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Packing loops into annular cavities
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The continuous packing of a flexible rod in two-dimensional cavities yields a countable set of interacting
domains that resembles nonequilibrium cellular systems and belongs to a new class of lightweight material.
However, the link between the length of the rod and the number of domains requires investigation, especially in
the case of non–simply connected cavities, where the number of avoided regions emulates an effective topological
temperature. In the present article we report the results of an experiment of injection of a single flexible rod into
annular cavities in order to find the total length needed to insert a given number of loops (domains of one vertex).
Using an exponential model to describe the experimental data we quite minutely analyze the initial conditions,
the intermediary behavior, and the tight packing limit. This method allows the observation of a new fluctuation
phenomenon associated with instabilities in the dynamic evolution of the packing process. Furthermore, the
fractal dimension of the global pattern enters the discussion under a novel point of view. A comparison with the
classical problems of the random close packing of disks and jammed disk packings is made.
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I. INTRODUCTION

The packing of a long flexible rod of diameter ζ into a finite
quasi-two-dimensional domain of height �ζ yields a network
of loops which is a pattern of folds that belongs to a new
class of lightweight cellular materials with variable degrees of
rigidity and with great potential for application in technology
[1,2]. The general problem of a flexible rod confined in a
two-dimensional cavity belongs to the context of elastic rods
constrained to move on surfaces [3,4]. The structures formed
in these circumstances have a high surface/bulk ratio, and they
extend the field of evolving nonequilibrium cellular systems
composed of interacting domains separated by thin boundaries
endowed with line energy [5]. New results on this subject may
also be of interest in the study of shape memory materials
using elastoplastic alloy wires [6] among others [7].

Since the rod bends when inserted into the cavity and
divides the available area into geometric domains, we can
perform a direct comparison between the continuous packing
and the discrete number of cells. In this context, the present
study deals with the length L required to build a given number
n of loops (domains with one vertex). At the beginning of
the injection, the number of loops is equal to the number
of self-contact points along the rod, but with the evolution
of the process the contacts extend along segments of nonzero
measure. Different morphological conformations are observed
for confined rods [2,8], and they depend on the plasticity and
on the friction at the rod-cavity interface, as well as between
different parts of the rod. For the tight packing in a given area,
it has been conjectured [9,10] that the topology of the cavity
regulates an effective temperature of the system: the smaller
the number of avoided regions, the greater the packed length,
the higher the temperature. The following results stand out:
(i) the successful application of an exponential description
[11–13] also for annular cavities; (ii) the observation of a
new “instability” phenomenon that leads to the breakdown
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of this smooth description; and (iii) a new context in which
the physical rigidity of the rod imposes an effective fractal
dimension that is always smaller than 2 for the tight-packing
conformations.

This paper is divided as follows: In Sec. II the experiment
of packing a single rod into annular cavities is detailed. An
exponential model that fits the experimental data well is
discussed in some detail in Sec. III. Our results are reported
in Sec. IV from the point of view of the formation of each
loop (Sec. IV A) and from the point of view of tight-packing
measurements (Sec. IV B). The conclusions are summed up in
Sec. V.

II. EXPERIMENTAL DETAILS

The cavity is composed of the superposition of two acrylic
plates of 10-mm thickness. A circular groove of diameter
d = 201 mm allows us to accommodate only one layer
of the flexible rod of diameter ζ = 1.0 mm. Two opposite
parallel slits compose the injection channels. The rod is then
packed into the cavity from an injection channel and can
be recovered by the other. The cavity is the same as used
in previous studies [1], but here we change its topology
by adding a set of central aluminum disks (Fig. 1) with a
selected interval of more than one decade in diameter φ =
{3,15,20,27,36,48,64,85,113,150} mm or more than three
decades in the excluded area. The total area available to the
rod is

A(φ) = π

4
(d2 − φ2). (1)

For comparison, the experiment is also performed in a
simply connected cavity (without the central disk). Inside
mathematical expressions we mention simply connected cavity
as “scc”. It is important in this study that A(scc) = A(0) in
Eq. (1) because in this limit we can distinguish the contribution
of the topology. The flexible rod is a typical nylon fishing line
of diameter ζ = 1.0 mm with a Young’s modulus of about
Y = 2 GPa.

The initial conformation is shown in Fig. 1(b). At the outer
ends of the rod a mark is made with a permanent marker.
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FIG. 1. (a) Generation of four loops from the packing of a flexible
rod (diameter ζ ) inside an annular cavity of inner (external) diameter
φ (d). (b) The initial conformation with LIC in length. (c) The
formation of the first loop, whose length is LIC + λ∗

1 = L1 ≡ L0 + λ1

[Eq. (2)].

The distance between these marks indicates the length of the
rod in this initial condition, LIC. Once injected, the rod bends
continuously, changing its geometric pattern. A loop is a closed
geometric teardrop shape composed of a vertex and a bulge.
The first loop arises when the rod makes the first self-contact
as shown in Fig. 1(c). During the injection more loops are
created inside the cavity, with several sizes and positions.
Our experiment consists of measuring the length needed to
add a new loop to the total geometric pattern. When a new
self-contact arises, the injection is stopped in order to mark
the length on the rod with the marker. The injection speed is
about v = 1 cm/s, but a pause is taken to dry the ink and to
carefully remove the excess. All injections are performed in a
dry regime.

Compared to the simply connected cavity the presence of a
central obstacle changes the disposition of the loops to the
periphery of the cavity. The region close to the injection
channel presents a denser concentration of the rod than in
the opposite region of the cavity, behind the obstacle, which
becomes scarcely available to the rod even at small values of
φ. The size of the loops varies with the diameter of the central
disk and therefore the total length needed to create n loops
depends on the area of the annulus.

We are interested in investigating the total length needed to
create a given quantity of loops in a global geometric pattern.
Assuming that the length needed to build n loops is Ln, then
the length λn+1 needed to create a new loop is

λn+1 = Ln+1 − Ln (2)

and the total length can be computed by summing up
the distances between successive marks along the rod. The
instrumental uncertainties are fixed for λn and increase with√

n for Ln (although never to more than 2%).
The injection ends when the system becomes jammed.

In general the last mark on the rod does not indicate the
tight packing, because the system can become jammed after
the formation of the last loop. The last mark corresponds
to the total length needed to create nmax = N loops in

the cavity. After the injection, the rod is extracted through
the opposite channel. The whole experiment consists of 10
identical realizations of packing of the flexible rod into an
annular cavity. A total of 3907 loops are observed in 110
realizations.

III. THE EXPONENTIAL MODEL

Earlier studies claimed that the relationship between the
number of loops and the length of the rod follows a
power law [1,2]. However, the length of branches of the
rod between successive self-contacts follows exponential
distributions [11,12]. For regular folding [14], the successive
bending of a rod of length λ0 in the middle yields ni

pieces of length λi between successive kinks, with ni = 2i

and λi = λ0/2i , which corresponds to a power-law scaling
λi = n−1

i λ0. We have observed that, since each loop has
an individual length (ni = 1), the number of loops must be
identified as the iteration of the process, and therefore we
propose an exponential scaling. Indeed, a recent study of the
subject [13] introduces successfully an exponential law in
order to describe the unpacking of a copper wire. In the present
paper, an exhaustive experimental analysis substantiates the
exponential description of the packing of a flexible rod and
an examination of its limitations demonstrates instabilities not
reported before. This approach also enables a different point of
view about the fractal behavior usually found for tight-packing
configurations.

Figures 2(a) and 2(c) show the length λn and Figs. 2(b)
and 2(d) show the total length Ln as functions of the number
of loops n for generic injections with φ = 20 mm [Figs. 2(a)
and 2(b)] and φ = 113 mm [Figs. 2(c) and 2(d)]. The first
experimental point in Fig. 2 corresponds to the injected length
LIC which is associated with the initial condition of the rod in
the annulus [Fig. 1(b)]. However, the counting of loops must
start from a given length L0 which is initially unknown. As a
consequence, one can not consider LIC for theoretical fits and
one must find L0 from extrapolation of all the data.

The relationship between the cumulative length Ln and the
length between successive loops λn can be written as

Ln = L0 +
n∑

i=1

λi, (3)

and it is in agreement with Eq. (2), where λ1 = L1 − L0. Since
L0 is unknown, λ1 is initially unknown and it is different from
the experimental value, λ∗

1 = L1 − LIC. For annular cavities,
generally L0 > LIC and the theoretical fit for Ln passes above
the first data point (see Fig. 2). As an immediate consequence,
the value of λ∗

1 is higher than predicted by the theoretical line,
i.e., λ∗

1 > λ1.
The data for λn are very well described by an exponentially

decreasing function of n, as expected from simple arguments.
Consider the existence of a maximum length LM that can be
injected inside the cavity. It is reasonable to suppose that the
new loop is created by consuming a fraction of the available
length LM − Ln:

λn+1 = υ(LM − Ln) (υ < 1). (4)

022312-2



PACKING LOOPS INTO ANNULAR CAVITIES PHYSICAL REVIEW E 95, 022312 (2017)

FIG. 2. (a, c) Length λn between successive loops and (b, d) total length Ln needed to create n loops for annular cavities of φ = 20 mm
(a, b) and φ = 113 mm (c, d). The first point (n = 0) corresponds to the initial length [Eq. (7)] and the squares (n > N∗) refer to lengths that
deviate from the long-course original behavior (see Sec. III for details). These are not considered in the exponential fitting (solid lines).

This equation can be iteratively used together with Eqs. (2)
and (3) to obtain

λn = λ1(1 − υ)n−1. (5)

The total length Ln [Eq. (3)] needed to create n loops is then
a limited quantity. For the formation of infinite loops we have
L∞ = LM . We can write

Ln − L0 = (L∞ − L0)(1 − e−n/nc ), (6)

where n−1
c = − ln (1 − υ). Our model thus yields an equation

with three physical parameters: (i) L0, a length of reference;
(ii) L∞, the saturation length; and (iii) nc, a characteristic
number of loops. These parameters are obtained from fits. The
solid line in Figs. 2(b) and 2(d) shows the best fit of Eq. (6)
over the experimental data. From the same fit the solid line in
Figs. 2(a) and 2(c) is obtained by applying Eq. (2).

The exponential description works very well for the injec-
tion of the flexible rod into all cavities used in the experiment.
The model is appropriate to describe the length of the rod
which is adaptive to the whole structure within the cavity. In
practice, the elastic interaction among branches of the rod is
followed up by internal movements. Friction is responsible

FIG. 3. Insertion of n loops in an annular cavity of φ = 64 mm
and d = 201 mm. (a) The loops decrease exponentially in size. (b)
As the packing proceeds, the route of progressively smaller loops
becomes unstable and new branches of larger loops can appear.

for intermittencies due to the stick-slip phenomenon. When
the structure has enough loops and the insertion of a new one
becomes uncertain due to the high rigidity, two situations are
observed: (i) the system is tightly packed, and it is impossible to
inject the rod further, and (ii) the structure slides and a new area
of the cavity becomes accessible (Fig. 3). We denote the latter
case “instability.” Naturally, after one or more instabilities the
system becomes jammed at some stage of the packing.

Returning to Fig. 2, we can now examine a consequence of
these instabilities: the length λn+1 needed to insert the next loop
is relatively large. As a consequence, there is a discontinuity
in Ln. In our experiment this occurs rather unpredictably
(36% of realizations), and to the best of our knowledge, it
has not been reported before in the literature on confined
wires. The dry injection and the roughness of the cavities
are pointed out as possible promoters of these instabilities. In
cases of discontinuities, the theoretical fit is performed until
a given number N∗ � N , immediately before the instability.
The values of N∗ vary between N∗ = (38.3 ± 0.7) for larger
cavities (with φ = 15 mm) and N∗ = 19.3 ± 0.5 for small
cavities (with φ = 150 mm). Our experiment was projected to
precisely evaluate the exponential growth, and discontinuities
were found as unexpected (unpredictable) outcomes. For this
reason, although we can carry out a qualitative discussion, we
do not have enough data for a suitable investigation focused
on these instabilities.

While the total length of the rod plays the central physical
role in determining the mass or the global rigidity of the
system, the number of loops plays the role of time in the
dynamic, in the sense that all physical quantities evolve when
new loops are created. This model treats the packing of a rod
as a discrete dynamical system.

IV. RESULTS AND DISCUSSION

We discuss our results in two parts. The formation of loops
is modeled by an exponential growth given by Eq. (6) for
all 110 experimental realizations until a given number of
loops N∗. In Sec. IV A we discuss how the parameters of
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FIG. 4. (a) The initial length LIC increases with the inner diameter
φ as expected from inspection of Fig. 1(b). However, all fit parameters
in Eq. (6)—(b) L0, (c) L∞, and (d) nc—decrease with φ. The first
data point corresponds to the simple connected cavity. Solid lines
are curves obtained from the theoretical description: (a) Eq. (7), (b)
Eq. (9), (c) Eq. (10), and (d) Eq. (11).

this exponential fitting change when the inner diameter φ of
the annulus varies. Since the injection becomes progressively
harder the system jams at some stage of the packing. In
Sec. IV B, we discuss the dependence of the number N∗ on the
total area of the cavity. This allows us to understand why all
experiments on packing in two-dimensional cavities present
a complex structure whose fractal dimension D is slightly
smaller than 2.

A. Formation of loops

We described the initial length LIC corresponding to
Fig. 1(b) by two components: a straight one, which links
the channels to the (tangent) inner disk; and a curved one,
which follows the circular arc of the central disk. The resulting
expression,

LIC = d{
√

1 − (φ/d)2 + (φ/d) arcsin (φ/d)}, (7)

describes very well the length LIC for any diameter φ, and
also for the simply connected cavity LIC(scc) = d, as shown
in Fig. 4(a) by the solid line. Please observe that Eq. (7) is
not obtained through a fit from experimental data but, instead,
from a simple geometrical reasoning.

The parameters L0, L∞, and nc in Eq. (6) are obtained from
a single fit over N∗ experimental points and then averaged
among 10 realizations. The outcome is shown in Figs. 4(b),
4(c), and 4(d), where their numeric values are shown. The solid
lines are not fits but obtained from more fundamental quantities
which depend only on features of the rod and cavity. In the
next paragraphs we focus on these quantities.

The network of loops starts with the creation of the biggest
loop. In simply connected (circular) cavities it is expected that
the length needed to create the first loop, λ1, is proportional
to the size of the cavity (the pattern is simply rescaled), so
λ1 ∼ d [1]. Here we discuss the impact of a single obstacle in
the center of the cavity.

FIG. 5. The length needed to build the first loop. (a) The directly
measured value λ∗

1 is proportional to the available area of the
cavity, ζλ∗

1 = 0.0141A(φ). (b) The model yields a fixed length,
λ1 = 205 mm.

Figure 5(a) shows the directly measured length λ∗
1 and

Fig. 5(b) shows the proper length λ1 as functions of the inner
diameter of the annulus. The directly measured length λ∗

1 is
found to be proportional to the available area of the cavity,
ζλ∗

1 = (0.0141 ± 0.0004)A(φ), as shown by the dashed line
in Fig. 5(a). The first point corresponds to the first loop in a
simply connected cavity whose value is the same, ζλ∗

1(scc) =
(0.0141 ± 0.0003)A(0). The value for λ1 is computed from
the parameters of the exponential fitting

λ1 = (L∞ − L0)(1 − e−1/nc ) (8)

and it is found to be fixed, λ1 = (205 ± 7) mm, as shown
by the dashed line in Fig. 5(b). The first point corresponds
to the first loop in a simply connected cavity whose value is
the same within the error bars, λ1(scc) = (201 ± 7) mm. This
suggests that, although λ1 depends on the external diameter d,
it is unresponsive to the inner diameter φ of the annulus. All
together, these results allow us to write

L0(φ) = λ∗
1(φ) − λ1(φ) + LIC(φ) (9)

as a function of the inner diameter φ. Equation (9) describes
implicitly the dependence of the fitting parameter L0(φ) and
produces the solid line shown in Fig. 4(b). We can write
L0(scc) = L0(0) for the simply connected cavity since similar
relations are valid for each term on the right-hand side of
Eq. (9). Therefore, this parameter does not change between
the two topologies.

The exponential model predicts a saturation length LM =
L∞ which can be obtained by fitting the experimental data
for each annular cavity of inner diameter φ. The pattern of
infinite loops inside the cavity is regarded as a mathematical
fractal, which is impossible to reach by physical constraints
imposed by the plasticity and thickness of the rod. The range
of the exponential model in length, L∞ − L0, is found to be
proportional to the available area of the annulus (see inset
in Fig. 6). From the proportionality constant we define the
packing fraction p∞, which is approximately fixed for all
annular cavities (Fig. 6). The packing fraction p∞ corresponds
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FIG. 6. The packing fraction is approximately fixed for all
annular cavities, p∞ = (0.119 ± 0.002). The first point is relative
to the simply connected cavity, which has a bigger packing fraction
p∞(scc) = (0.142 ± 0.003). Inset: The interval of existence of loops
L∞ − L0 is found to be proportional to the available area of the
annulus.

to the fraction of available area covered by the rod in
the ideal configuration of infinity loops. This conformation
characterizes the thermodynamic limit of this system. The
saturation length

L∞(φ) = L0(φ) + p∞

(
A(φ)

ζ

)
(10)

varies linearly with the available area in the limit of larger
cavities (L∞ � L0). Equation (10) describes the dependence
of the fitting parameter L∞(φ) and produces the solid line
shown in Fig. 4(c). The dashed line in Fig 6 illustrates the
mean value p∞ = (0.119 ± 0.002) found for annular cavities
with inner diameter φ.

In the examination of the “stacking” of loops of decreasing
size on top of each other, it is quite interesting that the same
area fraction of the cavity is filled, no matter how large the
obstacle in the middle. Using polar coordinates whose origin
coincides with the center of the annulus, we observe that a
fixed packing fraction p∞ can be well explained by treating
the rod (with infinite loops) as covering a fixed angular sector.
Of course, this picture is inappropriate for a circular cavity
without obstacles. The first point in Fig. 6 represents the
data for a simply connected cavity whose packing fraction is
p∞(scc) = (0.142 ± 0.003). This result, p∞(scc) �= p∞(φ →
0), quantifies the impact of a non–simply connected topology
on the total number of states accessible for the rod. It was
conjectured by Gomes et al. [9] that the packing of the rod
can be described by a nonequilibrium thermodynamics where
the number of obstacles regulates the effective temperature T

of the system. In this sense, the data from annular cavities are
dispersed over an isotherm, and any change in the total length
of the rod is a contribution uniquely of the available area.

The results illustrated in Figs. 5 and 6 allow us to write the
dependence of the exponential parameters with inner diameter
φ. The characteristic number of loops as defined in Eq. (6)
is a fitting parameter whose dependence on φ is very well

described by

n−1
c = − ln

{
1 − ζλ1

p∞A(φ)

}
, (11)

as shown by the solid line in Fig. 4(d). The characteristic
number of loops depends on the physical properties of
the material through λ1 and p∞. Together with the ideas
previously discussed, where λ1 ∼ d and p∞ ∼ fixed, Eq. (11)
has two interesting physical limits. For larger cavities, the
thermodynamic limit gives us that nc → p∞/p1, where p1 is
defined as the packing fraction associated with the first loop,
p1 ≡ ζλ1

A(φ) . In the opposite limit, if the cavity is too narrow such
that p1 > p∞, then the exponential behavior falls off and loops
must no longer be observed! Indeed, this special situation was
found in a recent study using rectangular cavities [15]. For
the set of annular cavities discussed here, we estimate that the
central disk must have approximately 97% of the diameter d

of the cavity in order to inhibit the formation of loops.
The exponential model described in this article is in

agreement with previous studies of tight packing in crumpled
systems and regular folding, and it yields some predictions.
The equality

exp

[
− n

nc

]
= 1 −

(
Ln − L0

L∞ − L0

)
= λn

λ0
, (12)

where λ0 = λ1 e
1
nc , has a connecting role between these

approaches. In the regular-folding case, the force scales with
the compaction as F ∼ (λ0/λn)β1 [14], because the force
increases in order to bend progressively smaller pieces of
the rod. On the other hand, in the jamming approach the
velocity of the injection decreases as the density of the
rod increases close to the injection channel. The physical
effect is that the force scales with the total length inside
the cavity as F ∼ (1 − l/ lc)−β2 [2], where we can identify
l → Ln − L0 and lc → L∞ − L0. Following Eq. (12) both
approaches are suitable for describing this system, and we
find β1 = β2 ≡ β > 0. We can also estimate the dependence
of nc on the bending stiffness μ of the rod as follows. The
force associated with the first loop must be proportional to the

bending stiffness; then F1 ∼ (λ0/λ1)β = e
β

nc ∼ μ, that is, n−1
c

must increase linearly with ln μ. This prospect means that nc

is a very slowly decreasing function of μ.
Our non–completely ordered packing of loops in two

dimensions has a complementary relation with the amor-
phous disk packings originally called “random close packed,”
whose densities are ρ(rcp) ≈ 0.83(0.84) for the monodisperse
(bidisperse) case [16]. More recently, amorphous collectively
jammed disk packings dominated by large triangular grains
seem to have significantly higher densities, close to ρ(jdp) ≈
0.88 [17]. Coincidentally, the packing fractions p∞(φ) =
0.119 ± 0.002, averaged over 10 different genus 1 cavities,
and p∞(scc) = 0.142 ± 0.003, for genus 0 cavities shown in
Fig. 6, are closely complementary (that is, p∞ ≈ 1 − ρ) to the
amorphous arrangements of circles studied.

The discontinuity between the packing densities in simply
connected cavities and in cavities with a central excluded
domain, shown in Fig. 6, where p∞(scc) − p∞(φ) = 0.023 ±
0.005, is interpreted as a difference in the entropy between
the configurations, once the entropy scales linearly with the
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length of the injected rod and, consequently, with the packing
density [9]. The inclusion of an excluded region, irrespective
of its size, lowers the entropy of the packing. In this view, that
discontinuity is connected with a first-order phase transition, as
the entropy is the first derivative of the associated free energy:
it is a topological transition; the existence of an exclusion
region, even of size φ → 0, leads to a configuration of the rod
with a substantially different packing density compared with
that obtained with the simply connected cavity.

This section concerns the lengths associated with n loops in
the intermediary (before the instabilities) stage of the packing.
The quantities λ1 and p∞ were obtained from fit parameters
[Eq. (6)], while λ∗

1 and LIC are directly measured along the rod.
It was observed that these geometrical quantities are dependent
only on properties of the rod and cavity (available before the
experiment) and, therefore, are more fundamental quantities.
Conversely, the fit parameters in Eq. (6) can be estimated from
these quantities using Eqs. (9)–(11). This allows the estimation
of the length associated with n loops for any annular cavity
of inner diameter φ. Our results stress that the topology of
the cavity only affects p∞, that is, the porosity of the global
pattern.

B. Jamming and instabilities

As an implication of a fixed packing fraction p∞, the fractal
dimension of the global pattern in the infinite limit might be
D∞ = 2. This is admissible from the point of view of a rod
distributed in a fixed angular sector of the annulus, which has
a two-dimensional shape. However, a previous study pointed
out a slightly smaller fractal dimension, D = 1.9 ± 0.1, for the
tight packing of copper wires into circular cavities [1]. Another
investigation found D = 1.8 ± 0.1 for a more plastic wire
of the alloy Sn0.60Pb0.40 but presented theoretical reasoning
predicting that this exponent should be 2 [18], linking this
system with long molecular chains densely packaged as DNA
in chromosomes, or in virus capsids. In this subsection we
examine why these studies found D � 2 for the tight packing
of wires in the context of the exponential model described
above. In short, we point out that the physical limit for the
force implies that the system gets jammed with a finite number
of loops N∗, and then the total length under this condition
L∗ does not scale linearly with the available area. There is
also a spatial limit. We can see the reason or even estimate
the jamming of the system through the radii of curvature for
the smallest loops, immediately next to the injection channel,
which are of the order of the gauge ζ of the rod.

The fits analyzed in Sec. IV A are valid until a given number
of loops N∗, at which either the system gets jammed or an
instability occurs. The determination of N∗ is easily visually
performed from graphs as in Fig. 2. A more objective criterion
can be elaborated, for instance, calculating the relative growth
of the loops, r = (λn+1 − λn)/λn = −(1 − e−1/nc ), a negative
quantity supposed to be independent of n. In practice, the
relative growth is a small fluctuating quantity. This quantity is
suitable to detect instabilities because in such cases the length
λn+1 is large compared to λn. We choose a threshold value, rc =
2.3, which determines the occurrence of instabilities: if r > rc,
then the jump is detected and N∗ is recorded. Throughout
the whole experiment the choice rc = 2.3 agrees 98% with

FIG. 7. The ratio N∗/nc illustrates the range of validity of the
exponential fitting in the experimental data. In realizations on annular
cavities, the exponential fit becomes better when the annulus is narrow
(larger φ/d).

the visual criteria. Smaller values, rc < 2.3, would indicate
statistical fluctuations as discontinuities and larger values, rc >

2.3, would not detect some of the conspicuous instabilities.
Each realization of the experiment yields a particular

geometric pattern and a total number of loops N which vary
considerably among different reproductions. On the other
hand, the numbers of loops N∗ are close to each other such
that we can compute an average value in order to illustrate all
similar realizations with a given diameter φ. We found N∗ as
a decreasing function of φ similar to the characteristic number
of loops nc [Eq. (11)]. Figure 7 shows the ratio N∗/nc as
an increasing function of the diameter φ/d, which reveals a
relatively better fit for a narrower annulus.

The total length inserted in order to generate N∗ loops
in the global packing pattern is LN∗ , given by Eq. (6) with
n = N∗. Since N∗/nc is not fixed among the cavities, the total
length LN∗ is not simply proportional to the available area of
the cavity. From the experimental data we found that the ratio
N∗/nc linearly decreases with the logarithm of the available
area, that is,

N∗

nc

= C1 − ln

(
1 −

(
φ

d

)2
)

, (13)

where C1 = 1.98 ± 0.06 is found by the best fit (see dashed
line in Fig. 7). As a direct consequence, we can write

ζLN∗ = ζL0(φ) + p∞A(φ) −
(

p∞e−C1

A(0)

)
A(φ)2, (14)

where p∞, C1, and A(0) = πd2

4 do not depend on φ. The plot in
Fig. 8(a) shows the experimental data and the curve described
by Eq. (14) (solid line). In the packing of infinite loops, the
last term in Eq. (14) vanishes [see Eq. (6)] and the length LN∗

is essentially proportional to the available area (see the dashed
line in Fig. 8).

We observe that Eq. (14) can be understood as the relation
between the total mass of the flexible rod, M ∼ ζL, and the
size of the cavity, R ∼ √

A(φ), in the tight-packing limit. From
the mass-size relationship, we can obtain the fractal dimension
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FIG. 8. Tight-packing measures. (a) Area ζLN∗ covered by the
rod inserted in the cavity and (b) corresponding packing fraction p∗.
The dashed line indicates the limit of infinite loops and the solid line
shows the theoretical value given by Eq. (14).

D of the global pattern as M ∼ RD . Equation (14) suggests
that the fractal dimension of a pattern of infinite loops is D∞ =
2. However, the physical limit of rigidity in the tight packing
imposes a deviation from the configuration of infinite loops and
the tight packing of a flexible rod in two-dimensional cavities
gives an apparent fractal dimension D � 2 as reported in the
literature [1,9]. The plot in Fig. 8(b) shows the packing fraction
p∗ = ζLN∗/A(φ) as a function of the inner diameter of the
annulus. From tight-packing measures, our result shows that
the packing fraction is an increasing function of the size of the
inner disk. This is the opposite effect of increasing the number
of obstacles, which decreases the total packing fraction of the
rod [9,10]. A divergence for d − φ = 2ζ is expected because
an annulus of this width yields an initial packing fraction of
p0 ≈ 0.5.

Although we cannot study the instabilities in greater detail,
we report some results of interest. The number of experimental
realizations with instabilities does not shown any tendency
when the inner diameter φ changes. Among all the realizations
for a given φ, there was at least one with instabilities, and on the
other hand, there were at least three cases with no instabilities
at all. The length of the rod inserted from the instability
to the last loop is 	L = LN − LN∗ and it accumulates all
discontinuities in the range N∗ � n � N . On average, 	L

corresponds to an increment 	p = (0.062 ± 0.005) in the
packing fraction. However, the unpredictable behavior after
the instabilities allows few realizations where 	L can sum to
about 100% of the length inserted in the exponential domain

0 < n � N∗. We point out that the exponential behavior is
suitable for describing the formation of loops with the injection
of flexible elastic rods into two-dimensional cavities. The
global patterns have a clear size gradient characteristic of
what has been called classical morphology [2]. For less elastic
filaments, one expects more instabilities to occur. We stress
that further studies of those discontinuities will lead to better
descriptions of the formation of loops in patterns of plastic
morphology.

V. CONCLUSIONS

In this paper we report an exhaustive experimental study
and analysis of the formation of loops in the packing of a
flexible rod into annular cavities. The packing is treated as a
discrete dynamical process that obeys an exponential model
valid in simply connected cavities as well as in annular cavities.
The length of formation of the first loop λ1 and the length
of the rod needed to build infinite loops L∞ define the
exponential parameters, given a reference length L0 where
the loops starts counting. The model points out that there
are discontinuities in the total length for a number of loops
n larger than the threshold N∗ in 36% of realizations. The
tight packing is also analyzed and we show that the physical
limit for the rigidity of the system imposes an apparent fractal
dimension that is always smaller than 2 as previously found in
different experimental studies. Our results in annular cavities
are in agreement with previous claims which include changes
in entropy due to the topology of the cavity and constant
packing fraction for the effective isotherm curve of this
system [9]. Approximate complementary relationships of the
packing problems discussed here with the classical problems
of the random close packing of disks and the jammed disk
packings are pointed out. We urge that additional study of the
system examined in this article is needed in order to clarify
the influence of plasticity and elasticity in the phenomenon
and, in particular, to further the examination of the origin of
the discontinuities reported here and the possible connection
of the appearance of instabilities with traditional studies of
dynamical systems.
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