · + β2(n−2)x2(n−2) + β2(n−1)x2(n−1) + β2nx2n + ε2, . . . ,

ln

(
p(k−2)j

pkj

)
= β(k−2)0 + β(k−2)1x(k−2)1 + β(k−2)2x(k−2)2 + β(k−2)3x(k−2)3 + · · · + β(k−2)(n−2)x(k−2)(n−2) + β(k−2)(n−1)x(k−2)(n−1)

+β(k−2)nx(k−2)n + ε(k−2),

ln

(
p(k−1)j

pkj

)
= β(k−1)0 + β(k−1)1x(k−1)1 + β(k−1)2x(k−1)2 + β(k−1)3x(k−1)3 + · · · + β(k−1)(n−2)x(k−1)(n−2) + β(k−1)(n−1)x(k−1)(n−1)

+β(k−1)nx(k−1)n + ε(k−1), (4)

where for 1 � v � k − 1,β0 and βv1,βv2,βv3, . . . ,βv(n−2),

βv(n−1), βvn are constants indicating the intercept (i.e.,
the proportion of outcome y when the predictors all
equal zero) and the weights on contributions of predictors
xv1,xv2,xv3, . . . ,xv(n−2),xv(n−1), xvn, respectively. The size and
sign of the coefficients βv1,βv2,βv3, . . . ,βv(n−2),βv(n−1), βvn

indicate the strength and direction of the effect of
xv1,xv2,xv3, . . . ,xv(n−2),xv(n−1), xvn, respectively, on the loga-
rithmic odds of z taking the value of w rather than of k [50].

V. RESULTS

A. Multifractal results on inter-reading intervals

362 honeybees had inter-reading interval series of length 20
or less and so were never submitted to multifractal analysis.
89.20% of the remaining series showed significant augmented
Dickey-Fuller tests for unit roots [51], indicating that most of
the series were stationary. 213 honeybees failed to yield linear
relationships according to Eqs. (1) and (2), with colonies 1 and
2 having 20.48% and 15.86%, respectively, and with colonies
3, 4, and 5 having 17.47%, 32.77%, and 16.22%, respectively.
All such failures were encoded as having wMF = 0.

Of the remaining 574 series, 370 had multifractal spectra
with widths significantly different from those of their corre-
sponding surrogates (e.g., Fig. 5). In other words, of honeybees
that generated sufficiently long series of and sufficiently stable
relationships for Eqs. (1) and (2), 64.46% of these honeybees
exhibited long-range correlations due to nonlinear interactions
across scales through their inter-reading intervals. It remains in
the next sections to determine whether or not this information
from less than half of the total recorded honeybees is enough
to predict colony membership even with so many zeros in the
sample diluting the multifractal information.

As suggested by Fig. 5, the left side of the multifractal
spectrum (i.e., for q > 0) was often the more stable portion
of estimates from the multifractal algorithm. Our use of an
r > 0.95 cutoff for estimating both α(q) and f (q) simply
made it less likely that our estimates would include the less

stable right side of the multifractal spectrum. This instability
for negative q is a known constraint for all “box-counting”
algorithms like Chhabra and Jensen’s [45] that depend on tiling
a measurement with nonoverlapping bins from the beginning
of a measurement [52–59], but many empirical examples
suggest that the left side of the multifractal spectrum may
support the better prediction of structural change for natural
systems, ranging from the vast scales of solar radiation [60]
and atmospheric flows [61,62], to the smaller scales of soil
composition [63], magnetic particles [64], and battery voltage
[65]; and as well to the medium scales of social organisms
pooling and competing for resources [66].

A related concern regarding finite-size effects on multifrac-
tal estimates is that, for short series, the moments of large q’s
may cause Eqs. (1) and (2) to diverge [67,68]. To resolve this
concern, we include plots of Eqs. (1) and (2) for the integer
values of q for the first quartile of interval-series lengths,
i.e., length Nints = 150. Figures 3 and 4 depict the plotted
relations for Eqs. (1) and (2), respectively, for an example
series of length Nints = 150. As noted above, we only included
values of q for the estimation of multifractal spectra for
which both Eq. (1) and Eq. (2) supported linear relations with
correlations greater than r = 0.995. Hence, this Ninits = 150
series certainly failed to support many of the tested values of
q from −10 to 10, inclusive, but nonetheless, in the interest
of ensuring that our multifractal spectra were conservatively
estimated, we included the depicted five values of q for which
the relations in Eqs. (1) and (2) for corresponding q were
demonstrably linear. All relations in Eq. (1) for which either
Eq. (1) or Eq. (2) did not exhibit an r > 0.995 relationship
were omitted from the calculation of wMF.

B. Multifractality of inter-reading intervals for single
honeybees distinguishes presence or absence of mesh boundary

A logistic regression modeled whether or not honeybees
belonged to an experimental colony with an exterior-mesh
boundary. Predictors initially included the mean, median,
and maximum inter-reading intervals (i.e., IMedian, IMean,
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FIG. 3. Example plot of relations between negative Shannon
entropy of bin masses μ(q,L) and logarithmic bin size L in Eq. (3) for
an example interval series of length 150. This depicts all values of q

that passed our r > 0.995 criterion for inclusion into the multifractal
spectrum we used for calculating wMF. Plots for different values
of q appear separated by vertical constant only to aid visibility.
All relations in Eq. (1) for which either Eq. (1) or Eq. (2) for
corresponding q did not exhibit a r > 0.995 relationship were omitted
from the calculation of wMF.

and IMax) as well as the multifractal spectrum width wMF

and the t-statistic tMF comparing wMF to the widths of 50
IAAFT surrogates. The logistic-regression equation related
the logarithmic odds of each ith bee belonging to a colony
with a mesh boundary M (i.e., the presence or absence of a
mesh boundary encoded as M = 1 or 0, respectively) to a set

FIG. 4. Example plot of relations between mass μ(q,L)-weighted
bin proportion and logarithmic bin size L in Eq. (2) for an example
interval series of length 150. This depicts all values of q that passed
our r > 0.995 criterion for inclusion into the multifractal spectrum
we used for calculating wMF. Plots for different values of q appear
separated by vertical constant only to aid visibility. All relations in
Eq. (2) for which either Eq. (1) or Eq. (2) for corresponding q did not
exhibit a r > 0.995 relationship were omitted from the calculation of
wMF.

FIG. 5. Example plot of multifractal spectra showing the multi-
fractal spectrum for the original inter-reading interval series shown
in the right panel of Fig. 2 (solid black) as well as for five IAAFT
surrogates preserving the same values as the original and its linear
autocorrelation (gray lines, dashed or solid or light to distinguish
them from one another when overlapping). The width of the original
series’ multifractal spectrum wMF is 0.5134 indicated by the dashed
black arrow at the bottom of the plot. Surrogates generally had
narrower multifractal spectra, with surrogates 1–4 having widths
0.1505, 0.1224, 0.1153, and 0.3465. Surrogate 5 had the closest
spectrum width (0.5026) to that for the original.

of predictors as follows:

ln

(
pi

1 − pi

)
= βIntercept + β1IMedian + β2IMean + β3IMax

+β4wMF + β5tMF + ε. (5)

All effects were significant including wMF and tMF in this
version of the model (Table I), with estimated coefficients β4

and β5 entailing an odds ratio of e−0.42 = 0.66 for wMF and
e0.03 = 1.03 for tMF, respectively. That is, a unit increase in
multifractal spectrum width makes it a third less likely and
that a unit increase in tMF makes it 1.03 times more likely that
the honeybee belongs to a colony with an exterior mesh.

Given the small size of the dataset, it is important to test this
effect of long-range temporal correlations against a yet longer
list of simpler descriptive statistics. We hope to guard against
the possibility that the earlier result is not simply a result
of “data massaging” or of contrived models small enough to

TABLE I. Coefficients for logistic regression testing aspects of
inter-reading intervals for distinguishing experimental colonies with
from open colonies without mesh enclosures—basic descriptives and
multifractal statistics.

Predictor B SE p

Intercept 0.80 0.14 <0.0001
IMedian −5.90 × 10−6 6.98 × 10−6 0.40
IMean 7.55 × 10−6 6.08 × 10−6 0.21
IMax −4.70 × 10−6 6.62 × 10−7 <0.0001
wMF −0.42 0.23 0.06
tMF 0.03 0.01 <0.05
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TABLE II. Coefficients for logistic regression testing aspects of
inter-reading intervals for distinguishing experimental colonies with
and open colonies without mesh enclosures—basic descriptives and
multifractal statistics but also including descriptive statistics long-trip
intervals and intervals between long trips.

Predictor B SE p

Intercept 1.30 0.44 <0.0001
IMedian −4.05 × 10−6 8.43 × 10−6 0.63
IMean 1.06 × 10−5 9.51 × 10−6 0.27
IMax −8.05 × 10−6 2.05 × 10−6 <0.0001
wMF − 0.27 0.22 0.21
tMF 0.03 0.01 <0.05
ILTMedian −3.09 × 10−7 9.08 × 10−6 0.97
ILTMean 1.21 × 10−5 1.14 × 10−5 0.29
BMedian 3.29 × 10−7 1.07 × 10−5 0.98
BMean −2.13 × 10−5 1.26 × 10−5 0.09
BMax 5.77 × 10−6 2.22 × 10−6 <0.01

show a potentially desired effect. Table II reports an elaborated
logistic regression that incorporates both the descriptive
statistics on intervals of arbitrary length (i.e., ILTMedian,ILTMean)
and the descriptive statistics on intervals between arbitrarily
long intervals (BMedian, BMean, and BMax). This elaborated
logistic-regression equation related logarithmic odds of each
ith bee belonging to a colony with a mesh boundary M (i.e., the
presence or absence of a mesh boundary encoded as M = 1 or
0, respectively) to a set of predictors as follows:

ln

(
pi

1 − pi

)
= βIntercept + β1IMedian + β2IMean + β3IMax

+β4wMF + β5tMF + β6ILTMedian + β7ILTMean

+β8BMedian + β9BMean + β10BMax + ε. (6)

The inclusion of each new effect individually improves
model fit, but once all of these new effects appear in the model,
only BMax contributes significantly to predicting the presence
or absence of an exterior-mesh boundary, with an odds ratio
close to but just less than 1.

The effect wMF(β4 = −0.27) is much weaker than in the
previous model, indicating that the effect of multifractal
spectrum width is less important than simpler descriptive
statistics. However, the significant effect of tMF that appeared
in the reduced model in Table I remains stable (β4 = 0.03) and
remains significant.

Hence, we hope to have shown that the results are quite
stable across multiple models and so multiple perspectives as
to what other predictors might be relevant. Various alternate
versions of this logistic regression support the same pattern of
significance for wMF and tMF. For instance, adding the first and
third quartiles for the intervals and for the long-term intervals
does not change the pattern of significance. In short, given
all of the limitations of estimating wMF and tMF under these
small-sample constraints, these multifractal measures both
show robust significant contributions to identifying whether
or not honeybees belong to experimental colonies.

C. Multinomial regression predicting to specific colony
indicates significant effect both of long-range correlations

due to nonlinear interactions across time tMF

and of heavy-tailedness wMF

A multinomial regression including all terms from the
logistic regression in Table II aimed to test whether these
terms might distinguish not simply between the presence or
absence of an exterior-mesh boundary but, more specifically,
distinguish the specific colonies to which the honeybees
belonged. That is, given the five colonies, the multinomial
regression comprised four equations modeling the logarithmic
odds of each ith bee belonging to colony 1 � v � 5,v �= 3
rather than colony 3 of the following form:

ln

(
pvi

p3i

)
= βvIntercept + βv1IvMedian + βv2IvMean + βv3IvMax

+βv4wvMF + βv5tvMF + βv6IvLTMedian

+βv7IvLTMean + βv8BvMedian

+βv9BvMean + βv10BvMax + εv. (7)

We selected colony 3 as the control only because it was
the first of the open colonies, and using this control case
allows comparison of two experimental colonies as well as two
open colonies. Most notably, the strongest predictors serving
to distinguish across all the specific colony memberships were
wMF and tMF. Hence, specific combinations of the multifractal
spectrum width and the difference of this width from corre-
sponding surrogates significantly improve prediction of which
of four colonies besides colony 1 an individual honeybee
might belong to. This finding indicates that, above and beyond
simpler descriptive statistics, both long-range correlations due
to nonlinear interactions across time tMF and all remaining
contributions of heavy-tailedness to wMF may serve as a
statistical trace of colony membership left in the inter-reading
intervals of individual honeybees (Table III).

All various alternate versions as tested by the logistic
regression above support the same pattern of significance for
wMF and tMF in this multinomial regression.

D. Testing finite-size effects and finding only that longer series
diminish effects of heavy-tailed distributional properties

The primary concern of finite-size effects on the multifractal
spectrum is that overly short series might give rise to artifac-
tually wide multifractal spectra, indicating only an “illusory”
sort of multifractality. There was no clear relationship between
multifractal spectrum width and series length Nints. These two
quantities bore a linear correlation close to zero, specifically,
r = 0.03. We ran a linear regression model to test how any
effects of series length might appear when fitting the covariates
representing the heavy-tailed distributional properties of the
intervals, i.e., IMedian, IMean, and IMax, as well as the first
and third quartiles of the intervals Iq1 and Iq3, respectively.
Table IV shows the coefficients from a model that only tests
main effects. In these results, there was no main effect for
Nints, IMean, or Iq3. There were only main effects for IMedian,
IMax, and Iq1. Hence, there was no main effect of series
length on multifractal width. A second linear regression model
included all of the same effects as in the first model, as well

022402-8



MULTIFRACTALITY IN INDIVIDUAL HONEYBEE . . . PHYSICAL REVIEW E 95, 022402 (2017)

TABLE III. Coefficients for multinomial regression testing aspects of inter-reading intervals for distinguishing colonies 1, 2, 4, and 5 as
compared to colony 3—including all coefficients for predictors in Table II in columns corresponding to colony.

Colonies other than colony 3

Predictor Colony 1 Colony 2 Colony 4 Colony 5

Intercept 0.29*** 2.86*** −0.27*** 1.45***

(3.08 × 10−9) (8.30 × 10−10) (7.73 × 10−10) (1.02 × 10−9)
IMedian −7.78 × 10−5 7.98 × 10−6 1.26 × 10−6 2.45 × 10−5*

(6.35 × 10−5) (1.28 × 10−5) (1.32 × 10−4) (1.37 × 10−5)
IMean 2.96 × 10−6 −3.69 × 10−6 −5.44 × 10−6 −2.77 × 10−5**

(1.27 × 10−5) (1.12 × 10−5) (1.12 × 10−5) (1.03 × 10−5)
IMax −4.02 × 10−6* 1.10 × 10−5*** −6.14 × 10−6* −2.19 × 10−6

(2.26 × 10−6) (2.54 × 10−6) (2.65 × 10−6) (1.87 × 10−6)
wMF −0.03 *** −0.29 *** −0.59 *** −0.07 ***

(4.43 × 10−9) (1.50 × 10−9) (4.34 × 10−10) (1.55 × 10−9)
tMF 0.01 *** 0.01 *** −0.06 *** −0.02 ***

(2.79 × 10−8) (1.24 × 10−8) (1.96 × 10−9) (9.26 × 10−9)
ILTMedian −3.61 × 10−5** −2.43 × 10−5* −1.46 × 10−5 −3.03 × 10−5**

(1.39 × 10−5) (1.31 × 10−5) (1.31 × 10−5) (1.26 × 10−5)
ILTMean 3.96 × 10−5** 4.36 × 10−5** 3.58 × 10−5* 2.88 × 10−5*

(1.63 × 10−5) (1.61 × 10−5) (1.63 × 10−5) (1.44 × 10−5)
BMedian 3.26 × 10−5* 2.43 × 10−5* 1.47 × 10−5 2.25 × 10−5*

(1.47 × 10−5) (1.41 × 10−6) (1.31 × 10−5) (1.28 × 10−5)
BMean −3.67 × 10−5* −5.03 × 10−5** −3.16 × 10−5* −1.86 × 10−5

(1.66 × 10−5) (1.67 × 10−6) (1.49 × 10−5) (1.45 × 10−5)
BMax 4.42 × 10−6 9.45 × 10−6** 7.86 × 10−6** 2.13 × 10−6

(2.72 × 10−6) (2.89 × 10−6) (2.85 × 10−6) (2.29 × 10−6)

(Note. Standard errors in parentheses; *denotes p < 0.05; **denotes p < 0.01; ***denotes p < 0.0001.)

as interactions between Nints and each of the distributional
properties IMedian, IMean, IMax, Iq1, and Iq3. Table V shows
the coefficients from this second model. This second model
yielded all significant effects except for a main effect of
Nints. The interactions of Nints and each of the distributional
properties IMedian, IMean, IMax, Iq1, and Iq3 all had the opposite
sign from effects of the distributional properties IMedian, IMean,
IMax, Iq1, and Iq3. That is to say, the only effect of interval-
series length is that longer series have multifractal spectrum
widths less dependent on distributional properties. There is no
evidence that shorter series yield illusory multifractality, that
is, artifactually wider multifractal spectra. On the contrary,
there is only evidence that shorter series are more likely to yield
results consistent with heavy-tailed distributional properties,

TABLE IV. Coefficients for linear regression model of wMF test-
ing for effects of interval-series length Nints as well as distributional
properties of intervals, i.e., IMedian,IMean, and IMax, as well as the first
and third quartiles of the intervals Iq1 and Iq3, respectively.

Predictor B SE p

Intercept 0.48 0.08 <0.0001
Nints 1.56 × 10−4 1.24 × 10−4 0.21
IMedian −3.12 × 10−4 3.25 × 10−5 <0.0001
IMean 7.81 × 10−6 5.48 × 10−6 0.15
IMax −4.60 × 10−7 2.20 × 10−7 <0.05
Iq1 2.66 × 10−3 2.68 × 10−4 <0.0001
Iq3 6.70 × 10−6 3.45 × 10−6 0.05

i.e., that shorter series are less likely to have significantly
large tMF.

VI. DISCUSSION

We have used the honeybee colony as a model system
and multifractal modeling as a technique for modeling the
cascadelike properties of five honeybee colonies. The different
sources of multifractality in the measured series predict the
type of colony to which an individual honeybee belongs.

TABLE V. Coefficients for linear regression of wMF testing for
effects of interval-series length Nints, all other effects included in
Table IV, and interactions of Nints with all distributional properties
of intervals, i.e., IMedian,IMean, and IMax, as well as the first and third
quartiles of the intervals Iq1 and Iq3, respectively.

Predictor B SE p

Intercept 0.76 0.09 <0.0001
Nints −5.20 × 10−5 1.94 × 10−4 0.79
IMedian −4.29 × 10−4 4.07 × 10−5 <0.0001
IMean 2.18 × 10−5 6.64 × 10−6 <0.01
IMax −6.64 × 10−7 3.36 × 10−7 <0.05
Iq1 3.14 × 10−3 3.03 × 10−4 <0.0001
Iq3 1.81 × 10−5 5.78 × 10−6 <0.01
Nints × IMedian 2.32 × 10−6 4.63 × 10−7 <0.0001
Nints × IMean −2.17 × 10−7 5.18 × 10−8 <0.0001
Nints × IMax 2.38 × 10−9 1.02 × 10−9 <0.05
Nints × Iq1 −8.42 × 10−6 3.38 × 10−6 <0.05
Nints × Iq3 −3.47 × 10−7 8.87 × 10−8 <0.001
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We found specifically that multifractality due to long-range
correlations associated with nonlinear interactions across time
was a good predictor of whether or not a colony operated
within a mesh enclosure as well as a good predictor of
membership in a specific colony. We also found that the
heavy-tail-driven multifractality supported the more subtle
distinction regarding individual colony. This finding aligns
with previous research finding that multifractal signatures
of long-range correlations due to nonlinear interactions of
time spread readily through coordinations both between an
individual organism with a task environment [69], as well as

among multiple components of the human movement system
[70–72]. That is only to say that the present findings may
not reflect features unique to honeybees, and rather, biological
coordinations appearing in different species can exhibit similar
multifractal hallmarks of cascade organization that, in turn,
predict different coordination patterns.
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