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Reconstructing network connection topology and interaction strengths solely from measurement of the
dynamics of the nodes is a challenging inverse problem of broad applicability in various areas of science
and engineering. For a discrete-time step network under noises whose noise-free dynamics is stationary, we
derive general analytic results relating the weighted connection matrix of the network to the correlation functions
obtained from time-series measurements of the nodes for networks with one-dimensional intrinsic node dynamics.
Information about the intrinsic node dynamics and the noise strengths acting on the nodes can also be obtained.
Based on these results, we develop a scheme that can reconstruct the above information of the network using only
the time-series measurements of node dynamics as input. Reconstruction formulas for higher-dimensional node
dynamics are also derived and illustrated with a two-dimensional node dynamics network system. Furthermore,
we extend our results and obtain a reconstruction scheme even for the cases when the noise-free dynamics is
periodic. We demonstrate that our method can give accurate reconstruction results for weighted directed networks
with linear or nonlinear node dynamics of various connection topologies, and with linear or nonlinear couplings.
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I. INTRODUCTION

Since the emergence of the “big data” era [1], in which
there are huge amounts of dynamical data to be mined in
many different disciplines, there has been a need for novel
and reliable methods of network reconstruction [2,3] that can
provide insight and advance the fundamental understanding
of these systems, which would otherwise be buried in these
massive amounts of data. Many systems of interest in physics,
biology, or social sciences are multicomponent systems in
which the components or nodes interact with each other.
Examples include weather and atmospheric data, financial
time-series, power grid networks, communication and web
networks, and social networks [4–6]. Other complex biological
networks of interest are gene expression data for gene
regulatory networks [7,8], multielectrode array measurements
for neuronal networks and functional MRI measurements for
the brain network [9], disease infection networks, etc. Despite
the vast amount of data, it remains a big challenge to utilize
the experimental measurements to provide in-depth theoretical
insights into these systems. One of the major goals in bridging
the experimental data and a theoretical understanding in a
complex interacting system is to provide a solution to the
following crucial inverse problem: how can we decipher
the wiring diagram and reconstruct the underlying network
and intrinsic dynamics of the nodes from measurements and
observations [2,10,11]? An accurate solution to the above
network reconstruction problem can provide new insights and
breakthroughs in the fundamental mechanisms behind many
complex phenomena. We would also like to stress that one
should aim for a model-free method (i.e., one in which no
prior knowledge about the details of the node dynamics and
the coupling functional form is needed), and there should
be no information required other than the nodal dynamics
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of a complex interacting network. For example, we do not
need other information such as the nodal dynamics or the
responses of the systems upon perturbations as in previous
studies [12–16]. The data of the system dynamics, passively
recorded and observed, are sufficient for practical applications.
Successful methods for uncovering knowledge from data
should be very general and can be widely applicable to various
areas in physics, biology, and many disciplines in science, and
they will allow for a deep and broad impact.

The most important feature of a complex network is
how the nodes are connected, including the strength of the
connection and their directionality. This feature determines the
overall properties and governs the dynamics and functionality
of the network. However, such wiring information of a
network is often not directly measurable, and thus the network
reconstruction is crucial in providing significant insights and
understanding of the fundamental mechanism behind the
overall behavior of the systems. Recently, there have been
a few attempts [17–20] aiming to uncover the connectivity,
directions, and coupling strengths of a network described by
continuous-time coupled ordinary differential equations. On
the other hand, there is a large class of systems in nature whose
dynamics are described by discrete-time steps, constituting
networks with discrete-time dynamics. Often these discrete-
time dynamical systems, such as coupled map networks [21],
display even richer collective dynamical behavior. Based on
the ideas [17,18,22] that noise can reveal the interactions
between nodes in the dynamical data of the network, in this
paper we will present our approach to the challenging inverse
problem of network reconstruction solely from the measure-
ment of dynamical time-series data. In particular, we focus
on network dynamics with discrete-time steps, and we derive
reconstruction formulas for directed networks in the presence
of white noise. We establish reconstruction formulas for one-
and higher-dimensional intrinsic node dynamics. Our method
works well for network dynamics fluctuating around the noise-
free stationary state, and we also derive the reconstruction
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scheme for dynamics that fluctuates around the periodic state.
All of these reconstruction schemes are well verified explicitly
by numerically generated dynamics of known connections,
intrinsic node dynamics, noise strengths, different linear and
nonlinear coupling functions, and various network topologies.

II. COUPLED MAP NETWORK UNDER NOISES

Consider a network with N nodes whose intrinsic one-
dimensional dynamics of the ith node at discrete-time step n,
xi(n), is described by the nonlinear function fi(xi). Nodes i

and j are connected by directed and weighted links given by
the matrix W. The dynamics is governed by

xi(n + 1) = fi(xi(n)) +
N∑

j �=i

Wijh(xi(n),xj (n)) + ηi(n), (1)

where ηi is a zero-mean Gaussian white noise that acts on
the node i. In many situations, the weighted matrix takes the
form Wij = gijAij , with the adjacency matrix of elements
Aij = 0 or 1, and connection weights gij . h is some coupling
function describing the interaction between nodes i and j .
Furthermore, we assume that in the presence of noises,
the system approaches some asymptotic dynamics and xi(n)
fluctuates around the noise-free solution Xi(n).

Considering a small deviation from the noise-free solution,
yi(n) ≡ xi(n) − Xi(n), and keeping to linear order in yi , one
has for i = 1,2, . . . ,N ,

yi(n + 1) � f ′
i (Xi)yi(n) +

N∑
j=1

[Wij∂2h(Xi,Xj )yj (n)

+Wij∂1h(Xi,Xj )yi(n)] + ηi(n), (2)

where ∂1h and ∂2h denote the derivatives with respect to the
first and second variables in h, respectively. Equation (2) can
be written as

�y(n + 1) � N�y(n) + �η(n), (3)

where the matrix elements of N are given by

Nij = Wij∂2h(Xi,Xj )

+
[
f ′

i (Xi) +
∑
m

Wim∂1h(Xi,Xm)

]
δij . (4)

In the next section, we first consider the case in which the
noise-free solution is time-independent, i.e., xi(n) fluctuates
about the time-dependent Xi , and hence N is time-independent.
Equation (3) can be solved to give

�y(n) � Nn �y(0) +
n−1∑
k=0

Nn−k−1 �η(k). (5)

The white noise has zero mean with variance given by the
noise correlation matrix σ :

�η(n)�ηᵀ(n′) = σ δnn′ , �η(n) = 0, (6)

where the · · · stands for ensemble average over the noise,
which can be obtained in practice by a time average over the
asymptotic dynamics over an extended period of time, 〈· · · 〉.

We aim to extract the elements of the (asymmetric) coupling
matrix Wij , the information on the noises, and the intrinsic
dynamics [such as f ′

i (Xi)] using only the measured time series
xi(t) as input. It will be shown that this can be achieved by
computing the time-lagged correlation matrices Kτ (where
τ = 0,1,2, . . . is the forward time lags) defined as follows:

Kτ = 〈�y(n + τ )�yᵀ(n)〉. (7)

In practice, the time-average 〈· · · 〉 is performed over some
finite-time duration Tav of measurements. We first show that
there are exact relations between the matrices N (and hence
W), Kτ , and σ .

III. RECONSTRUCTION FORMULAS FOR A COUPLED
MAP NETWORK UNDER WHITE NOISES

The uncorrelated white noise η has a zero mean with
variance given by 〈ηi(n)ηj (n′)〉 = σij δnn′ , where σij are the
noise correlation matrix elements, and the noise strength at
node i is given by the variance σii . We first derive an exact
relation between the time-lag covariance matrices. Using (3),
one has

Kτ+1 = 〈�y(n + τ + 1)�yᵀ(n)〉 (8)

= 〈N�y(n + τ )�yᵀ(n)〉 + 〈�η(n)�yᵀ(n)〉 (9)

= NKτ , (10)

where 〈�η(n)�yᵀ(n)〉 = 0, which follows from the white noise
nature of �η and from (5) that �y(n) depends only on noises at
earlier times. Similarly, one has

K0 = 〈�y(n)�yᵀ(n)〉 (11)

= 〈N�y(n)[N�y(n)]ᵀ〉 + 〈�η(n)�ηᵀ(n)〉 (12)

= NK0Nᵀ + σ . (13)

Finally, one obtains the reconstruction formulas for the
coupling and noise matrices:

N = K1K−1
0 = K2K−1

1 = · · · Kτ K−1
τ−1, (14)

σ = K0 − NK0Nᵀ = K0 − K1K−1
0 Kᵀ

1 . (15)

Hereafter, the coupling function h is taken to be of the form
h(x1,x2) = h(x2 − x1) and h(−z) = −h(z) [hence h′(0) > 0],
which tends to synchronize the dynamics of the nodes. Thus
∂2h = h′(0) = −∂1h in Eq. (4), and

Nij =
(

f ′
i − h′ ∑

m

Wim

)
δij + h′Wij . (16)

For notational simplicity, we denoted h′ ≡ h′(0) and f ′
i ≡

f ′
i (Xi) in the above and throughout the paper. Approximate

the ensemble average by an average over a finite averaging
time Tav, one can compute the correlation matrices from the
time-series data. In practice, the noise-free solution can be
approximated by Xi � 〈xi〉. Also, short time-lag covariance
matrices can be measured more accurately than large τ ones,
thus it suffices to measure and use K0 and K1 for network
reconstructions.
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FIG. 1. Verification of the reconstruction formulas for the directed weighted random network. Heterogeneous coupled Logistic map
dynamics fi(x) = rix(1 − x) with ri uniformly distributed in (0,0.8] and linear couplings. (a) (K1K−1

0 )ij . (b) (K2K−1
1 )ij vs the actual Nij ,

verifying (14). Tav =106. (c) (K2K−1
1 )ij vs the actual Nij , with Tav = 7×106. (d) (K0 − K1K−1

0 Kᵀ
1 )ii vs the actual σii , verifying (15). Tav = 106.

A. Network reconstruction performances: Numerical results

To verify our main results and evaluate the effectiveness
of the reconstruction method, we numerically generate the
dynamics of networks of given Wij with various nonlinear
intrinsic dynamics and linear and nonlinear couplings, and we
compare the known weighted asymmetric matrix with that of
the reconstructed one using Eqs. (17) and (18) below. We test
our method using weighted random (WR) networks [23,24].
Weighted random networks with N = 100 nodes are generated
with a connection probability p and coupling strengths of each
link taken from a distribution of two Gaussians with means
0.1 and −0.1 (with relative fraction of 0.8 and 0.2, respec-
tively), and standard deviations 0.02. WR1 are Erdös-Rényi
random networks [23] generated with connection probability
p (p = 0.05 unless otherwise stated). WR3 is a random net-
work with three disconnect parts each with (almost) the same
number of nodes, and the total number of links in the entire
network is the same as that of WR1. In addition to logistic
dynamics [25], we also study the nonlinear intrinsic dynamics
given by the cubic map and Hill form. Care has been taken to

choose parameters such that the resulting asymptotic dynamics
remains bounded. Unless otherwise stated, we take the white
noise matrix to be diagonal with strengths σii uniformly
distributed in the interval (0,10−8]. Figures 1(a) and 1(b)
show the plots of the computed matrix elements of K1K−1

0 and
K2K−1

1 versus the matrix elements of N verifying (14). Note
that the reconstruction formula holds very well for K1K−1

0 and
less satisfactorily for K2K−1

1 , but it can be improved if Tav is
increased [see Fig. 1(c)]. Figure 1(d) verifies that the noise
reconstruction formula for σ in Eq. (15) holds very well.

Using the first part of (14), one can reconstruct the coupling
matrix Wij and f ′

i via

h′Wij =
∑
m

(K1)im
(
K−1

0

)
mj

for i �= j, Wii = 0, (17)

f ′
i =

∑
m

(K1)im
(
K−1

0

)
mi

+
∑
k �=i

∑
m

(K1)im
(
K0

−1
)
mk

. (18)

One can further improve the reconstruction accuracy by
first extracting the adjacency matrix, i.e., identifying the
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FIG. 2. Reconstruction for a directed weighted random network with heterogeneous coupled logistic map dynamics fi(x) = rix(1 − x)
and linear couplings as in Fig. 1. Tav = 106. (a) Reconstructed Wij using (17) vs the actual Wij . (b) The reconstructed f ′

i using (18) vs the
actual f ′

i .

unconnected node pairs. This can be achieved by noticing
for i �= j that Wij will be nonzero if i is being connected
by j , and zero otherwise. Thus from (17), (K1K−1

0 )ij will be
separated into two groups according to Wij = 0 or Wij �= 0.
By arranging the elements of (K1K−1

0 )ij (i �= j ) in ascending
order for fixed i, and employing some cluster algorithm
to separate the elements into two clusters [17,18], one can
identify those nodes j that connect to i. Thus one can identify
the zero and nonzero Wij and hence the adjacency matrix.
Figure 2 displays the final results of reconstructing Wij and
f ′

i solely using information derived from the time-series data,
showing excellent agreement. Such a clustering procedure of
identifying zero and nonzero Wij elements can significantly
enhance the reconstruction performance (see Fig. 4) and will be
employed throughout in our network reconstruction scheme.

For diffusive coupling, h′ = 1, but in practice the coupling
function or h′ is not known in general. In the case when h′ is
not known, one can still reconstruct the relative weights as

wij ≡
∑

m (K1)im
(
K−1

0

)
mj∑

i �=j

∑
m (K1)im

(
K−1

0

)
mj

for i �= j. (19)

Figure 3 shows the reconstruction result for a nonlinear
coupling function of h(z) = tanh(z) (h′ = 1), h(z) = z

3e1− |z|
3

(h′ = e
3 ), and h(z) =

√
1
2ze

1
2 − z

2
2

(h′ = √
e
2 ). In all these cases,

the relative weights can be accurately reconstructed solely
from the time-series data also.

The performance of our reconstruction method for random
networks of various nonlinear intrinsic node dynamics and
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FIG. 3. Reconstruction of the directed weighted network for various nonlinear coupling functions as described in the text. Heterogeneous
coupled logistic map dynamics. Tav = 106. (a) Reconstructed relative weights using (19) vs the actual ones. (b) Reconstructed f ′

i using (18) vs
the actual ones.
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TABLE I. Network reconstruction performance measured by the false negative and false positive error rates of the adjacency matrix, rms
errors of the weight matrix (�W ), and derivatives of the intrinsic dynamic function f ′

i (�f ′ ) for various cases studied. Different intrinsic dynamics
are considered: Heterogeneous logistic (fi(x) = rix(1 − x) with ri uniformly distributed in (0,0.8]), heterogeneous cubic (fi(x) = rix(1 − x2)
with ri uniformly distributed in (0,1]), heterogeneous Hill (fi(x) = rix

2/(1 + x2) with ri uniformly distributed in (1,2]), heterogeneous Hénon
map (ui(n + 1) = 1 + vi(n) − aiu

2
i (n); vi(n + 1) = bui(n), with b = 0.3 and ai uniformly distributed in (−0.132, −0.11]×(1 − b2)), and

different coupling functions [h(z)]. Noise strength σii is uniformly distributed in (0,10−8] in all cases. WR1 are a directed weighted random
network with p = 0.05, except for those marked with †, which are with p = 0.07. The four values in the column of �f ′ for Hénon dynamics
correspond to the rms errors of ∂ufi , ∂vfi , ∂ugi , and ∂vgi , respectively. Period-2 dynamics is denoted by (p2), and cases marked with an asterisk
are reconstructed using a reconstruction scheme for periodic dynamics as described in Sec. V; the two values in the column of �f ′ correspond
to the rms errors of f ′

i (〈xi〉1) and f ′
i (〈xi〉2).

Network Dynamics h(z) Tav
FN

NL
(%) FP

NL
(%) �W (%) �f ′ (%)

WR1 Logistic z 106 0 0 0.025 0.262
WR1 Logistic tanh(z) 106 0 0 0.025 0.262
WR1 Logistic (p2) tanh(2z) 106 3.080 2.875 0.055 7.328
∗WR1 Logistic (p2) tanh(2z) 106 0.205 0 0.043 0.386, 0.828

WR1 Logistic z

3 e1− |z|
3 106 0 0 0.028 0.263

WR1 Logistic
√

1
2 ze

1
2 − z

2
2

106 0 0 0.021 0.259

WR3 Logistic z 106 0 0 0.025 0.253
WR1 Cubic z 106 0 0 0.024 0.258
WR1 Cubic tanh(z) 106 0 0 0.024 0.258
WR3 Cubic z 106 0 0 0.024 0.243
WR1 Hill z 106 0 0.196 0.043 0.492
WR1 Hill tanh(z) 106 0 0.196 0.043 0.492
WR1† Hill (p2) z 106 3.212 3.491 0.763 18.30
∗WR1† Hill (p2) z 106 0 0 0.048 0.508, 0.696
WR1 Hénon z 106 0.204 10.43 0.389 3.639, 1.900, 0.00052, 0.761
WR1 Hénon z 107 0 4.294 0.232 3.456, 0.764, 0.0009,0.358
WR1 Hénon tanh(z) 107 0 3.476 0.2107 3.127, 0.748, 0.0013, 0.345

coupling functions is summarized in Table I using the fol-
lowing quantities. Denote the number of incorrectly predicted
links (nonexisting links) by FP (FN). We quantify the accuracy
of the extracted network by the false positive and false negative
rates as FP/NL and FN/NL, where NL is the total number
of links in the generated network. The root-mean-square
(rms) errors of the reconstructed Wij and f ′

i (denoted by
�W and �f ′ , respectively) are also measured. Since for a
network of given size �f ′ is not sensitive to the sparsity of
the connection, it serves as a good quantity to evaluate and
compare the reconstruction accuracy. As shown in Table I,
the reconstruction performance is in general very good, with
nearly perfect reconstructed adjacency matrices except in the
cases in which the noise-free dynamics does not satisfy our
assumption of being in a stationary state. This issue will
be discussed and handled in Sec. V. The effects of network
size, noise strengths and time-series lengths, different weight
distributions, and connection topologies are discussed in the
following two subsections.

B. Effects of Tav, network size, and noise strengths

The reconstruction formulas (17) and (18) in principle are
exact if the covariance matrices K0 and K1 are computed
with measurement duration Tav → ∞. But time-series data
in practice are of finite length, and this will hamper the
reconstruction accuracy. To investigate the effect of time-series
length, the rms errors for Wij and f ′

i are measured for the same
random network but with different Tav. Figure 4 shows the rms
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FIG. 4. Network reconstruction performance as a function of
the measurement time Tav. The rms errors for reconstruction of
Wij and f ′

i using the formulas in Eqs. (17) and (18) without
employing the method of clustering into connected and unconnected
groups are denoted by δW and δf ′ , respectively, showing the
expected 1/

√
Tav behaviors (solid green lines). The corresponding

rms errors when Wij are clustered into two groups of connected and
unconnected ones are denoted by �W and �f ′ , respectively, showing
even lower rms errors (dashed blues lines). The WR1 network
(N = 100) with heterogeneous logistic node dynamics with linear
couplings distributed with two Gaussians with means 0.1 and −0.1
(with relative fractions of 0.8 and 0.2, respectively), and standard
deviations 0.02.
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TABLE II. Reconstruction performance for directed random
networks of different sizes. p is chosen such that the mean total
degree of the networks is almost the same (〈k〉 � 5). Heterogeneous
logistic node dynamics with linear coupling, distributed with two
Gaussians with means 0.05 and −0.05 (with relative fractions of 0.8
and 0.2, respectively), and standard deviations 0.01.

N 〈k〉 Tav
FN

NL
(%) FP

NL
(%) �W (%) �f ′ (%)

50 5.02 105 0.398 9.562 0.214 1.324
50 5.02 106 0.398 5.179 0.050 0.321
100 4.87 105 0.821 6.571 0.194 2.041
100 4.87 106 0 0.821 0.040 0.396
500 5.15 105 10.94 23.24 0.240 5.623
500 5.15 106 0.155 1.009 0.028 0.608
1000 5.15 105 16.28 19.69 0.178 7.009
1000 5.15 106 0.194 0.602 0.017 0.553

errors for reconstruction of Wij and f ′
i using the formulas in

Eqs. (17) and (18) without employing the method of clustering
into connected and unconnected groups (denoted by δW and
δf ′ , respectively) showing the expected decrease as 1/

√
Tav

(indicated by solid green lines with a slope of −0.5). On the
other hand, when the procedure of clustering into connected
and unconnected groups is used, the rms errors (denoted by
�W and �f ′) decrease with a significantly faster rate (indicated
by dashed blue lines with a slope �0.75). For Tav = 105,
our reconstruction method is rather accurate with �f ′ ∼ a
few %.

Next we consider the effect of network size N on the
reconstruction performance. Table II lists the error rates, �W

and �f ′ , for random networks of different node numbers with
approximately the same mean degree (�5). For shorter Tav,
the reconstruction become less accurate for larger networks,
but the difference is not prominent for longer Tav. The
reconstruction performance is in general rather good for
Tav = 106 �f ′ < 1% for networks of sizes up to N = 1000.

The reconstruction performance for different noise matrices
is also evaluated and shown in Table III. Diagonal noise
matrices with elements σii uniformly distributed in some
range, or with fixed noise strengths acting on the same
random network, are studied. It indicates that the accuracy

TABLE III. Reconstruction performance for directed random net-
works with N = 100 under different noise strengths. Heterogeneous
logistic node dynamics with linear couplings distributed with two
Gaussians with means 0.1 and −0.1 (with relative fractions of 0.8
and 0.2, respectively), and standard deviations 0.02. Tav = 106.

σii
FN

NL
(%) FP

NL
(%) �W (%) �f ′ (%)

(0,10−20] 0 0 0.0246 0.243
10−20 0 0 0.0209 0.210
(0,10−8] 0 0 0.0249 0.262
10−8 0 2.659 0.0233 0.217
(0,10−6] 0 0 0.0249 0.262
10−6 0 2.659 0.0233 0.217
(0,10−4] 0 0 0.0249 0.262
10−4 0 2.659 0.0233 0.225

TABLE IV. Reconstruction performance for directed random
networks with N = 100 under different coupling distributions.
Heterogeneous logistic node dynamics linearly coupled. PG(μ)
denotes Gaussian distribution with mean μ. P2G(α; μ1,μ2) denotes
distributions with two Gaussians with means μ1 and μ2 (with relative
fractions of α and 1 − α, respectively). Gaussians are all with standard
deviations of 0.02.

W distribution Tav
FN

NL
(%) FP

NL
(%) �W (%) �f ′ (%)

(0.05,0.15] 106 0 2.464 0.0289 0.297
(−0.05,0.05] 106 20.33 4.928 0.0879 0.983
PG(0.1) 106 0 0.410 0.0272 0.300
PG(0.02) 106 29.98 4.517 0.122 1.558
P2G(0.8; 0.1, −0.1) 106 0 0 0.0249 0.262
P2G(0.8; 0.1,0.02) 106 10.06 0.205 0.093 1.148
P2G(0.8; 0.1,0.02) 107 4.107 0 0.0230 0.207
P2G(0.5; 0.1,0.02) 106 23.00 1.848 0.158 2.34
P2G(0.5; 0.1,0.02) 107 9.856 0 0.0534 0.770
P2G(0.2; 0.1,0.02) 106 33.47 2.669 0.228 4.260
P2G(0.2; 0.1,0.02) 107 12.32 1.027 0.0735 1.064

of reconstruction is very good and is insensitive to noises of
different strengths and distributions. Remarkably, the recon-
struction accuracy remains good even for extremely low noise
strengths.

C. Networks of different weight distributions
and connection topologies

The reconstruction performance for the same network but
with different weight distributions is investigated here. We
consider three types of weight distributions, namely uni-
formly distributed in some range, a single Gaussian, and two
Gaussians with different relative proportion and their means
separated. Table IV shows that the reconstruction accuracy
is in general very good for different weight distributions as
long as they do not cover a significant regime of very small
values of weights. For very small values of weights, it can be
mistaken for unconnected links and hence gives rise to high

TABLE V. Reconstruction performance for directed random
networks of different connection probability p with N = 100. Hetero-
geneous logistic node dynamics with linear couplings distributed with
two Gaussians with means 0.05 and −0.05 (with relative fractions
of 0.8 and 0.2, respectively), and standard deviations 0.01. Ndisconn

denotes the number of disconnected subgraphs. Tav = 106 except the
last row is with 107.

p 〈k〉 FN

NL
(%) FP

NL
(%) �W (%) �f ′ (%) Ndisconn

0.15 14.65 0 0 0.0464 0.422 1
0.1 9.61 0 0.104 0.0414 0.379 1
0.07 6.54 0 0.306 0.0387 0.362 1
0.05 4.87 0 0.821 0.0400 0.396 1
0.04 3.76 0 1.0634 0.0374 0.380 1
0.03 2.92 0 3.767 0.0358 0.342 5
0.02 2.05 0 12.195 0.0360 0.342 11
0.01 1.03 0 135.9 0.0605 0.568 39
0.01 1.03 0 113.6 0.0177 0.186 39
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false-negative error rates. However, the errors can be reduced
if Tav is increased.

The effect of network connection sparsity is examined
by reconstructing random networks of different connection
probabilities p. Table V shows the reconstruction performance
for different sparsity. In general, the false-positive error rates
increase as the network becomes more sparse, but the accuracy
is still reasonably good for a rather sparse network of p = 0.02
(mean degree �2 and consisting of 11 disconnected clusters).
For a network that consists of many disconnected small
fragments (p = 0.01, mean degree �1), the reconstruction
is unreliable, even if the Tav is increased (see the last row).

Finally, we evaluate the reconstruction performance for
networks of different topologies but with the same size and
roughly the same mean degree including small-world (SW)
[26] and scale-free (SF) [4] networks. Figures 5(a)–5(d)
show the predicted Wij and f ′

i against the actual ones for
the bidirectional scale-free and small-world networks. The
rewiring probability of the SW network is chosen such that
the small-world characteristic is prominent. As the rewiring
probability β is varied from 0 to 1, the Watt-Strogatz SW

network changes from a regular network with a fixed number
of degree for each node to a randomly connected network.
The rms errors �W and �f ′ are plotted as a function of β

showing some small variations in the reconstruction accuracy,
but in general the reconstruction performance remains very
good from regular to small-world and random networks. The
reconstruction errors of the SF, SW, and random networks
together with reducible networks consisting of different num-
bers of disconnected subnetworks of equal sizes are listed in
Table VI. It appears that the reconstruction accuracies remain
very good and not so sensitive to the network topologies
as long as the networks remain connected. For networks
consisting of more disconnected parts, the reconstruction
accuracy decreases slightly.

IV. RECONSTRUCTION FOR NETWORKS OF
HIGH-DIMENSIONAL INTRINSIC NODE DYNAMICS

Our reconstruction scheme can be extended for networks
whose nodes are governed by high-dimensional intrinsic
dynamics. Here we present an explicit reconstruction formula
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FIG. 5. Network reconstruction for networks of different topologies. N = 100 networks with heterogeneous logistic node dynamics with
linear couplings distributed with two Gaussians with means 0.05 and −0.05 (with relative fractions of 0.8 and 0.2, respectively), and standard
deviations 0.01. Tav = 106. Scale-free bidirectional network with mean degree =5.68: (a) Reconstructed Wij vs the actual Wij , (b) reconstructed
f ′

i using vs the actual f ′
i . Small-world bidirectional network with mean degree =6 and rewiring probability β = 0.02: (c) Reconstructed Wij

vs the actual Wij , (d) reconstructed f ′
i using vs the actual f ′

i . (e) Reconstruction errors �W and �f ′ of small-world networks (mean degree
=6) vs the rewiring probability β.
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TABLE VI. Reconstruction performance for networks of differ-
ent topologies with N = 100 and mean degree ∼6. Heterogeneous
logistic node dynamics with linear couplings distributed with two
Gaussians with means 0.05 and −0.05 (with relative fraction of 0.8
and 0.2, respectively), and standard deviations 0.01. Tav = 106. SW:
Watt-Strogatz small-world [26] bidirectional network with rewiring
probability 0.02. SF: Barabási-Albert bidirectional scale-free network
[4] grown with initially two nodes and adding three new nodes each
time by preferential attachment. BWR: bi-directional Erdös-Rényi
random network [23]. WRn: directed network with n (almost)
equal-size disconnected Erdös-Rényi random subnetworks.

Network 〈k〉 FN

NL
(%) FP

NL
(%) �W (%) �f ′ (%)

SW 6 0 0.667 0.0440 0.487
SF 5.68 0 0.176 0.0365 0.368
BWR 5.92 0 0.338 0.0381 0.368
WR1 5.92 0 0.507 0.0396 0.384
WR3 5.94 0 0.673 0.0442 0.463
WR5 5.91 0 1.015 0.0436 0.433
WR10 5.96 0 1.007 0.0464 0.470

for two-dimensional dynamics, and it can be trivially extended
to higher dimensions. Suppose the ith node dynamics is
described by ui(n) and vi(n) and coupled only via u in the
network. The dynamics of the network system is described by

ui(n+ 1) = fi(ui(n),vi(n)) +
∑

j

Wijh(ui(n),uj (n)) + ηu
i (n),

(20)

vi(n + 1) = gi(ui(n),vi(n)) + ηv
i (n), (21)

where ηu
i and ηv

i are independent zero-mean white noises
acting on the dynamical variables, and fi and gi are func-
tions governing the intrinsic two-dimensional node dynam-
ics. Again consider small deviations from the noise-free
steady-state solution (ui(n),vi(n)) = (Ui,Vi), yi(n) ≡ ui(n) −
Ui , and zi(n) ≡ vi(n) − Vi . Then upon linearizing about the
noise-free solution, one has

�ζ (n + 1) = M�ζ (n) + �η(n), (22)

where �ζ ≡ (�y,�z) and �η ≡ (�ηu,�ηv) are vectors of length 2N ,
and M is the 2N×2N matrix

M ≡
[

N ∂vf
∂ug ∂vg

]
, (23)

and the N×N matrices are given by

Nij = Wij∂2h(Ui,Uj )

+
[∑

m

Wim∂1h(Ui,Um) + ∂ufi(Ui,Vi)

]
δij , (24)

(∂vf)ij = ∂vfi(Ui,Vi)δij , (25)

(∂ug)ij = ∂ugi(Ui,Vi)δij , (26)

(∂vg)ij = ∂vgi(Ui,Vi)δij . (27)

Following similar procedures as in the previous section,
one computes the 2N×2N covariance matrices K0 ≡
〈�ζ (n)�ζᵀ

(n)〉 and Kτ ≡ 〈�ζ (n + τ )�ζᵀ
(n)〉. The matrices M and

σ ≡ 〈�ζ (n)�ζᵀ
(n)〉 can be extracted as

M = K1K−1
0 = K2K−1

1 = · · · Kτ K−1
τ−1, (28)

σ = K0 − MK0Mᵀ = K0 − K1K−1
0 Kᵀ

1 . (29)

From the extracted M, one can obtain Nij and the partial
derivatives ∂vfi , ∂ugi , and ∂vgi from (23). Wij and ∂ufi can
then be reconstructed via

Nij = Wij∂2h(Ui,Uj ), i �= j, (30)

Nii = ∂ufi(Ui,Vi) +
∑
m

Wim∂1h(Ui,Um). (31)

Here we demonstrate our method using the two-
dimensional Hénon map [27] linearly coupled in a network
with ∂2h = 1 = −∂1h. The intrinsic dynamics of each (inho-
mogeneous) node is described by

fi(ui,vi) = 1 + vi − aiu
2
i , (32)

gi(ui,vi) = bu2
i , (33)

with ∂ufi = −2aiUi , ∂vfi = 1, ∂vgi = 0, and ∂ugi = b. The
(known) matrix M is simply

M =
[

N I
bI 0

]
, Nij = Wij (i �= j ),

Nii = −2aiUi −
∑
m

Wim. (34)

Figure 6(a) is a plot of the matrix elements of K1K−1
0 versus

the corresponding known elements of M given in Eq. (34),
verifying the reconstruction formula (28). Figures 6(b) and
6(c) display the reconstruction results of Wij ,σii using only
the time-series data, exhibiting high accuracy. Figure 6(d) plots
the reconstructed partial derivatives of f and g against their
known values, again showing good agreement. The last three
rows of Table I show that the reconstruction performance of
the Hénon map network is in general good, although a long
Tav = 107 is needed to achieve the same level of accuracy for
the other cases of 1D intrinsic node dynamics. Note that there
are four rms errors for �f ′ in Table I corresponding to the
partial derivatives ∂ufi , ∂vfi , ∂ugi , and ∂vgi , respectively.

V. RECONSTRUCTION FOR NETWORKS
WITH PERIODIC DYNAMICS

In the previous sections, the noise-free dynamics was
assumed to be stationary, and the node dynamics xi(n)
fluctuates around the time-independent Xi . In coupled map
networks, even though the uncoupled dynamics of each node
is stationary, coupling can easily induce the system to undergo
period doubling bifurcations [28,29] to periodic states and
even to chaotic dynamics. Here we allow for the situation in
which the noise-free dynamics Xi(n) is periodic, and we derive
the network reconstruction formulas when the nodes are under
white noises. Explicit demonstrations are shown for period-2
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FIG. 6. Reconstruction of the directed weighted network with intrinsic node dynamics given by the heterogeneous Hénon map: ui(n + 1) =
1 + vi(n) − aiu

2
i , vi(n + 1) = bui(n) with b = 0.3 and ai uniformly distributed in (−0.132, −0.11]×(1 − b2), and linear couplings. Tav = 107.

(a) (K1K−1
0 )ij vs the actual Mij , verifying the reconstruction formula (28). (b) The reconstructed Wij using (24) vs the actual Wij . (c) The

reconstructed σii using (29) vs the actual σii . (d) The reconstructed partial derivative matrix elements using (23) and (28) vs the actual
ones.

network dynamics for two cases, as shown in Table I (marked
with asterisks).

Suppose the noise-free solution of the network dynamics is
synchronized with period P . Again consider small deviations
from the noise-free periodic solution Xi(n), yi(n) ≡ xi(n) −
Xi(n). Expanding to linear order, one gets

�y(n + 1) � NNN �y(n) + F�y(n) + �η(n), (35)

where F is the diagonal matrix with diagonal elements
f ′

i (Xi(n)), and Nij ≡ h′(Wij − δij

∑
m Wim). Note that we

have separated the time-dependent part F, and NNN is time-
independent. To derive the reconstruction formulas, again we
need to compute the covariance matrices K0 and K1. The key
idea is that even though the asymptotic dynamics fluctuates
around the periodic orbit consisting of P points, labeled as
X

(1)
i , . . . ,X

(P )
i , all time averages of the fluctuating quantities

can be decomposed into a sum of averages around the X
(k)
i ’s

(k = 1, . . . ,P ) as

P 〈· · · 〉 = 〈· · · 〉1 + 〈· · · 〉2 + · · · 〈· · · 〉P , (36)

where 〈· · · 〉k denotes averages taken from (after the transient
times and the system undergoes its asymptotic periodic
dynamics) time point k, k + P , k + 2P, . . . . Since these time
points are separated by the period P , values of xi measured
at these time points fluctuate around the noise-free point X

(k)
i .

Furthermore, in practice the noise-free periodic orbit can be
obtained from the time-series data via

X
(k)
i � 〈xi〉k, k = 1, . . . ,P . (37)

Figure 7(a) shows the measured 〈xi〉k versus the corresponding
noise-free X

(k)
i for the period-2 dynamics generated by

intrinsic Hill dynamics and linear coupling (see Table I),
verifying the validity of (37).
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FIG. 7. Verification of the reconstruction formulas for the directed weighted network having period-2 noise-free dynamics. Heterogeneous

coupled Hill map dynamics and linear couplings. Tav = 106. (a) The noise-free periodic point X
(k)
i vs 〈xi〉k , verifying (37). (b) (K(1)

1 K(1)
0

−1
)ij vs

the actual Nij + f ′
i (〈xi〉1)δij , verifying (45) for k = 1. (c) (K(2)

1 K(2)
0

−1
)ij vs the actual Nij + f ′

i (〈xi〉2)δij , verifying (45) for k = 2.

Now we compute the periodically averaged time-lagged
covariance matrix defined as

K(k)
1 = 〈�y(n + 1)�yᵀ(n)〉k, k = 1,2, . . . ,P , (38)

= NNN 〈�y(n)�yᵀ(n)〉k + 〈F�y(n)�yᵀ(n)〉k, (39)

� (NNN + F(k))K(k)
0 , F(k)

ij ≡ f ′
i (〈xi〉k)δij . (40)

Similarly, one computes

K(k)
0 = 〈�y(n)�yᵀ(n)〉k

= 〈NNN �y(n)�yᵀ(n)NNN ᵀ〉k + 〈NNN �y(n)�yᵀ(n)F〉k
+〈F�y(n)�yᵀ(n)NNN ᵀ〉k + 〈�η(n)�ηᵀ(n)〉k + MMM (k)

= NNN K(k)
0 NNN ᵀ +NNN K(k)

0 F(k) + F(k)K(k)
0 NNN ᵀ + σ +MMM (k),

(41)

where

M (k)
ij ≡ 〈f ′

i (Xi(n))f ′
j (Xj (n))yi(n)yj (n)〉k (42)

� f ′
i (〈xi〉k)f ′

j (〈xi〉k)K (k)
0 ij

. (43)

Using (40) to eliminate F(k)K(k)
0 , one gets

K(k)
0 = −NNN K(k)

0 NNN ᵀ + K(k)
1 NNN ᵀ + NNN K(k)

1

ᵀ + σ + MMM (k).

(44)
Thus NNN can be reconstructed from the off-diagonal and

diagonal elements of K(k)
1 K(k)

0

−1
via

K(k)
1 K(k)

0

−1 = NNN + F(k), k = 1, . . . ,P . (45)

Hence the reconstruction formulas for the W and f ′
i (〈xi〉k) are

h′Wij = (
K(k)

1 K(k)
0

−1)
ij

for i �= j, Wii = 0, (46)

f ′
i (〈xi〉k) =

∑
m�=i

(
K(k)

1 K(k)
0

−1)
im

+ (
K(k)

1 K(k)
0

−1)
ii
. (47)

Then σ can be reconstructed from (44) once NNN and the
f ′

i (〈xi〉k)’s are known.
To verify our reconstruction scheme for periodic dynamics,

period-2 noise-free dynamics is generated using a similar
random network with intrinsic Hill dynamics but with a
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FIG. 8. Network reconstruction for period-2 noise-free dynamics for the same system in Fig. 7. (a) Naive use of the reconstruction formula
for stationary noise-free dynamics in reconstructing Wij using (17). (b) Naive use of the reconstruction formula for stationary noise-free
dynamics in reconstructing f ′

i using (18). (c) Naive use of the reconstruction formula for stationary noise-free dynamics σii using (15).
(d) Reconstructed Wij using (46) for periodic dynamics vs the actual Wij . (e) The reconstructed partial derivative matrix elements using (47)
for periodic dynamics vs the actual ones. (f) The reconstructed σii using (44) for periodic dynamics vs the actual σii .

higher connection probability of p = 0.07 (WR1† in Table I);
the resultant dynamics is period-2 due to the higher link
density in the network. Figures 7(b) and 7(c) verify that the
reconstruction formulas in Eq. (45) for period-2 dynamics
indeed hold very well.

On the other hand, if one naively applies the reconstruction
method for stationary dynamics to this case of period-2 dy-
namics, the error rates for the adjacency matrix are FN/NL =
3.21% and FP/NL = 3.49% and the rms errors are large, with
�W = 0.76%, �f ′ = 18.3% (see Table I). On the other hand,
when the correct method of reconstructing period-2 dynamics
is used, one gets perfect reconstruction of the adjacency
matrix and the rms errors drop significantly to �W = 0.048%,
�f ′’s = 0.508% and 0.696%, indicating the validity of the
reconstruction method for fluctuating periodic dynamics in a
network. Figure 8 shows the comparison of reconstruction
results (for Wij , f ′

i , and σii) when one naively applies a
reconstruction scheme for stationary dynamics to that of the
correct reconstruction formulas for periodic dynamics. Many
false-positive and false-negative connections are incorrectly
reconstructed unless the correct reconstruction formulas are
used. Furthermore, the predictions for f ′

i deviate enormously
if the correct reconstruction scheme for periodic dynamics

is not employed. In addition to the period-2 state generated
with Hill dynamics, our method also works well for the
period-2 state generated for WR of p = 0.05 with logistic
node dynamics with the coupling function h(z) = tanh(2z).
As shown in Table I, very accurate network reconstruction
can be achieved with the proper reconstruction scheme for
period-2 dynamics.

VI. CONCLUSION AND OUTLOOK

In this paper, we derived analytic formulas for recon-
structing the connection strengths and topology of directed
network systems with discrete-time dynamics under white
noises. The derived reconstruction formulas (14)–(16) provide
the theoretical basis for our network reconstruction scheme.
Only time-series data of the measured nodal dynamics are
required as input for the network reconstruction. Information
about the intrinsic node dynamics as well as the noise
strengths can also be obtained. All the reconstruction schemes
are well verified by numerically generated time-series data
of weighted directed and undirected networks of known
connection and coupling strengths. The performance of the
network reconstruction is evaluated in terms of false positive
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and false negative error rates together with the rms errors for
Wij and f ′

i for various parameters, including the time-series
length Tav, the network size N , the noise matrix σij , the
weight distribution, the network sparsity, and different network
topologies such as small-world, scale-free, and reducible block
networks. Our results indicated that our reconstruction scheme
in general is accurate for a broad range of parameters and
network topologies. Only for cases when the network is
very fragmented or when the coupling weights contain a
significant portion of very small weights is the accuracy less
satisfactory. In addition, we also go beyond previous network
reconstruction methods of continuous-time dynamics [17–19],
and we derive reconstruction formulas [Eqs. (28)–(31)] for
higher-dimensional node dynamics as well as for situations
when the noise-free dynamics is periodic [Eqs. (44)–(47)].
The reconstruction method for period states presented here
considered the entire network with all nodes having the same
periodicity. Our scheme can be generalized to situations when
the network consists of several clusters of periodic states
with different periodicities; those results will be published
elsewhere. Our approach for situations of high-dimensional
node dynamics and a periodic noise-free state can be extended
to the case of a continuous-time dynamics network governed
by ordinary differential equations.

Our reconstruction method relies on fluctuations about a
unique stationary dynamical state that is constantly perturbed
by noises. However, multiple stable fixed points for noise-
free dynamics may coexist in some scenarios, and for large
measurement duration the system can hop from one stationary
state to another due to noises, which might cause inaccurate
network reconstruction. The present reconstruction scheme
can still work in principle with the following data preprocess-
ing procedure, provided the noisy fluctuations about different
stationary states are still separated under noisy perturbations.
First identify the coexisting stationary states by examining
the time series. The transition between different stationary
states can be identified by large hops. Then identify and collect
time-series segments for the fluctuating dynamics (discarding
the short transient parts just before and after transitions) around
a certain stationary state, and perform reconstruction for such
a collection of time-series data. Repeat the above procedure
for other coexisting stationary states. One can cross-check
the reconstructed networks obtained from different coexisting
stationary states for consistency and possibly to improve the
network prediction accuracy.

Noise is regarded as intrinsic in our system, and not
externally imposed or controllable. The present work con-
sidered only nodes under additive white noises, but there are
temporal correlated color noises in many practical situations.
In general, there might be some node dynamics that are

TABLE VII. Reconstruction performance for a directed weighted
random network under correlated noises with correlation time τc.
Logistic dynamics and linear coupling the same as the network in the
first row of Table I. Tav = 106.

τc
FN

NL
(%) FP

NL
(%) �W (%) �f ′ (%)

0 0 0 0.025 0.262
0.2 0 0 0.032 0.649
0.4 0 2.316 0.148 6.382
0.6 0 9.895 0.411 14.29
0.8 0 11.79 0.623 21.11
1.0 0 17.05 0.809 26.27

hidden (not available for measurements), and this would
induce correlations in the effective noises felt by the measured
nodes. Hence, it would be necessary to consider correlated
noises. Table VII shows the performance of a naive use of
the present white noise reconstruction scheme; it can only
give satisfactory results if the noise correlation time τc � 0.4
for the WR1 network used in Table I. On the other hand,
our reconstruction scheme can be extended to the case of
correlated color noises. The challenge would be to extract τc at
the same time; these results will be presented elsewhere [30].
For the case of multiplicative noises in which the noise strength
depends on the dynamical variable, for instance the noise term
in Eq. (1) is given by γ (xi(n))ηi(n) for some function γ (x),
the present reconstruction scheme still works well. Because of
the discrete-time nature of the dynamics, the reconstruction
formulas (14) and (15) still hold for multiplicative noises
with σij replaced by γ (Xi)γ (Xj )σij , hence Wij and f ′

i can
be reconstructed accurately using the same scheme.

Finally, we remark that accurate and efficient network
reconstruction methods developed in this work can have
broad potential applications. For example, novel tools for
data analysis with real-time information about the coupling
strengths of the complex interacting systems may be able to
provide revolutionary tools for a real-time feedback control
method in science and engineering. Knowing the network
interactions and their strengths, a feedback control method
[31–34] can be designed and implemented to manipulate the
system to the desired dynamical states across the network,
with possible applications to control the dynamical state of
neuronal or brain networks, or to control gene expressions in
cell development.
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[27] M. Hénon, Commun. Math. Phys. 50, 69 (1976).
[28] S. H. Strogatz, Nonlinear Dynamics and Chaos, 2nd ed.

(Westview, Cambridge, 2014).
[29] H. G. Schuster and J. Wolfram, Deterministic Chaos, An

Introduction, 4th ed. (Wiley-VCH, Weinheim, 2005).
[30] P. Y. Lai (unpublished).
[31] Handbook of Chaos Control, 2nd ed., edited by E. Scholl and

H. G. Schuster (Wiley-VCH, Weinheim, 2008).
[32] S. Sridhar, D. M. Le, Y. C. Mi, S. Sinha, P. Y. Lai, and C. K.

Chan, Phys. Rev. E 87, 042712 (2013).
[33] S. N. Liang, D. M. Le, P. Y. Lai, and C. K. Chan,

Euorphys. Lett. 115, 48001 (2016).
[34] D. M. Le, Y. T. Lin, Y. H. Yang, P. Y. Lai, and C. K. Chan,

Europhys. Lett. (to be published).

022311-13

https://doi.org/10.1209/epl/i2006-10289-y
https://doi.org/10.1209/epl/i2006-10289-y
https://doi.org/10.1209/epl/i2006-10289-y
https://doi.org/10.1209/epl/i2006-10289-y
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1103/PhysRevLett.97.188701
https://doi.org/10.1103/PhysRevLett.97.188701
https://doi.org/10.1103/PhysRevLett.97.188701
https://doi.org/10.1103/PhysRevLett.97.188701
https://doi.org/10.1103/PhysRevLett.98.224101
https://doi.org/10.1103/PhysRevLett.98.224101
https://doi.org/10.1103/PhysRevLett.98.224101
https://doi.org/10.1103/PhysRevLett.98.224101
https://doi.org/10.1088/1367-2630/13/1/013004
https://doi.org/10.1088/1367-2630/13/1/013004
https://doi.org/10.1088/1367-2630/13/1/013004
https://doi.org/10.1088/1367-2630/13/1/013004
https://doi.org/10.1103/PhysRevLett.107.034101
https://doi.org/10.1103/PhysRevLett.107.034101
https://doi.org/10.1103/PhysRevLett.107.034101
https://doi.org/10.1103/PhysRevLett.107.034101
https://doi.org/10.1038/srep05030
https://doi.org/10.1038/srep05030
https://doi.org/10.1038/srep05030
https://doi.org/10.1038/srep05030
https://doi.org/10.1103/PhysRevE.88.042817
https://doi.org/10.1103/PhysRevE.88.042817
https://doi.org/10.1103/PhysRevE.88.042817
https://doi.org/10.1103/PhysRevE.88.042817
https://doi.org/10.1103/PhysRevE.91.030801
https://doi.org/10.1103/PhysRevE.91.030801
https://doi.org/10.1103/PhysRevE.91.030801
https://doi.org/10.1103/PhysRevE.91.030801
https://doi.org/10.1103/PhysRevE.95.010301
https://doi.org/10.1103/PhysRevE.95.010301
https://doi.org/10.1103/PhysRevE.95.010301
https://doi.org/10.1103/PhysRevE.95.010301
https://doi.org/10.1103/PhysRevE.91.012814
https://doi.org/10.1103/PhysRevE.91.012814
https://doi.org/10.1103/PhysRevE.91.012814
https://doi.org/10.1103/PhysRevE.91.012814
https://doi.org/10.1063/1.165869
https://doi.org/10.1063/1.165869
https://doi.org/10.1063/1.165869
https://doi.org/10.1063/1.165869
https://doi.org/10.1103/PhysRevLett.104.058701
https://doi.org/10.1103/PhysRevLett.104.058701
https://doi.org/10.1103/PhysRevLett.104.058701
https://doi.org/10.1103/PhysRevLett.104.058701
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1103/PhysRevE.87.042712
https://doi.org/10.1103/PhysRevE.87.042712
https://doi.org/10.1103/PhysRevE.87.042712
https://doi.org/10.1103/PhysRevE.87.042712
https://doi.org/10.1209/0295-5075/115/48001
https://doi.org/10.1209/0295-5075/115/48001
https://doi.org/10.1209/0295-5075/115/48001
https://doi.org/10.1209/0295-5075/115/48001



