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While the statistical and resilience properties of the Internet are no longer changing significantly across time,
the Darknet, a network devoted to keep anonymous its traffic, still experiences rapid changes to improve the
security of its users. Here we study the structure of the Darknet and find that its topology is rather peculiar, being
characterized by a nonhomogeneous distribution of connections, typical of scale-free networks; very short path
lengths and high clustering, typical of small-world networks; and lack of a core of highly connected nodes. We
propose a model to reproduce such features, demonstrating that the mechanisms used to improve cybersecurity
are responsible for the observed topology. Unexpectedly, we reveal that its peculiar structure makes the Darknet
much more resilient than the Internet (used as a benchmark for comparison at a descriptive level) to random
failures, targeted attacks, and cascade failures, as a result of adaptive changes in response to the attempts of
dismantling the network across time.
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I. INTRODUCTION

Since the Internet became a publicly accessible infrastruc-
ture and communication network, its resilience to random
failures (caused, for instance, by unexpected crashes due to
node malfunction or protocol errors) or attack (actions devoted
to isolate nodes that play a vital role in the network) has
been widely investigated [1–5]. In fact, the Internet exhibits
highly nontrivial structural and dynamical properties, from a
heavy-tail distribution of connections (known as a scale-free
property [6]) to a moderate amount of clustering (proportional
to the fraction of nodes that form closed triangles), whose
modeling has been the subject of intense research activity
[7–11]. In fact, several years after the Internet’s first proper
crash, in 1980, the focus of many studies has been, and still
is, to improve its resilience [10,12–17]. In the late 1990s,
about 30 years after the first Internet prototype, the U.S.
Defense Advanced Research Projects Agency and the Office of
Naval Research started to develop a communication network,
at the application layer, based on anonymous connections
and, in principle, resistant to both eavesdropping and traffic
analysis [18]. This network was based on onion routing, a
special infrastructure for private communications over a public
network that is able to hide the content of a message and the
identity of peers who are exchanging it [19]. Nowadays, this
infrastructure is better known as the Tor network and represents
the backbone of the Darknet, a Web of hidden services that are
not reachable from within the Internet. The Darknet turned out
to be the most suitable communication network to exchange
sensitive information, both licit and illicit, soon becoming
the target of governments trying to identify dissidents or of
intelligence agencies, such as CIA and GCHQ [20], to contain
unauthorized news leaks, distribution of illegal contents, or
trade of illegal substances.

Here we characterize the structural properties of the
Darknet across time, from 2013 to 2015, and we compare
them against the Internet topology. Note that this comparison
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is performed at a descriptive level, using the structure of the
Internet as a benchmark to highlight the salient features of the
Darknet. The autonomous system data capture connections
at the Internet layer (Internet Protocol packages), while Tor
works on the application layer, which means that is built on top
of the Internet and transport layers. We propose a model, based
on how Tor functions, to reproduce with high accuracy the most
salient characteristics of the Darknet. Finally, we perform a
thorough analysis, based on simulations, of the resilience of
both networks to three different types of failures—static, due to
random disruptions or targeted attacks [1], and dynamical, due
to the cascade failures induces by attacking a single specific
node of the network [21,22]—and show that the Darknet is
much more robust than the Internet from any perspective.

II. OVERVIEW OF THE DATA SETS

For our analysis, we use publicly available data sets for
both the Internet and the Darknet. The Internet topology, at
the level of autonomous systems (ASs), is sampled from his-
torical AS-level topology data derived from Border Gateway
Protocol monthly snapshots, consisting of IPv4 and IPv6 links
appearing between different end points during that month. The
data are hosted by the UCLA Computer Science Department’s
Internet Research Lab [23].

The Darknet topology is sampled from the data obtained
by probing the Tor network to improve its performance [24].
The links between end points are extracted from the chain of
circuits built by Tor clients to probe the network. The network
is directed, but we will treat it as undirected in the following.
This simplification hides the information about the entry and
exit point of a circuit, which might be indistinguishably
interchanged in our case. We are aware that this choice
might slightly affect our study and a deeper analysis, further
accounting for this additional complexity, is beyond the scope
of the present study.

The full raw data are available upon request and a partial
release can be downloaded from a public repository [25].
Although such data were obtained to study the performance
of the Tor network and not its topology, they provide the best
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FIG. 1. Structural analysis of Internet and Darknet topologies. Force-directed visualization of the (a) Internet and the Darknet in 2015, with
nodes colored to put in evidence the underlying mesoscale structure. (b) Density of the degree (solid lines are for guidance only) and local
cluster coefficient for the two networks in 2015. (c) Scatter plot of network sizes, average path length, and global clustering coefficient for the
three temporal snapshots considered in this study. (d) Average nearest-neighbor degree (left) and average local clustering coefficient (right)
against degree, to characterize higher-order correlations (see Fig. 2 for other structural descriptors and their evolution between 2013 and 2015).
The natural logarithm is considered in the figure.

approximation to the underlying topology of the Darknet to
date.

In both cases, we have been able to build three temporal
snapshots, corresponding to the networks in December 2013,
May 2014, and January 2015. The Internet network snapshots
have 46 462, 47 626, and 49 635 nodes with 195 446, 204 254,
and 221 470 connections in the three periods, respectively. The
Darknet network snapshots have 5921, 4953, and 5535 nodes
with 2 017 542, 536 287, and 274 831 connections in the three
periods, respectively. The structure of both networks for the
2015 period is shown in Fig. 1(a).

III. STRUCTURE OF THE DARKNET

A. Characterizing the Darknet topology

Let us indicate with A
[ξ ]
ij (t) the entries of the adjacency

matrix of each network (where ξ denotes the Internet and
Darknet) at time t (t = 2013, 2014, and 2015), with value
equal to one if i and j are connected and zero otherwise (here
i,j = 1,2, . . . ,N [ξ ](t), where N indicates the number of nodes
in the network and E the number of edges). For any node i

in each network, we calculate the degree k
[ξ ]
i (t) = ∑

j A
[ξ ]
ij (t),

characterizing the number of connections of each node, and the
local clustering coefficient c

[ξ ]
i (t), characterizing the tendency

of nodes to form triangles, defined by the ratio between the
number of closed triangles involving node i and the maximum

number of triangles 1
2k

[ξ ]
i (t)[k[ξ ]

i (t) − 1] node i might be part
of. The mean degree is defined by k̄[ξ ](t) = 〈k[ξ ]

i (t)〉, whereas
the average local clustering coefficient if given by c̄[ξ ](t) =
〈c[ξ ]

i (t)〉. Another macroscopic structural descriptor of interest
is the global clustering coefficient C[ξ ](t), defined by the ratio
between the total number of closed triplets and the total number
of connected triplets of nodes in the network. In general, the
values of c̄[ξ ](t) and C[ξ ](t) are different for networks with
a nonhomogeneous connectivity. Throughout the analysis no
power-law fitting is performed; the power laws indicated in
the plots are a simple guide for the eye.

The degree distribution is shown in Fig. 1 and exhibits high
inhomogeneity, with evident heavy tails that resemble two
different truncated power laws with a cutoff. The distribution
of the local clustering coefficient is also different in the two
cases, with much more unclustered nodes in the Internet than in
the Darknet. In the Internet, a significant fraction of nodes have
local clustering equal to 1 and few nodes have intermediate
values, at variance with the Darknet, where the local clustering
is more uniformly distributed and peaked around 0.3. On
average, Darknet nodes have mean degree close to 100 and are
more clustered than Internet nodes, which have mean degree
close to 10.

To quantify how easy is to transmit information between
any two nodes of each network, we calculate the average
path length �[ξ ](t), obtained by averaging the length of all
shortest path connecting any pairs of nodes, and the diameter
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FIG. 2. Variation across time of important structural descriptors.

D[ξ ](t), defined as the length of the longest shortest path.
The Internet has an average path length close to 3.5, with a
diameter between 10 and 12, whereas the average path length
in the Darknet ranges between 2 and 2.5, with a diameter
between 4 and 5 (see Fig. 2). Therefore, assuming no time
constraints in the propagation of the information for both
networks, communication in the Darknet is, in principle, much
faster than the Internet, with the two most extremal nodes
separated by no more than five hops, less than half of the
Internet. Given that the traffic in the Darknet is encrypted
and the routing is decentralized, at variance with the Internet,
the shortest paths for communicating compensate the higher
latency and throughput of the channels.

Figure 1(c) shows the relationship between the size of
the networks, their average path length, and their global
clustering for the three snapshots under consideration. The
presence of high clustering and short average path lengths is a
strong indicator that the two networks have nontrivial topology
and formation mechanisms. In fact, both networks exhibit
the property known as the small-world phenomenon [26].
Small-world networks are characterized by high clustering,
with respect to random expectation, and characteristic length
scaling as � ∼ log N . The average local clustering of the
Internet is more than 1000 times higher than its uniformly

random expectation, whereas the clustering of the Darknet
is between 7 and 32 times larger than its uniformly random
expectation, suggesting nontrivial triadic closure mechanisms
underlying both networks. The characteristic length of the
Darknet is larger than its uniformly random expectations,
whereas this is not the case for the Internet. Although the
small-world phenomenon is better understood as a tendency,
rather than being quantified by a single number, it is worth
remarking that �(t) ≈ log N (t), as in small worlds, for the
Internet snapshots and �(t) ≈ log log N (t), as in ultrasmall
worlds [27], for the Darknet ones.

The Internet and the Darknet also exhibit different types
of higher-order correlations, as shown in Fig. 1(d), where
the average nearest-neighbor degree and the average local
clustering coefficient are scattered against the degree. This
kind of analysis is generally used to shed light on the
degree-degree correlations of the network: If the degree or
the clustering of each node is independent of the nodes in the
neighborhood, no trends are expected. Instead, the two systems
present highly anticorrelations, with hubs (i.e., nodes with the
largest degree) tending to be connected, on average, to nodes
with a much smaller degree and local clustering coefficient.
This tendency is confirmed by the negative assortative mixing
measured in both networks (see Fig. 2), defined by the
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FIG. 3. Modeling the Darknet structure in 2015. The degree
distribution obtained from an ensemble of 50 random realizations
of our model is compared against the empirical distribution (the
dashed line is for guidance only, to show the deviation of the degree
distribution from a pure power law with scaling exponent equal to
−1). The natural logarithm is considered in the figure.

Pearson’s correlation coefficient of the degree of linked pairs
of nodes [28,29].

From this structural analysis we find that while structural
descriptors of the Internet do not change over time, this is not
the case for the Darknet, which is still evolving (see Fig. 2
for other structural descriptors and their evolution between
2013 and 2015). Nevertheless, while the Internet has been
widely investigated and several models have been proposed to
explain its structure, the peculiar properties of the Darknet and
the previous unavailability of data about its structure call for a
model that is able to reproduce its most salient characteristics.

B. Modeling the Darknet structure

To model the Darknet, it is crucial to understand how the
Tor network functions. Any Tor client initially queries the
Directory Authorities to get the consensus, a table providing
information about all active nodes in the network and their
metadata. The metadata are then evaluated to build a circuit,
a chain of three nodes used to connect the client to the server
where the (possibly hidden) service is located. The choice of
the nodes of the circuit is subjected to severe constraints, by
default. For instance, the same node cannot be chosen twice
and nodes run by the same operator are usually avoided. The
choice of the first node is not performed uniformly at random:
Instead, nodes with the largest bandwidth are favored, with
priority to long-lived nodes called guard nodes. Guard nodes
were previously relay nodes, i.e., common routers in the Tor
network, that have been flagged as suitable for the role of entry
point according to specific parameters, including high security
level and traffic load balancing for end users.

At variance with the Internet’s autonomous systems, whose
connections are physical, our information about the Darknet is
functional because it works at a different layer. Connectivity
inferred by probes, as described in the previous section,
provides a proxy that is used for our analysis. We model the
above procedure with the following simple growing model
and instead of analyzing the dynamics of the system, we
allow it to grow until it reaches the size of the empirical
networks we have. Therefore, we stop the growing process
and analyze the resulting static snapshot, as for the data. At
time τ = 0 a small random network with n0 � N nodes and
e0 edges is created first. We assign a time stamp T (n) to
such nodes (n = 1,2, . . . ,n0), which will allow us to calculate
their age A(n,τ ) later at any time τ , and a property B(n), not
varying over time, whose value is sampled from a heavy-tailed
distribution, to mimic the empirical bandwidth distribution. In
the following, we will use a log-normal distribution.

At each time step τ = 1,2, . . . ,N − n0, a new node n and
M links enter the network. The time stamp T (n) = τ and a
bandwidth are assigned to n, as previously described. It is
crucial to remark that the M links do not necessarily involve

FIG. 4. Reproducing the Darknet (2015) structural descriptors. Different structural descriptors obtained from an ensemble of 400 random
realizations of our model are compared against the observed values. In the last panel, we report the mean relative difference between the value
calculated from the data and the values calculated from the model (D is for diameter, APL is for average path length, and GC is for global
clustering).
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FIG. 5. Rich club structure of the Internet and Darknet in 2015.
The ratio between the rich-club coefficient calculated for the empirical
networks and its random expectation (see the text for further details)
is plotted as a function of the degree threshold. A coefficient is not
shown for degree values for which the number of nodes is smaller
than 100 (about 2% of the Darknet and 0.2% of the Internet).

node n, at variance with processes based on the traditional
preferential attachment. In fact, in a trust network like the
Darknet, new nodes have to increase their reputation before
being trusted and this is more likely to happen with aging.
Nevertheless, links have to be created between trusted nodes
at time τ , therefore 2M nodes are randomly chosen with
probability

pn′(τ ) = Aβ(n′,τ )Bγ (n′)
∑n

i=1 Aβ(i,τ )Bγ (i)
, (1)

where A(n′,τ ) = τ − T (n′) is the age of node n′ at time τ .
The nodes are then randomly linked into M pairs. Crucially,
the degree of each node at each time step does not play any
role in the growing process, which is completely driven by
exogenous node properties such aging and bandwidth. The
final step is to rewire nodes randomly while preserving the
degree distribution: This last stage destroys possible structural
correlations due to the previous stages of the model and
it is crucial to introduce a higher level of randomness in
connectivity.

This Darknet stochastic model is very general and, varying
the exponents β and γ , it is possible to explore different
scenarios, e.g., where probability is inversely proportional

FIG. 6. Resilience of the Darknet and the Internet in 2013 to topological and dynamical attacks. Shown is the relative size of the largest
connected component of (a) the Internet and (c) the Darknet after disrupting a fraction pfail of nodes uniformly random or by targeted attacks
(with respect to degree, betweenness, and k-coreness). Also shown is the relative size of the largest connected component of (b) the Internet
and (d) the Darknet after dynamical disruptions due to induced cascade failures.
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to age (β < 0) and proportional to bandwidth (γ > 0). In
practice, the value of M is fixed by the data as M = (E −
e0)/(N − n0) and therefore the only free parameters of the
model are in general β and γ . In the following, we do not fit
the parameters and we just consider the simplest scenario with
linear proportionality (β = γ = 1).

Our simulations revealed that this model generates net-
works that are remarkably close to the observed one from
different perspectives. The high clustering and small char-
acteristic length are satisfactorily reproduced, although the
main finding here is that the degree distribution of simulated
networks reproduces with excellent accuracy the empirical
one, as shown in Fig. 3.

This result is of particular interest because, in general,
networks with degree distribution scaling as power laws with
exponent smaller than −2 (and especially close to −1) and
a cutoff are very difficult to model. Mechanisms involving
degree-based preferential attachment and the influence of
some exogenous properties, such as aging and cost, have
been proposed [30,31] (see Ref. [32] and references therein
for a thorough review), although they are able to reproduce
power-law scaling with exponent equal to or larger than −2
with a cutoff.

The ensemble of random realizations of our model is
sufficient to reproduce the main topological properties of the
Darknet, including its structural resilience, as we will see later.

Figure 4 shows the comparison between observed values and
their expectation according to our model.

C. Lack of “rich-club” effect in the Darknet

It has been shown that in many complex networks,
especially the Internet, nodes that are very central tend to
interconnect more with each other. This effect, called a rich
club, produces a core of nodes that is really important for
the stability and the robustness of the network and can be
quantified [33,34]. Let us denote by E

[ξ ]
>k(t) the number of

connections among the N
[ξ ]
>k (t) nodes with degree larger than

the threshold k. The rich-club coefficient is defined by

φ
[ξ ]
k (t) = 2E

[ξ ]
>k(t)

N
[ξ ]
>k (t)

[
N

[ξ ]
>k (t) − 1

] . (2)

However, to understand to what extent the observed rich-club
effect is not due to chance, we generate an ensemble of 1000
random networks preserving the empirical degree distribution
and calculate the expected coefficient φ̃

[ξ ]
k (t). Therefore, we

study how the ratio φ
[ξ ]
k (t)/φ̃[ξ ]

k (t) changes as a function of
k: When this ratio is close to 1 the observed rich club is
compatible with random fluctuations, whereas when it is larger
(smaller) than 1 it indicates the existence (absence) of a rich
core of nodes. We show in Fig. 5 the calculated value of the

FIG. 7. Resilience of the Darknet and the Internet in 2014 to topological and dynamical attacks.
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ratio for the Internet and the Darknet in 2015. The Internet
exhibits a clear rich-club effect for nodes with intermediate
degree, around k = 50, with largest hubs tending to be not
interconnected with each other. Conversely, the Darknet does
not exhibit a rich core, with a slight tendency of the largest
hubs to be not interconnected with each other, an effect that is
in magnitude significantly smaller than the case of the Internet.

Summing up, the Internet consists of a backbone of high-
centrality nodes, whereas the Darknet does not. This result
is compatible with the fact that nowadays the Internet is a
very centralized network providing an easier way to manage
and search for online services, whereas the Darknet is very
decentralized (as the Usenet, the ancestor of the Internet) but
it is more difficult to manage and search for hidden online
services.

IV. RESILIENCE OF THE DARKNET

A. Resilience to static failures

Here we investigate how the structural properties of the
Darknet and the Internet are reflected in their resilience to
perturbations. We consider three different types of distur-
bances based on topological and dynamical perturbations.
Topological perturbations are static removals of nodes that
might mimic either random disruptions or targeted attacks [1].
Dynamical perturbations start with the disruption of a single

node, generally the one with the highest degree, which triggers
a cascade of failures [21,22].

In random disruptions, a fraction pfail of nodes is chosen
uniformly at random in the network and removed. In targeted
disruptions, the fraction pfail of nodes is chosen according
to their ranking with respect to a measure of centrality.
Usually, the degree is used, but also the betweenness [35],
quantifying centrality with respect to the communication flow,
and k-coreness [36], based on the core decomposition of a
network and characterizing which nested shell a node belongs
to. It is common to quantify the resilience of a network to
such perturbations by observing how the relative size of the
largest connected component changes as a function of 1 − pfail,
i.e., the fraction of surviving nodes. This method allows us to
quantify if the survived nodes are all together on the same
component or if they form small disconnected components
that hinder the network’s function.

Nonhomogeneous random networks are known to be very
robust to random disruptions but very sensitive to targeted
attacks. In fact, our findings confirm that both the Internet
and the Darknet are fairly robust to random failures, whereas
they are more damaged by targeted attacks (see Figs. 6–8). It
is worth remarking that the critical point, i.e., the fraction of
disruptions for which the largest connected component of the
network is minimum, is very different for the two networks. In
fact, while it is enough to target 10% of the Internet nodes to
reach the critical point, in the case of the Darknet much more

FIG. 8. Resilience of the Darknet and the Internet in 2015 to topological and dynamical attacks.
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FIG. 9. Topological and dynamical resilience of simulated networks obtained from our model of the Darknet in 2015.

effort is needed, requiring 40% of the disruptions (this result is
in excellent agreement with expectation from our model; see
Fig. 9). The corresponding relative differences between the two
networks are explicitly shown in Fig. 10(a), where it is evident
that the Darknet is, by orders of magnitude, more resilient than
the Internet, even with respect to random disruptions.

B. Resilience to dynamical failures

Another type of disruption, very suitable for commu-
nication networks, is based on inducing cascade failures.
The rationale behind this method is that a node i in a
communication network is characterized by a certain capacity
Ci , a fixed feature quantifying the maximum amount of load
they can operate with, and a load Li(τ ), a dynamical feature
depending on the state of the network. Nodes with higher
degree are assumed to be the ones with higher capacity, and
at any time the total load of the network is constant, i.e.,
L = ∑

i Li(τ ). If a node with high capacity is disrupted,
its load must be redistributed among the other nodes of the
network; however, if the new loads exceed their capacities,
a new set of nodes will suffer a disruption, redistributing the

loads through the remaining nodes and so on, thus generating a
cascade of failures that can paralyze the system. The dynamics
of cascade failures and the resilience of the network can
be studied as a function of a parameter α, which improves
the capacity of each node to (1 + α)Ci . By varying α and
calculating the relative size of the largest connected component
at the end of the cascade, we can estimate the required
enhancement in capacity to make the network resilient to this
attack. The detailed results are shown in Figs. 6–8, with the
differences shown in Fig. 10(b). Again, the Darknet is much
more resilient than the Internet to this catastrophic cascade
of failures, requiring just α ≈ 0.2 to remain fully operative,
whereas the Internet requires at least α = 0.28 to keep almost
90% of its nodes operative (full operation is guaranteed for
values of α close to 1). This result is, one more time, in
excellent agreement with expectation from our model (see
Fig. 9). The relative differences between the resilience of the
two networks clearly indicate that before and close to the
critical point the Darknet is more resilient than the Internet.
This property has direct economic implications, because the
larger value of α increases the costs to make the network more
robust.

FIG. 10. Relative differences in resilience: (a) differences between the Darknet and the Internet in resilience to random and targeted attacks
(see Fig. 11 for the differences in topological resilience in 2013 and 2014) and (b) induced cascade failures.
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FIG. 11. Relative difference between the resilience of the Internet and the Darknet (we used the curves shown in Figs. 6 and 7 corresponding
to topological resilience).

V. CONCLUSION

We have investigated the structural properties of the
Darknet, the communication network developed in the past
two decades to guarantee safe and anonymous navigation. The
Darknet exhibits some interesting features that are not shared
by the structure of the Internet. Triadic closure in the Darknet
is more likely than in the Internet, with communication paths
much shorter in the former. Like the Internet, the Darknet is
characterized by a nonhomogeneous connectivity distribution
and the presence of higher-order degree-degree correlations.
However, the topology of the Darknet is more interesting
because of the peculiar heavy-tailed scaling of the degree
distribution, with a scaling exponent close to −1 and a cutoff,
at variance with the Internet, appearing more like a power
law with a scaling exponent close to −2 and no evident
cutoff.

The rich-club analysis has revealed the lack of a core of
highly central nodes interconnected each other, at variance
with the Internet, where this effect is remarkable. We argue that
such topological differences are responsible for the different
resilience exhibited by the two communication systems in
response to random disruption, target attacks, and induced
cascade failures. We have thoroughly shown that the peculiar
topology of the Darknet, characterized by highly clustered
communication circuits, a small characteristic distance be-
tween hops, and lack of a rich core, makes this network
much more resilient than the Internet as a result of adaptive
changes in response to the attempts of dismantling it across
time.

While the resilience of the Internet has not significantly
changed over time, the resilience of the Darknet is still chang-
ing. In fact, its resilience to topological disruption slightly
decreased between 2013 and 2014, remaining unchanged
in 2015, whereas in the same year the Darknet became
slightly less resilient to induced cascade failures. Together
with the trends revealed by other structural descriptors, such
as decreasing clustering, slightly increasing characteristic
length, and increasing assortativity, we argue that the Darknet

might be undergoing a transition from decentralization to
centralization of its services. It will be interesting to confirm
this prediction in the future, when more historical data will be
available.

By mimicking how the Darknet actually works, we have
proposed a model, based on a preferential attachment mech-
anism depending on exogenous properties such as aging and
bandwidth and independent of endogenous properties such as
node degree, to reproduce the empirical degree distribution
with remarkable accuracy. The analysis shows that our model
is sufficient to understand the structural correlations and the
robustness of the Darknet.

We recognize that there are many possible flaws in the
representation of both systems, the Darknet and the Internet, to
claim to have the true topological networks. Nevertheless, from
the data available it is indeed possible to start thinking about
properties of the structure and its implications. The comparison
between both structures has been developed at a descriptive
level from the underlying graphs, with no other goal than
using the Internet as a benchmark to better highlight some
salient features of the Darknet. Finally, the proposal of a model
driven by the main features of the Darknet seems to be enough
to capture its more prominent topological features.

Summing up, the main result of this work is the indication
that the mechanisms adopted to guarantee anonymous traffic in
the Darknet and to improve the cybersecurity of its users could
be the main reason for the peculiar topology of the Darknet
observed so far and its resilience.
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